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a b s t r a c t

This paper presents a predictive control algorithm for non-linear systems based on successive linear-
izations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and
the non-convex constrained optimization problem is transformed into a sequence of locally convex ones.
The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To
account for linearization errors and to obtain more accurate results an inner iteration loop is added to the
algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also pre-
sented. The convergence of the iterative process and the stability of the closed-loop system are analyzed.
The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type
unmanned aerial vehicle.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Model predictive control (MPC) refers to a class of algorithms in
which models of the plant are used to predict the future behavior of
the system over a prediction horizon. It is formulated by solving an
on-line optimization problem. The optimal control input sequence is
calculated by minimizing an objective function subject to constraints.
Only the first element of the computed optimal control input is
applied to the plant according to a receding horizon strategy [1,2].
Linear MPC has been successfully applied in a variety of cases due to
its ability to explicitly incorporate the system model and state/inputs
constraints into the control calculation [3–6].

In the last few decades, MPC principles have been extended to
non-linear processes yielding to non-linear model predictive
control (NMPC). The use of general non-linear programming (NLP)
techniques to solve the NMPC problem has been proposed in
several works [7–10]. However, the solution methods based on
NLP present some drawback. First, these algorithms are compu-
tationally demanding, as they require to solve on-line a non-linear
optimization problem. Moreover, the constraints introduced by
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the non-linear model dynamics yield to non-convex optimization
problems.

Linearization and linear approximation have been adopted in a
variety of works to overcome the computational complexity pro-
blem [11,12]. The main advantage of these methods lies in the fact
that the model used in the prediction calculation is a set of local
linear approximation of the dynamics of the plant, thus converting
the non-linear optimization problem into a set of locally convex
ones, as it is done in [13–15]. However, linear predictive control
techniques do not automatically ensure the stability of the closed-
loop system. This issue has been studied by numerous researchers
for many years (see [11,16] for an overview). One way to address
the stability problem is to add a contractive constraint to the
optimization problem. This idea was firstly introduced by Yang and
Polak [17] and the stability proof was developed by De Olivera and
Morari [18]. In this approach, the authors propose to add a con-
tractive constraint that forces the system states to decrease at each
time step. To the best of our knowledge, there are few works that
address the addition of such contractive constraint and also this
constraint has only been used to contract the system states.

In this paper we present a novel robust predictive control algo-
rithm for non-linear systems. The proposed algorithm uses a linear-
ization process along pre-defined trajectories that transform the non-
convex optimization problem into a set of locally convex ones, which
can be solved using the standard quadratic programming (QP) tech-
niques. Here, to address stability and convergence issues, the addition
of a set of contractive constraints to the optimization problem is
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analyzed. These constraints force the cost functions to decrease or (at
least) to remain constant within the current time instant, thus
allowing us to take into account disturbances and determining an
upper bound of the cost functions value. Moreover, an inner iteration
loop is added to the proposed algorithm to account for linearization
errors and to obtain more accurate results.

The organization of this paper is as follows: in Section 2 the
formulation of the NMPC algorithm with the addition of the con-
tractive constraint is presented. In Section 3 a simple methodology
to obtain an outer bounding-tube for state trajectories is analyzed.
In Section 4 an inner iteration loop is added to the previous
algorithm. Simulation results are shown in Section 5. Finally,
conclusions are discussed in Section 6.
Giv
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Ste

Ste
Ste
Ste
2. Non-linear model predictive control formulation

Consider the discrete non-linear system

xkþ1 ¼ f xk;uk; dkð Þ ð1Þ
where xk ¼ xðkÞARn, uk ¼ uðkÞAUDRm and dk ¼ dðkÞADDRl are
the state vector, the control input vector and the bounded dis-
turbance vector, respectively, U is the input constraint set and f ð�Þ
is a continuous and differentiable vector function that describes
the dynamics of the system.

The non-linear model predictive control problem is formulated
as a regulatory problem stated as follows:

For a given1 disturbance sequence

dk ¼ dkj k;…; dkþN�1j k
� �T

; ð2Þ
find at each time instant k, a control input sequence

uk ¼ ukj k;…;ukþN�1j k
� �T

; ð3Þ
and predicted state sequence

xk ¼ xkþ1j k;…; xkþN j k
� �T

; ð4Þ
over a prediction horizon of N sampling intervals, such that

min
uk AU

J ðkÞ
s:t: xkþ1 ¼ f ðxk;uk; dkÞ: ð5Þ

The vectors dkþ ij k, ukþ ij k and xkþ ij k in Eqs. (2), (3) and (4) repre-
sent the disturbance, input and state vectors respectively at time
kþ i that are predicted using the information available at time k.2

