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Abstract
Background: Cation channels play an essential role in red blood cells (RBCs) ion homeostasis. 
One set of ion channels are the transient receptor potential channels of canonical type (TRPC 
channels). The abundance of these channels in primary erythroblasts, erythroid cell lines and 
RBCs was associated with an increase in intracellular Ca2+ upon stimulation with Erythropoietin 
(Epo). In contrast two independent studies on Epo-treated patients revealed diminished basal 
Ca2+ concentration or reduced phosphatidylserine exposure to the outer membrane leaflet. 
Methods: To resolve the seemingly conflicting reports we challenged mature human and 
mouse RBCs of several genotypes with Epo and Prostaglandin E2 (PGE2) and recorded the 
intracellular Ca2+ content. Next Generation Sequencing was utilised to approach a molecular 
analysis of reticulocytes. Results/Conclusions: Our results allow concluding that Epo and PGE2 
regulation of the Ca2+ homeostasis is distinctly different between murine and human RBCs and 
that changes in intracellular Ca2+ upon Epo treatment is a primary rather than a compensatory 
effect. In human RBCs, Epo itself has no effect on Ca2+ fluxes but inhibits the PGE2-induced 
Ca2+ entry. In murine mature RBCs functional evidence indicates TRPC4/C5 mediated Ca2+ 
entry activated by Epo whereas PGE2 leads to a TRPC independent Ca2+ entry.

Introduction

Red blood cell (RBC) Ca2+ homeostasis plays an important role in the regulation of 
RBC survival and cell volume as well as in numerous pathologies [1-3] and its functional 
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importance is increasingly recognized. The abundance of transient receptor potential 
channels of canonical type (TRPC channels) in primary erythroblasts, erythroid cell lines 
and RBCs [4-8] was associated with an increase in intracellular Ca2+ upon stimulation with 
Erythropoietin (Epo) [5, 6]. Although the activity-regulation of the different TRPC isoforms 
can be complex [9, 10], two independent studies on Epo-treated patients revealed diminished 
basal Ca2+ concentration or reduced phosphatidylserine exposure to the outer membrane 
leaflet that may be considered secondary to decreased intraerythrocytic Ca2+ levels [11, 
12]. Furthermore, stimulation of RBCs with Prostaglandin E2 (PGE2) was associated with 
electrogenic Ca2+ influx [13, 14] and was considered as mediated by a TRPC channel [15]. 
The physiological and functional significance and importance of PGE2-mediated channel 
activity and Ca2+-signalling in stressed and Malaria-infected erythrocytes was previously 
documented [16-19].

To elucidate the effect of Epo and PGE2 we challenged mature human and mouse RBCs 
of several genotypes with both substances and recorded the intracellular Ca2+ content. Our 
results allow concluding that Epo and PGE2 regulation of the Ca2+ homeostasis is distinctly 
different between murine and human RBCs. 

In a previous investigation PGE2-stimulated Ca2+ entry in Epo treated patients was smaller 
compared to not Epo treated patients [12]. In this study the modulation of erythropoiesis 
could have caused the change in Ca2+ influx. Here we show that it is a direct effect of Epo: In 
human RBC, Epo itself has no effect on Ca2+ fluxes but inhibits the PGE2-induced Ca2+ entry. 
In murine mature RBCs Epo activates TRPC4/5 mediated Ca2+ entry whereas PGE2 leads to 
a TRPC independent Ca2+ entry.