The optimal solution of the problem (5) is denoted here as

un

k ¼ un

kj k;…;un

kþN�1j k
h iT

: ð6Þ

Regardless of the cost function J ðkÞ is convex or not, the
optimization problem (5) is non-convex due to the non-linearity of
the system dynamics, and the computational effort is a major issue
in its on-line implementation. If J ðkÞ is chosen to be a quadratic
cost function, then the convexity of (5) can be recovered by
approximating the non-linear model (1) with a linear time-varying
(LTV) one [19,20], which can be obtained linearizing the system
around a desired state and input trajectory xr

k, u
r
k, where

xr
k ¼ xrkþ1j k;…; xrkþN j k

h iT
; ð7Þ

and

ur
k ¼ ur

kj k;…;ur
kþN�1j k

h iT
: ð8Þ
1 If dk is not available, the most common assumption is
dkþ i ¼ dkþ i�1 ; i¼ 1;…;N.

2 When it clearly refers to current time k, the time dependency at which the
information is available will be omitted, i.e. ð�Þkþ ij k ¼ ð�Þkþ i .
Assuming that a reference perturbation drkþ ij k, i¼ 0;…;N�1 is
given or estimated, then the dynamic behavior of the deviation
from the desired trajectory can be written as an LTV model

~xkþ1j k ¼ Akj k ~xkj kþBuk j k ~ukj kþBdk j k
~dkj k; ð9Þ

where

~xkj k ¼ xkj k�xrkj k; ~ukj k ¼ ukj k�ur
kj k and ~dkj k ¼ dkj k�drkj k: ð10Þ

The matrices Akj k, Buk j k and Bdk j k , are the Jacobian matrices of the
discrete non-linear system (1), and they are defined as follows:

Akj k ¼
∂f ðxk;uk; dkÞ

∂xk

����
ðnÞ
; Buk j k ¼

∂f ðxk;uk; dkÞ
∂uðkÞ

����
ðnÞ
;

Bdk j k ¼
∂f ðxk;uk; dkÞ

∂dðkÞ

����
ðnÞ
; ð11Þ

where ðnÞ stands for ðxrk;ur
k; d

r
kÞ. In terms of the LTV system (9), the

following quadratic objective function J ðkÞ, commonly used in the
literature, is adopted

J ðkÞ ¼
XN�1

i ¼ 0

~xTkþ ij kQ ~xkþ ij kþ ~uT
kþ ij kR ~ukþ ij k

h i
þ ~xTkþN j kPkj k ~xkþN j k;

ð12Þ

where Q ;R; Pkj k are positive definite matrices; Pkj k is the terminal
weight matrix that is chosen so as it satisfies the Lyapunov
equation

Pkj k�AT
kj kPkj kAkj k ¼ Q : ð13Þ

As a result, the non-convex optimization problem (5) can be
rewritten as a convex optimization problem as follows:

min
~uk AU

J ðkÞ

s:t:

~xkþ1j k ¼ Akj k ~xkj kþBukj k ~ukj kþBdkj k
~dkj k;

~xkj k ¼ xkj k�xrkj k;

~ukj k ¼ ukj k�ur
kj k;

~dkj k ¼ dkj k�drkj k:

8>>>>><
>>>>>:

ð14Þ

In Algorithm 1 the NMPC receding horizon control technique is
summarized.

Algorithm 1. NMPC algorithm.
en Q ;R40, xkj k the initial condition.
p 1: Obtain the linearization trajectory xr

k, u
r
k using as initial

condition u0
k ¼ ½un

kj k�1;u
n

kþ1j k�1;…;un

kþN�2j k�1;0�T and

estimate dkþ i for i¼ 0;…;N�1
p 2: Obtain the LTV system (9) and Pkj k solving (13)

p 3: Compute the optimal control input sequence ~un

k solving
(14)
p 4: Update un

k’ur
kþ ~un

k

p 5: Apply ukj k ¼ un

kj k to the system

p 6: Move the horizon forward to the next sampling instant
k’kþ1 and go back to Step 1
Linearization techniques are the most straightforward ways to
adapt linear control methods to non-linear control problems. In
the absence of perturbations and linearization errors, Algorithm 1
will guarantee the closed-loop stability.



3 R1ð�Þ can be obtained as in [26].
4 If there is no information about dk a given value can be assumed.
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Assumption 1. The LTV system (9) is stabilizable for ukAU .

Assumption 2. The prediction horizon N is chosen
sufficiently long.