Material and Methods

Blood Samples
Blood sampling from humans was approved by the ethical committee (Ärztekammer des Saarlandes, 

approval number 132/08) upon informed consent and blood sampling from animals was approved by the 
Saarland animal experiment commission (approval number H1-2.3.4.5). TRPC4/C5 double knock-out (dKO) 
mice and mice lacking all TRPC channels (hepta TRPC KO-mice) were generated in successive crossings of 
published single knock-out mice ([20] and references therein) until the desired multi- knock-out strains 
were obtained. The RBCs of both knock-out mouse lines did not show an obvious phenotype. Wild-type 
mice were C57Bl6/N, the same as the background of the dKO mice. For enriching reticulocytes (RNA) in 
the blood samples, mice were treated for an induction of a reticulocytosis as described before [21]. These 
experiments were conducted in accordance with the recommendations of the Guide for the Care and Use of 
Laboratory Animals of the National Institutes of Health. The protocol was approved by the State Office for 
Health and Consumer Protection (permit number: C1-2.4.3.4).  

Imaging
We performed confocal Ca2+ imaging of mature human and mouse RBCs and we chose the imaging 

approach in particular because it allowed, in contrast to flow cytometry, to follow a cell population over 
time. In addition we have previously shown that for Ca2+ detection in RBCs, flow cytometry and microscopy 
lead to comparable results [22]. Microscopy has additionally an advantage if very fragile cells are measured 
that are likely to lyse under the rather harsh conditions (pressure and shear stress) in the flow cytometer 
[23]. The latter aspect is likely to be relevant for the rather fragile mouse RBCs. Confocal imaging was 
performed as previously described [24], in detail we used a multibeam array scanner (Infinity-4, VisiTech 
Int., Sunderland, UK) with a 491 nm DPSS laser (Calypso, Cobolt, Solna, Sweden). The confocal scanner 
was attached to an inverted microscope (TE2000-U, Nikon, Tokyo, Japan) utilising a 60x objective. Image 
acquisition was done with an EM-CCD camera (iXon887, Andor, Belfast, UK) and the entire measurement 
process was software controlled (VoxCellSCan, VisiTech Int., Sunderland, UK). RBCs were loaded with 
Fluo-4, AM (ThermoFisher Scientific, Waltham, MA, USA) at a concentration of 5 µM (from a 1 mM stock 
solution in DMSO containing 20% Pluronic F-127) for 1 hour. After the staining, cells were washed 3 times 
by 3 min centrifugation with 1000xg. Then RBCs were plated on coverslips and 20 min were allowed for 
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sedimentation and deesterification of the Fluo-4. Data analysis was performed as previously described [21], 
data extraction (defining the regions of interest) was done in ImageJ (Wayne Rasband, National Institute of 
Health, USA), further data analysis and determination of the maximal cellular response was processed in 
Igor Pro 6.2 (WaveMetrics, Portland, Oregon, USA) with custom made macros and statistical analysis was 
performed in Prism 6 (GraphPad Software, La Jolla, California, USA). The physiological solution, in which 
RBCs were kept during the staining procedure and the experiments was Tyrode solution containing in mM: 
135 NaCl, 5.4 KCl, 10 Glucose, 10 HEPES, 1.8 CaCl2, 1 MgCl2, pH 7.35 adjusted with NaOH, 300 mOsmol/
kg H2O. All experiments (human and mouse) were performed at least 3 times with RBCs from 3 different 
donors. PGE2 was purchased from ThermoFisher Scientific, Waltham, MA, USA and used at a concentration 
leading to a pronounced Ca2+ entry into RBCs [13, 14]. Epo was purchased from ProSpec-Tany TechnoGene 
Ltd., Ness-Ziona, Israel and applied at concentrations similar to those used by others to challenge RBCs [10, 
11].

RNA analysis
To purify human RBCs we followed a method originally developed by Beutler et al. [25]. Blood samples 

were centrifuged at 1000xg for 20 min. Plasma was aspirated and mixed with phosphate buffered saline 
(PBS) (1:10). Erythrocytes were washed 3 times (1000xg, 5 min) and mixed with PBS (1:1). Filter paper 
(Whatman No. 4 GE Healthcare, UK) was pressed in a 10 ml syringe (Omnifix Solo Lure, Braun, Germany) 
and a mixture of 180 mg Sigma- and 180 mg Alpha-Cellulose (Sigma-Aldrich, St. Louis, MO, USA) suspended 
in 10 ml PBS was added. After the PBS drained, the syringe was primed with 10 ml of the diluted plasma. 1 
ml of RBCs were added and eluted with 10 ml PBS. Filtered RBCs were again washed 3 times in PBS. For a 
following RNA isolation RBCs were used immediately.  

To evaluate the purification of the RBCs we used the gelatin zymography technique, previously 
described by Achilli et al. [26]. This method allows the detection of contaminations with polymorphonuclear 
neutrophils (PMNs), a type of leucocytes that cannot be eliminated by washing the blood sample. PMNs are 
the only type of blood cells that express the matrix metalloproteinase 9 (MMP-9), whose catalytic activity 
against gelatin can be used as a specific marker.

Briefly, 10 µl of diluted RBCs samples (PBS, 1:10) were lysed by adding Zymogram Tris-Glycine SDS 
Sample Buffer (1:1) (Thermo Fisher Scientific, Waltham, MA, USA), followed by a protein separation in 
10% Gelatin Protein Gels (Thermo Fisher Scientific, Waltham, MA, USA) using a nonreducing SDS-PAGE. 
After separation (2 h, 125 V), gels were incubated for 1 h in Zymogram Renaturing Buffer (Thermo Fisher 
Scientific, Waltham, MA, USA) under continuous shaking and washed three times in Aqua dest. For activation 
of the catalytic activity of MMP-9, the gels were incubated for up to 40 h in a digestion buffer containing (in 
mM): 50 Tris-HCl pH 7.6, 150 NaCl, 10 CaCl2. Degradation of gelatin in the gel could be visualized after 
Coomassie blue staining as white spots.

Fluorescence-activated cell sorting was performed with wild type murine blood samples using a 
FACSAria III (Becton Dickinson, Franklin Lakes, NJ, USA). Blood samples were initially filtered as described 
earlier. RBCs were incubated in PBS for 1.5 h at 4° C with the following antibodies: IgG2a rat anti-mouse 
CD71, PE-conjugated, clone RI7217 (BioLegend, San Diego, CA, USA) [1:40] and IgG2b rat anti-mouse CD45, 
APC-conjugated, clone 30F11 (Miltenyi Biotec, Bergisch Gladbach, Germany) [1:200]. RBCs were sorted 
CD71-positive (marker for reticulocytes) and CD45-negative (marker for leucocytes). A number of 65 to 70 
x 106 cells were sorted, which were kept at 4° C for the duration of the sort and thereafter used immediately 
for RNA isolation.

For leucocyte depletion we additionally used antibody-coupled magnetic beads. To reduce the number 
of CD45+ cells that needed to be eliminated we first performed the Ficoll-Paque separation of the blood 
sample. Blood was diluted with PBS and layered on top of the Ficoll-Paque solution (GE Healthcare, Little 
Chalfont, UK). After centrifugation (800xg, 25 min) plasma and a layer of leucocytes were removed and RBCs 
were washed three times in isolation buffer (PBS with 0.1 % BSA and 2 mM EGTA). Cells were incubated 
over night at 4° C with the following antibodies: IgG rabbit anti mouse/human CD45 (GeneTex Inc., Irvine, 
CA, USA) [1:40] and IgG rabbit anti mouse/human CD15 (Biorbyt, Cambridge, UK) [1:50]. Magnetic beads 
(Dynabeads sheep anti-rabbit, Thermo Fisher Scientific, Watham, MA, USA) were washed once in isolation 
buffer using a DynaMag Holder (Thermo Fisher Scientific, Watham, MA, USA) and then added to the RBCs 
(1:1) for further 120 min. To remove the bead-bound cells the RBC-Bead-Mix was washed twice in PBS again 
using the DynaMag Holder. 
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For RNA isolation we used the RiboPure RNA Purification Kit (Thermo Fisher Scientific, Watham, MA, 
USA) and 500 µl of human or murine blood samples, prepared as described before. Subsequently, the alpha 
and beta globin mRNA, which have the highest expression in reticulocytes, was removed from the total RNA 
preparations by using the GLOBINclear Kit (Thermo Fisher Scientific, Watham, MA, USA) according to the 
manufacturer´s protocol. Transcriptome analysis was performed by Expression Analysis Inc. (Henderson, 
CO, USA) using next-generation sequencing. 