Assumption 3. There are no perturbations, i.e. dkþ i ¼ 0,
i¼ 0;…;N�1.

Theorem 1. Let Assumptions 1–3 hold. If the optimization problem
(14) solved using Algorithm 1 is feasible, then the origin is an expo-
nentially stable equilibrium point.

Proof. See Appendix A.

Although Assumption 1 establishes that the prediction horizon N
should be long enough, for engineering applications this horizon
should be actually chosen as small as possible in order to reduce the
workload of online calculation. Consequently, the stability of the
system should be ensured using a different argument (see for
instance [15,16,18]). Moreover, if disturbances are present Theorem 1
might not be satisfied because the contractivity of the cost function
cannot be guaranteed at the successive time instants. To address this
problem, we propose to add the convex contractive constraint

J ðkÞrJ 0ðkÞ; ð15Þ

to the optimization problem (14), where J 0ðkÞ denotes the cost
function evaluated for the initial solution

u0
k ¼ ½un

kj k�1;u
n

kj k�1;…;un

kþN�2j k�1;0�T : ð16Þ

at iteration k. Note that this constraint forces the cost function to
remain constant or to decrease within the current time instant, thus
determining an upper bound for J ðkÞ. Then, the new optimization
problem can be stated as follows:

min
~uk AU

J ðkÞ

s:t:

~xkþ1j k ¼ Akj k ~xkj kþBkj k ~ukj k;
~xkj k ¼ xkj k�xrkj k;

~ukj k ¼ ukj k�ur
kj k;

J ðkÞrJ 0ðkÞ:

8>>>><
>>>>:

ð17Þ

As the contractive constraint (15) is defined at the current time
instant, if any perturbation occur the value of J ðkÞ can increase (only
at time k) but then it is forced to decrease or to remain constant. The
optimization problem (17) can be seen as a multi-objective problem,
where the constraint (15) is used to guarantee the stability of the
closed-loop system and J ðkÞ is used to measure the performance of
the closed-loop system.

Theorem 2. If the optimization Problem (17) solved using Algorithm 1
is feasible, then the closed-loop system is stable.

Proof. See Appendix B.

Remark 1. Note that in the absence of perturbations, the con-
straint (15) guarantees the contractivity of the cost function at
successive time instants, i.e.

J nðkÞrJ ðkÞrJ 0ðkÞrJ nðk�1ÞrJ ðk�1Þ: ð18Þ
Remark 2. As the stability of the system is guaranteed, the pre-
diction horizon N can be reduced, consequently lowering the
workload of online calculation (see for instance the simulation
example of Section 5.1).

Remark 3. The addition of the constraint (15) is equivalent to the
addition of an input constraint on uk, hence if the system is sta-
bilizable with ukAU , then the initial feasibility is guaranteed and
using the argument of recursive feasibility, the contractive con-
straint (15) does not affect original feasibility [16].
3. Robust non-linear model predictive control

The design of robust control algorithms has been studied for
many years because such algorithms have the ability to handle
system parametric and structural uncertainties (modeled as
bounded disturbances) during the system operation. One possible
way of accounting for robustness in the NMPC algorithm consists
in evaluating at each sampling instant all the possible system state
trajectories for a given (or estimated) disturbance. This can be
done solving an optimization problem that considers the different
states trajectories, i.e.:

min
~u l
k AU

J ðkÞ

s:t:

~xlkþ1j k ¼ Al
kj k ~x

l
kj kþBl

kj k ~u
l
kj k;

~xlkj k ¼ xlkj k�xrkj k;

~ul
kj k ¼ ul

kj k�ur
kj k;

J lðkÞrJ l
0ðkÞ;

8>>>>>><
>>>>>>:

ð19Þ

where l¼1,…,m stands for the different system realizations regarding
the given disturbance. As a result, it can be thought that each state
trajectory defines an edge of a time varying polytope [21,22]. This
polytope can be used to generate a tube which actually contains all
the possible state trajectories. Tubes have been widely used to bound
uncertainties [21,23–25]. However, the determination of an exact
tube for non-linear systems is very difficult.

In this work, the LTV system (9) is obtained by a first order Taylor
series expansion. To measure the deviation between the LTV system
and the non-linear one, the second order Taylor remainder is used to
bound these linearization errors. Instead of obtaining the sequence of
all state trajectories xl

k, l¼ 1;…;m, we propose to use the Taylor
remainder to compute state trajectory sequence with the worst
uncertainty x▵k . This trajectory can then be used to determine an
outer bounding-tube that contains all the state trajectories. Finally,
this tube is used to guarantee the stability of the closed-loop system.
The proposed procedure is explained below.