Results and Discussion

Figure 1 depicts fluorescence intensity traces, example images and a statistical analysis of 
human RBCs challenged with Tyrode solution only or with addition of 5 nM Epo, 0.1 nM PGE2 
and both simultaneously, 1 min after the start of the imaging. The values presented remain 
as fluorescence intensity, because a calibration of the Ca2+ dyes in haemoglobin containing 

Fig. 1. Epo and PGE2 
regulated Ca2+ ho-
meostasis in mature 
human RBCs. Panel A 
depicts example trac-
es of the fluorescence 
intensity of individual 
cells and medians of 
the given cell popula-
tions for control con-
ditions (Aa), for stim-
ulation with Epo (Ab), 
for stimulation with 
PGE2 (Ac) and for the 
simultaneous PGE2 
and Epo stimulation 
(Ad). The example im-
ages below the graphs 
contain representa-
tive cells at selected 
time points marked 
by coloured regions of 
interest - colour codes 
of the regions fit with 
the colour of the trac-
es. As a 'positive con-
trol', the grey arrow 
points to a spontane-
ously responding cell. 
Treated cells formed two populations of responding and non-responding cells. A RBC was regarded as a 
responding cell if in the time course of the experiment the increase of F/Fo was bigger than three times the 
standard deviation of the control condition. The medians of the responding and non-responding popula-
tion in (Ab) is plotted by black solid and dotted lines, respectively. Panel B provides the statistical analysis 
of the maximal response of RBCs under control conditions (Aa), with 5 nM Epo stimulation (Ab), 0.1 nM 
PGE2 stimulation (Ac) and simultaneous PGE2 and Epo stimulation (Ad). The RBC numbers analysed were 
449 for Tyrode, 214 for Epo (7.2% responder), 218 for PGE2 (17.9% responder) and 370 for PGE2 and Epo 
simultaneously (13.4% responder). The diagram shows the median with 25-75 percentile box plots and 
10-90 percentile whiskers. Significant differences were checked with the Mann-Whitney test with p>0.05 
regarded as non significant (n.s.) and p<0.001 marked with ***.
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Fig. 2. Epo and PGE2 reg-
ulated Ca2+ homeostasis 
in mature murine RBCs 
of wild type mice. Panel 
A depicts example traces 
of the fluorescence in-
tensity of individual cells 
and medians of the given 
cell populations for con-
trol conditions (Aa), for 
stimulation with 5 nM 
Epo (Ab), for stimulation 
with 0.1 nM PGE2 (Ac) 
and for the simultaneous 
PGE2 and Epo stimula-
tion (Ad). The example 
images below the graphs 
contain representative 
cells at selected time 
points marked by col-
oured regions of interest 
- colour codes of the re-
gions fit with the colour 
of the traces. A RBC was 
regarded as a responding 
cell if in the time course 
of the experiment the 
increase of F/Fo was big-
ger than three times the standard deviation of the control condition. The RBC numbers analysed for each 
condition were between 407 and 470. 63.1% of the RBCs responded to Epo, the same number responded 
to PGE2 and 81.1% of the RBCs responded to the simultaneous stimulation with Epo and PGE2. The dia-
grams show the median with 25-75 percentile box plots and 10-90 percentile whiskers. Significant differ-
ences were checked with the Mann-Whitney test with p>0.05 regarded as non significant (n.s.) and p<0.001 
marked with ***.