The non-linear system (1) can be approximated exactly with an
LTV model if the second order Taylor reminder R1ð ~xk; ~uk;

~dkÞ3 is
added to the RHS of (9)

~xkþ1j k ¼ Akj k ~xkj kþBkj k ~ukj kþR1ð ~xk; ~uk;
~dkÞ: ð20Þ

From Eq. (20) it can be seen that the term R1ð�Þ acts as an additive
disturbance. This term can be maximized4 in order to obtain x▵k ,
which is the state trajectory sequence with the worst uncertainty.
Once x▵k is obtained, its associated cost J▵ðkÞ can be computed.
Then, the stability condition for the whole problem can be
established if this cost function is forced to decrease. This can be
done adding the following contractive constraint:

J▵ðkÞrJ▵0ðkÞ; ð21Þ

to the optimization problem (17). Finally the proposed robust
control problem to be solved is

min
~uk AU

J ðkÞ
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Fig. 1. Evolution of colored wind gusts.
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s:t:

~xkþ1j k ¼ Akj k ~xkj kþBkj k ~ukj k;
~xkj k ¼ xkj k�xrkj k;

~ukj k ¼ ukj k�ur
kj k;

J ðkÞrJ 0ðkÞ;
J▵ðkÞrJ▵0ðkÞ;

8>>>>>>><
>>>>>>>:

ð22Þ

where J▵0 ðkÞ denotes the cost functions J▵ðkÞ evaluated for the
initial condition u0

k .
By including the contractive constraint (21) the stability of the

origin is guaranteed as J▵ðkÞ is forced to decrease (or to remain
constant). Moreover, as J▵ðkÞ is pushed to zero it actually con-
tracts the nominal cost. Following similar arguments to that used
in the proof of Theorem 2 and in (18), it can be shown that if the
optimization problem (22) solved using Algorithm 1 is feasible,
then the origin is an exponentially stable equilibrium point.

Remark 4. Note that as J▵0 ðkÞ is a relaxed upper bound (see for
instance Figs. 2(c) and 4(b)), then it is surely bigger than J▵ðkÞ,
thus not affecting the feasibility of the optimization problem (22).

Remark 5. Following the same arguments used in Remark 3, it
can be deduced that the addition of the contractive constraint (21)
in the optimization problem (22) does not affect original
feasibility.

It is worth comparing the proposed approach with that
described in [24,21]. In our work an outer bounding-tube is
obtained by simply maximizing R1ð ~xk; ~uk;

~dkÞ and then computing
the state trajectory x▵k . Within this bounding-tube lie all the per-
turbed system trajectories [23,27]. Additionally, the stability con-
dition is guaranteed just by the inclusion of the constraint (21).
The procedure proposed in [24] by Cannon et al. is more complex.
The authors solve a multi-parametric optimization problem with
many constraints yielding a high computational burden (even for a
simple state-space model) and the impossibility to solve the
algorithm in real time. On the other hand, in [21] Langson et al.
propose a method for robust MPC of linear constrained systems
with uncertainties. They use (convex) compact polytopes and
(convex) closed polyhedrons, which are difficult to handle when
there are several resulting regions. Moreover, the tube is defined
as a sequence of sets of states and associated time-varying control
input law. This is time demanding as they compute all the possible
state trajectories to define the tube.

4. Iterated robust non-linear model predictive control

When non-linear systems are linearized, linearization errors
may appear and they could be large if linearization trajectories are
far from the system operating point. To account for these
errors, we propose to include an iterative technique [15,28] in
Algorithm 1 in order to improve the performance of the closed-
loop system. The proposed iteration works as follows: at each
sampling instant, the non-linear system is linearized along a
predefined linearization trajectory. The optimal control input
sequence is computed and then it is checked if the breaking loop
condition is satisfied. If it is not the case, the linearization trajec-
tory is re-computed using the new control input sequence. The
non-linear system is re-linearized and the control input sequence
is re-computed. This loop is followed until the convergence con-
dition is satisfied. As a result, a more accurate optimal control
input sequence un

k is then obtained. In Algorithm 2 the proposed
iterated robust NLMPC technique is summarized.

Algorithm 2. Iterated robust NMPC algorithm.
en Q ;R40, xkj k the initial condition, q the iteration index.

p 1: Initialize uq
k ¼ ½un

kj k�1;u
n

kþ1j k�1;…un

kþN�2j k�1;0�T

p 2: Obtain the linearization trajectory xq
k , u

q
k

p 3: Obtain the LTV system (9) and Pq
kj k solving (13)

p 4: Compute the optimal control input sequence ~un;q
k sol-

ving (22)
p 5: Update un;q

k ’uq
kþ ~un;q

k

p 6: if Jun;q
k �un;q�1

k J1rϵ
un

k’un;q
k ,

k’kþ1
q’0

lse
q’qþ1

Update uq
k ¼ un;q�1

k

Go back to Step 2
nd
p 7: Apply ukj k ¼ un

kj k to the system and go back to Step 1
Ste

As the optimization problem to be solved in Algorithm 2
includes the contractive constraints (15) and (21), the stability of
the algorithm is guaranteed. Consequently, the iteration process
can be stopped at any time, thus improving the online computa-
tional burden.

Theorem 3. The iteration loop of Algorithm 2 converges to the
optimal value.

Proof. See Appendix C.
5. Simulation examples

In this section simulation examples are shown. Using the
quadcopter model described in Appendix D and the iterated robust
NMPC technique of Section 4 two autonomous maneuvers are
performed. To evaluate the performance of the proposed con-
troller, simulations with different horizons are also performed.

5.1. First example: climbing up, moving forward and landing with
colored wind gusts

The first maneuver to be tested is the following: first the quad-
copter starts climbing up with an altitude rate _h ¼ 0:15 m=s. At
approximately t¼10 s, the vehicle starts moving forward along the
x-axis. When t¼20 s, the quadcopter reaches the desired altitude hsp
¼ 3 m and it keeps moving forward for about 5 s longer. When
t¼25 s, the vehicle starts a landing maneuver. Finally, after 10 s, the



Fig. 2. Climbing up, moving forward and landing maneuver with colored wind gusts.
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quadcopter is back in the ground. It is assumed that the quadcopter
flies immersed in colored wind. The forces generated by these wind
gusts act at the quadcopter CG position and they vary randomly
between �1:0 N and 1:0 N, as it can be seen in Fig. 1.

The robust NMPC controller was designed using a horizon N¼3
and sampling period Ts¼0.1 s. The weight matrices Q, R and Pkj k
were defined as

Q ¼ diagð10;1;100;10;0;10;0;10;0;10;0;10Þ
R¼ diagð0:1;0:1;0:1;0:1Þ ð23Þ

while Pkj k was computed at each sampling interval using (13).
Fig. 2(a) shows the quadcopter position.5 It can be seen that the
vehicle starts climbing while moving forward. It reaches the
5 The x-axis points to the north (n), the y-axis points to the east (e) and the
z-axis points down (h¼�z).
desired altitude and continues moving along the positive x-axis.
Finally, it lands in the ground successfully.

Fig. 2 (b) depicts the evolution of the computed optimal control
inputs. The obtained values are physically realizable for a quad-
copter. Also, the variation of the four control inputs is similar in
shape and in magnitude, which allows us to maintain the quad-
copter at a stable flight. From Fig. 2(c) it can be seen clearly that
the proposed contractive constraint J 0ðkÞ acts as an upper bound
for the cost function J ðkÞ. This constraint is never active because
the aim of including J 0ðkÞ in (22) is to limit the searching space of
optimal solutions. It should be noted that despite the value of N
was very short, the proposed maneuver was performed success-
fully. The adopted value in fact corresponds to shortest horizon
possible that can be used in a receding horizon control scheme
with this quadcopter model (the number of unstable modes plus
one [29]). Fig. 2(d) shows the errors in the quadcopter position
when larger values of N are used. As it can be seen, the differences
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between the simulations are small. This is very advantageous as
the computational burden of the robust NMPC scheme is reduced
if shorter horizons are used.

5.2. Second example: spiral motion with controlled yaw angle

The second maneuver to be tested is a spiral descend motion
with controlled yaw angle. For this case, the robust NMPC con-
troller was also designed using a horizon N¼3 and sampling
period Ts¼0.1 s. The weight matrices Q, R and Pkj k were defined as

Q ¼ diagð100;1;100;10;0;10;0;10;0;10;0;10Þ
R¼ diagð0:1;0:1;0:1;0:1Þ ð24Þ
while Pkj k was computed at each sampling interval using (13).

The proposed maneuver, in addition to the spiral descend
motion, also controls the quadcopter yaw angle in such a way that
the quadcopter x-axis is always aligned with the circumference
radius, and as a result the vehicle always ‘looks’ at the center of the
spiral. This maneuver would result very useful, for example, if one
would use a quadcopter with a fixed-mounted camera to inspect a
tower. As it can be seen in Fig. 3, the desired maneuver was
3
2

n [m]
1

0
-1-2

0e [m]

4

3

2

1

0
2

h 
[m

]

Iterated Robust NMPC reference

Fig. 3. Evolution of the quadcopter position.