cells is close to impossible [27]. PGE2 stimulation led to the increase in intracellular Ca2+ in 
agreement with our earlier findings [14]. Acute Epo stimulation alone had no effect on the 
intracellular Ca2+ concentration. However, 5 nM Epo was sufficient to inhibit the Ca2+ signals 
induced by 0.1 nM PGE2. These data confirm the observation of a decreased PGE2-induced Ca2+ 
response in Epo treated patients [12]. Because these results were in contradiction with what 
was reported for murine and human primary erythroblasts and erythroid cell lines [5, 6], 
we performed the same experiments with RBCs from wild type mice. The results are shown 
in Figure 2. The heterogeneity of the data is not caused by inter-individual differences but 
by a heterogeneous response of the cells similar as reported before for the stimulation with 
Lysophospatidic acid [21].  In murine RBCs, Epo as well as PGE2 induced a clear increase in 
the intracellular Ca2+. These stimulatory effects of PGE2 and Epo were additive suggesting the 
existence of two independent targets for the stimuli. In search of these targets we investigated 
the effects of PGE2 and Epo on the intraerythrocytic Ca2+ in TRPC4/C5 dKO-mice. As outlined 
in Figure 3, RBCs of TRPC4/C5 dKO-mice responded to the Epo stimulation with a modest 
depletion of intracellular Ca2+. Ca2+ uptake triggered by the PGE2 treatment appeared to be 
Epo-insensitive in these animals. This observation suggests that the Epo-induced Ca2+entry 
critically depends on TRPC4/C5. In line with these findings, responses of RBCs of hepta TRPC 
KO-mice to the stimulation with Epo and PGE2 were similar to those measured in RBCs of 
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Table 1. Ca2+ uptake targeted by Epo and PGE2 in human and mouse erythroid precusors and mature 
RBCs. Erythroid precursor information are exclusively taken from the given references while the majority 
of mature RBC data are presented in this paper. The abbreviation n.d. denotes ‘not determined’. Because 

Fig. 3. Epo and PGE2 
regulated Ca2+ homeo-
stasis in mature mu-
rine RBCs of TRPC4/
C5 dKO-mice. Panel A 
depicts example trac-
es of the fluorescence 
intensity of individual 
cells and medians of 
the given cell popu-
lations for control 
conditions (Aa), for 
stimulation with 5 nM 
Epo (Ab), for stimu-
lation with 0.1 nM 
PGE2 (Ac) and for the 
simultaneous PGE2 
and Epo stimulation 
(Ad). The example im-
ages below the graphs 
contain representa-
tive cells at selected 
time points marked 
by coloured regions 
of interest - colour 
codes of the regions 
fit with the colour of 
the traces. A RBC was 
regarded as a responding cell if in the time course of the experiment the increase of F/Fo was bigger than 
three times the standard deviation of the control condition. The RBC numbers analysed for each condition 
were between 359 and 400. The responding rate to Epo, PGE2 and simultaneous Epo and PGE2 stimula-
tion was 60.7%, 70.3% and 93.8%, respectively. The diagrams show the median with 25-75 percentile box 
plots and 10-90 percentile whiskers. Significant differences were checked with the Mann-Whitney test with 
p>0.05 regarded as non significant (n.s.) and p<0.001 marked with ***.

we found in the tran-
scriptome of mouse 
reticulocytes a corre-
lation between reads 
for TRPC1/C2 and 
CD45 (Fig. 5), we are 
uncertain about role 
of TRPC2 in eryth-
roid precursor cells 
and therefore added a 
question mark 
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TRPC4/C5 dKO-mice (Fig. 4). The persisting Ca2+ increase by stimulation with PGE2 suggests 
that PGE2-induced Ca2+ entry in RBCs is TRPC-independent. The investigation of the hepta 
TRPC KO-mice was the only approach that allows such a conclusion because even putative 
experiments with a combination of single and double knock-out mice could fail to show such 
a result due to compensatory effects of different TRPC channel isoforms [28].

The results summarized in Table 1 show  Ca2+ uptake evoked by Epo varies in 
erythroblasts [5, 6] and mature RBCs (Fig. 1-4). In mouse erythroblasts the major Epo activated  
Ca2+ channel is claimed to be the TRPC2 channel, whereas in human erythroblasts it is TRPC3 
[5] regulated by TRPC6 [10]. In mature murine RBCs functional data (Fig. 3) indicate that 
the Epo induced Ca2+ entry is TRPC4/C5 mediated, while in mature human RBCs an Epo 
induced Ca2+ pathway is absent reflecting the putative absence of TRPC4/C5 in human RBCs. 
The negative regulation of the Epo induced Ca2+ entry by TRPC6 [10] is in agreement with 
indications of the presence of TRPC6 in mature RBCs [7]. Already previously, discrepancies 
of functional and molecular data in the context of ion channels have been reported [29], 
we tackled the investigation of TRPC channels on the molecular level by analysing RNA of 
reticulocytes. The difficulty in all investigations based on cell populations is the preparation 
of pure RBC suspensions as outlined in [23]. Our experiments on human RBCs underline 
this statement: Although we performed the state of the art preparation of cellulose filtering 

Fig. 4. Epo and PGE2 
regulated Ca2+ homeo-
stasis in mature murine 
RBCs of hepta TRPC 
KO-mice. Panel A de-
picts example traces of 
the fluorescence inten-
sity of individual cells 
and medians of the 
given cell populations 
for control conditions 
(Aa), for stimulation 
with 5 nM Epo (Ab), for 
stimulation with 0.1 
nM PGE2 (Ac) and for 
the simultaneous PGE2 
and Epo stimulation 
(Ad). The example im-
ages below the graphs 
contain representative 
cells at selected time 
points marked by col-
oured regions of inter-
est - colour codes of 
the regions fit with the 
colour of the traces. A 
RBC was regarded as a 
responding cell if in the 
time course of the experiment the increase of F/Fo was bigger than three times the standard deviation of the 
control condition. The RBC numbers analysed for each condition were between 356 and 422. The percent-
age of responders for Epo, PGE2 and simultaneous Epo and PGE2 stimulation was 75.6%, 93.1% and 83.8%, 
respectively The diagrams show the median with 25-75 percentile box plots and 10-90 percentile whiskers. 
Significant differences were checked with the Mann-Whitney test with p>0.05 regarded as non significant 
(n.s.), p<0.01 marked with ** and p<0.001 marked with ***.
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[26] and the subsequent zymography test (Fig. 5A) ensured a clean preparation, only one 
out of four human samples was devoid of CD45 reads in next generation sequencing (NGS) 
analysis. For mouse RBCs the situation is even worse, because the zymography does not 
work on mouse RBCs (Fig. 5B). Therefore we followed two independent approaches to purify 
mouse RBCs: (i) by depleting CD45 and CD15 positive cells with magnetic beads and (ii) 
fluorescence-activated cell sorting (FACS) of CD71 positive and CD45 negative cells. Although 
we induced a reticulocytosis in the mice resulting in a reticulocyte count of approximately 
30% and used the latest state of the art FACS technology, it took for each sample 6-8 hours 
non-stop sorting to get the required 65-70 million reticulocytes necessary for a NGS analysis. 
Additionally, to increase the sensitivity of the RNA analysis a reduction of the predominant 
globin-coding RNA was performed. Only the FACS sorted samples were free of CD45 reads 
with TRPC6 being the only detectable channel within the TRPC family. In all other samples 
reads for predominantly TRPC2 and partly TRPC1 channels occurred and these correlated 
with the amount of CD45 reads as outlined in Figure 5C, whereas TRPC4 associated protein 
(TRPC4AP) did not correlate with CD45 (Fig. 5C). 

From the data presented in Figures 1-5 we conclude that NGS is not sufficient to justify 
functional data reported based on knock-out models. We therefore regard a functional 
identification of ion channels as more sensitive than classical biochemical approaches 
including Western blots, especially when a small copy number of channels is considered.