Fig. 4. Spiral motion with
performed successfully. The quadcopter achieved the spiral des-
cend motion while the yaw angle was controlled in order the
quadcopter ‘looks’ at the center of the spiral. Fig. 4(a) shows the
evolution of the computed control inputs. It can be seen that the
propellers which are opposite to each other have a similar varia-
tion. Control inputs practically vary at the beginning and at the
end of the maneuver, staying constant while the quadcopter is
performing the spiral descent. Fig. 4(b) depicts both the cost
function J ðkÞ and its upper bound J 0ðkÞ. It shows that when the
spiral descend is being performed, the cost is constant and when
the quadcopter reaches the ground, J ðkÞ effectively tends to zero.

5.3. Comparison between iterated robust NMPC and classical NMPC
techniques

Here, the proposed iterated robust NMPC technique is com-
pared with the classical NMPC technique presented in [28]. To test
the performance of our algorithm, we simulated the maneuver
presented in Section 5.1 using both algorithms. In Fig. 5 it can be
seen the errors in the quadcopter position. The results suggest that
controlled yaw angle.
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Fig. 5. Comparison with the standard NMPC technique.
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when the value of N is maintained and the contractive contraints
are not added to the optimization problem, then the errors in the
quadcopter position are increased. However, in order to obtain a
similar response to the one obtained with the iterated robust
NMPC, we had to use the NMPC technique with a larger value of N,
thus increasing the online computational workload. On the other
hand, the proposed algorithm could be executed within a max-
imum of three iterations but as the stability of the closed-loop
system is guaranteed, the iteration loop could have been stopped
with fewer iterations, thus reducing even more the online com-
putational workload.

Additionally, we have also compared our algorithm with the one
proposed by Cannon et al. [24]. We performed the same maneuver as
before using both algorithms. Similar results were obtained when a
large horizon was used with Cannon's algorithm. Moreover, we
found that the online computational burden for this algorithm is
three or four times higher than that obtained with our algorithm.

Consequently, because of the presented results the iterated
robust NMPC algorithm may be a useful tool for real time simu-
lations as it allows us to obtain acceptable responses at lower
computational burden.
6. Conclusion

In this paper, a robust non-linear model predictive control
technique was presented. The proposed technique is based on the
linearization of non-linear systems along pre-defined state tra-
jectories and the minimization of a constrained objective function.
To guarantee the stability of the closed-loop system we add to the
optimization problem a contractive constraint that forces the cost
function to decrease (or to remain constant) at the current time
instant. This stability can be also guaranteed even with uncer-
tainties. As the stability of the system is guaranteed, the inclusion
of this constraint allows us to reduce the prediction horizon to its
minimum value, thus lowering the computational workload. This
may be useful when controlling non-linear systems with fast
dynamics such as a quadcopter. The robustness of the proposed
NMPC algorithm is achieved by using the Taylor reminder to
compute the state trajectory associated to the worst uncertainty.
This trajectory can then be used to determine an outer bounding-
tube that contains all the system state trajectories. The proposed
methodology to obtain the outer bounding-tube for state trajec-
tories seems to be simpler and less computationally demanding.
To account for linearization errors and to improve the perfor-
mance of the closed-loop system we have included an iteration
loop in the robust NMPC algorithm, yielding to the iterated robust
NMP algorithm.

The iterated NMPC algorithm was used as a central unit that
can control a full quadcopter model without the need of decou-
pling the non-linear system. To evaluate the performance of this
algorithm, we have performed the simulation of two autonomous
maneuvers, which were performed both successfully. Also, the
results were compared with those obtained using larger horizons,
having no significant differences between the short horizon
adopted and the larger ones. Finally, we have performed a com-
parison between iterated robust NMPC algorithm and classical
NMPC. The results obtained suggest that the proposed algorithm
can achieve a similar response to the classical NMPC but using a
shorter prediction horizon, thus having a lower computational
workload than classical NMPC.
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Appendix A. Proof of Theorem 1
Proof. First it is shown that the input and the state converge to
the origin, and then it will be shown that the origin is an stable
equilibrium point for the close-loop system. The combination of
convergence and stability gives asymptotic stability.

Convergence: Convergence of the state and input to the origin
can be established by showing that the sequence of cost values is
non-increasing.

Let the cost function J ðkÞ be given by (12), with Q, R and Pkj k
positive definite matrices; Pkj k satisfies the Lyapunov equation.

Let un

k ¼ ½un

kj k;u
n

kþ1j k;…;un

kþN�1j k�T be the optimal control
input sequence computed at time k. Assuming that only exists
inputs’ constraints, then the control input sequence ûkþ1 ¼
½un

kþ1j k;u
n

kþ2j k;…;un

kþN�1j k;0�T is feasible at time kþ1. As Pkj k
satisfies the Lyapunov equation, then the cost function (12)
approximates exactly the infinite cost problem. Then, evaluating
J ðkÞ for both un

k and ûkþ1, and assuming that there are no per-
turbations nor linearization errors, it can be shown that

Ĵ ðkþ1Þ�J nðkÞ ¼ �xTkj kQxkj k�un

kj kRu
n

kj k; ð25Þ

where Ĵ ðiÞ and J nðiÞ denote the values of the cost function for ûi

and un

i , respectively. As the RHS of (25) is semi-negative definite,
then

Ĵ ðkþ1ÞrJ nðkÞ: ð26Þ
But ûkþ1 is a feasible but sub-optimal sequence, then it can be said
that J nðkþ1Þr ~J ðkþ1Þ, and consequently

J nðkþ1ÞrJ nðkÞ 8k: ð27Þ
This shows that the sequence of optimal cost values J nðkÞ� �
decreases along closed-loop trajectories of the system. The cost is
bounded below by zero and thus has a non-negative limit.
Therefore as k-1 the difference of optimal cost ΔJ nðkþ1Þ ¼
J nðkþ1Þ�J nðkÞ-0. Because Q and R are positive definite, as Δ
J nðkþ1Þ-0 the states and the inputs must converge to the origin
xk-0 and uk-0 as k-1.

Stability: To prove that the origin is asymptotically stable, from
(27) it is clear that the sequence of optimal costs J nðkÞ� �

is non-
increasing, which implies J nðkÞrJ nð0Þ 8k40. At time k¼0, the
cost function can be written as

J ð0Þ ¼ xT0P0x0; ð28Þ
where P0 satisfies the Lyapunov equation Pk�AT

kPkAk ¼Q , Q40.
From the definition of cost function, it can be written that

xTkQxkrJ nðkÞ; ð29Þ
then,

xTkQxkrJ nðkÞrJ nð0ÞrJ ð0Þ ¼ xT0P0x0; ð30Þ
which implies

xTkQxkrxT0P0x0 8k: ð31Þ
Since Q and P0 are positive definite it follows that

λminðQ ÞJxk J2rλmaxðP0ÞJx0 J2 8k; ð32Þ
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where λminð�Þ and λmaxð�Þ denote the min–max eigenvalue of
the corresponding matrix. Finally it can be written that

Jxk Jr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmaxðP0Þ
λminðQ Þ

s
Jx0 J 8k40: ð33Þ

Thus, the closed-loop is stable. The combination of convergence
and stability implies that the origin is asymptotically stable equi-
librium point of the closed-loop system. □
Appendix B. Proof of Theorem 2
Proof. As the cost function (12) is locally convex at each sampling
instant and only linear inputs constraints are considered, the
optimization problem of Algorithm 1 is locally convex. Let the
control input sequence u0

k be a feasible solution at time k
defined as

u0
k ¼ ½un

kj k�1;u
n

kþ1j k�1;…;un

kþN�2j k�1;0�T : ð34Þ

At time k, let uk be a feasible convex combination of un

k and u0
k , i.e.

uk ¼ αun

kþð1�αÞu0
k with 0rαr1: ð35Þ

As J ðkÞ is a locally convex function, it can be easily shown that

J ðkÞ ¼ αJ nðkÞþð1�αÞJ 0ðkÞ;
¼ α J nðkÞ�J 0ðkÞ

� 	þJ 0ðkÞ; ð36Þ

as 0rαr1 and J nðkÞ is the optimal value of the cost function at
time k, then

α J nðkÞ�J 0ðkÞ
� 	

r0; ð37Þ

and consequently

J ðkÞrJ 0ðkÞ; ð38Þ

This shows that at each time instant k the cost function J ðkÞ is
non-increasing, thus the resulting closed-loop is stable. □
Appendix C. Proof of Theorem 3
Proof. At iteration q¼1 let u1
k be a feasible convex combination of

un

k and u0
k , i.e.

u1
k ¼ αun

kþð1�αÞu0
k with 0rαr1: ð39Þ

As the iterated cost function

J qðkÞ ¼
XN�1

i ¼ 0

~xq
T

kþ ij kQ ~xqkþ ij kþ ~uqT

kþ ij kR ~u
q
kþ ij k

h i
þ ~xq

T

kþN j kP
q
kj k ~x

q
kþN j k;