In light of these results, both, the sensitivity and the specificity (due to impure cell 
preparations) of previous studies must be critically reflected.   

A

150 kDa 

100 kDa 

U1 U2 U3 W1 W2 W3 F1 F2 F3
B

C

250 kDa 

150 kDa 

100 kDa 

U1 U2 W1 W2 F1 F2 F3 F4 B1

Fig. 5. Molecular analysis of RBCs. Gelatin zymography 
was performed on human und murine blood samples 
after 16 h digestion. (A) Coomassie blue stained human 
RBCs samples were analysed. Subscripts 1 to 4 refer to 
blood donors 1 to 4. U: unwashed samples, W: washed 
samples, F: cellulose filtered samples. Dark lanes in the 
background represent Coomassie stained RBC proteins, 
whereas gelatin degradation can be seen as white lanes. 
Unwashed and washed human blood samples show the 
typical pattern for MMP  -9 activity as described before 
(Achilli et al.) [26], therefore being contaminated with 
PMNs. In addition sample B1 shows a human blood sam-
ple that was depleted from leucocytes using antibody–
coupled magnetic beats. Like in the filtered samples 
there is no trace of MMP-9 activity, meaning there is no 
detectable contamination with PMNs. (B) depicts murine 
blood samples from three different mice (subscripts 1 to 
3). Unwashed samples (U) were again used as a positive 
control for MMP-9 activity, though they do not show the 
digestion pattern that was reported for human samples, 
making it impossible to draw any conclusion about the 
contamination level of the washed and filtered murine 
samples. Therefore we performed a correlation of reads 
from Next Generation Sequencing (NGS). NGS was ap-
plied to RNA extracted from mouse reticulocyte preparations. (C) The reads of CD45 (Tyrosin phosphatase, 
marker for leucocytes and hence for impurities of RBC preparation) are plotted against the sum of reads 
(rpkm – reads per kilobase per million mapped reads) for TRPC1/C2 channels (red squares fitted with a red 
solid line). Please note that two samples without any CD45 reads (just one point in the graph) also showed 
no reads for TRPC1/C2. For comparison we plotted the reads for the TRPC4 associated protein (TRPC4AP) 
with black circles fitted with a black dashed line. The correlation of TRPC1/C2 with CD45 is significant (**) 
while there is no correlation between TRPC4AP and CD45.
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Returning to the discussion of the physiological parameters: Beside the unequivocal 
effect of Epo on erythropoiesis, we report species-specific responses to Epo in murine 
and human RBCs. Whereas in human RBCs, Epo reduces Ca2+ uptake protecting RBCs from 
premature clearance during, e.g., inflammation induced eryptosis and hypoxic/anaemic 
episodes, this regulation mechanism is inverted in mice. Possible explanations include (i) 
differences in the abundance of Epo-receptors, (ii) differences in downstream signalling 
resulting in the regulation of Ca2+ uptake pathways, and (iii) differences in the Ca2+ uptake 
pathways. Beside the differences in TRPC channel abundance/function (Table 1), in mouse 
RBCs the Epo-receptor was determined to be heterogenic distributed and amounts between 
2 and 105 receptors per cell (decreasing with cell age) [30]. Epo receptors were reported to 
be devoid in human reticulocytes [31] or to be at least very low in their abundance (about 6 
binding sites per cell) [11].

We can speculate about the function of Epo-stimulated Ca2+ entry for RBC biology in mice: 
An increased Epo level, e.g. induced by hypoxia, would not only increase erythropoiesis but 
considering the increased intracellular Ca2+, also trigger eryptosis. This enables immediate 
recycling of iron and such allows for an effective reticulocytosis. A renewal of RBCs may 
lead to a more effective oxygen transportation without a significant increase in RBC number, 
which eventually would raise the thromboembolytic risk as it is known for human patients 
receiving high Epo doses [32].
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