ð40Þ

is a locally convex function, then following a similar reasoning to
the proof of Theorem 2, it can be easily shown that

J 1ðkÞrJ 0ðkÞ: ð41Þ

The same argument can be repeated at subsequent iteration to
show that

J qþ1ðkÞrJ qðkÞ; qZ0: ð42Þ

This shows that the sequence J qðkÞ� �
is non-increasing. As the

cost function is quadratic, it is bounded below by zero and thus
has a non-negative limit. Therefore, as q-1 the difference of cost
ΔJ qðkÞ ¼J qþ1�J q-0, and as a result J qðkÞ-J nðkÞ. □
Appendix D. Non-linear quadcopter model

The quadcopter state vector x is defined as

x¼ ½n e h u v w ϕ θ ψ p q r�T ; ð43Þ

where n, e and h¼ �z are the coordinates of the quadcopter CG
position, u, v and w are the components of the quadcopter velocity
vector, ϕ, θ and ψ are the Euler angles that define the roll, pitch
and yaw movements and p, q and r are the components of the
quadcopter angular velocity vector. The quadcopter control inputs
vector u is defined as

u¼ ½Ω0Ω1Ω2Ω3�T ; ð44Þ

where Ωi denotes the absolute angular speed of the i-th rotor.
Defining cα , sα, and tα as the notation representing cos ðαÞ, sin ðαÞ
and tan ðαÞ, respectively, for a generic angle α, the 6-degrees of
freedom (6-DOF) non-linear dynamic of a quadcopter can be
represented by the following set of differential equations:

_x ¼

ucθcψ þvðsϕsθcψ �cϕsψ Þþwðcϕsθcψ þsϕsψ Þ
ucθsψ þvðsϕsθsψ þcϕcψ Þþwðcϕsθsψ �sϕcψ Þ

usθ�vsϕcθ�wcϕcθ

rv�qw�gsθ� μ
mu�CAxρ

2m u uj j
pw�ruþgsϕcθ� μ

mv�
CAyρ
2m v vj j

qu�pvþgcϕcθ� b
mðΩ

2
0þΩ2

1þΩ2
2þΩ2

3Þ�CAzρ
2m w wj j

pþqsϕtθþrcϕtθ
qcϕ�rsϕ

qsϕ sec θþrcϕ sec θ
Iy � Iz
Ix

qrþdb
ffiffi
2

p
2Ix

ð�Ω2
0�Ω2

1þΩ2
2þΩ2

3Þ�kρA
Ix
pþ Jr

Ix
qðΩ0�Ω1þΩ2�Ω3Þ

Iz � Ix
Iy

prþdb
ffiffi
2

p
2Iy

ðΩ2
0�Ω2

1�Ω2
2þΩ2

3Þ�kρA
Iy
q� Jr

Iy
pðΩ0�Ω1þΩ2�Ω3Þ

Ix � Iy
Iz

pqþ ϵ
Iz
ðΩ2

0�Ω2
1þΩ2

2�Ω2
3Þ�kρA

Iz
rþ Jr

Iz
ð _Ω0� _Ω1þ _Ω2� _Ω3Þ

2
6666666666666666666666666666664

3
7777777777777777777777777777775

;

ð45Þ
where _x is the time derivative of Eq. (43), g¼ 9:81 m=s is the
acceleration of gravity, m¼ 1 kg is the mass of the quadcopter,
Ix ¼ 8:1 � 10�3 N m s2, Iy ¼ 8:1 � 10�3 N m s2 and Iz ¼ 14:2 � 10�3 N
m s2 are the body moment of inertia around the x-, y- and z-axis,
respectively, μ¼ 1 � 10�5 kg=s is the rotor drag coefficient, C ¼ 3 �
10�4 is a dimensionless friction constant, Ax ¼ 0:05 m2, Ay ¼ 0:05
m2 and Az ¼ 0:1 m2 are the projections of the vehicle area on the
yz, xz and xy planes of the B-Frame, respectively, ρ¼ 1:2 kg=m3 is
the air density, b¼ 54:2 � 10�6 N s2 is the aerodynamic contribu-
tion of thrust, d¼ 0:24 m is the distance between the center of the
quadcopter and the center of a propeller, k¼ 1 � 10�5 m3=s is a
frictional constant, A¼ 0:2 m2 is the vehicle area, Jr ¼ 104 � 10�6

N m s2 is the rotational inertia of a propeller and ϵ¼ 1:1 � 10�6 N
m s2 is a yaw drag factor.
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