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Abstract:

We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion

for large values of the coordinate. We test it on the expansion of the generating functions for the moments
and connected moments of the Hamiltonian operator. In the former case the formula produces the ener-
gies and overlaps for the Rayleigh—Ritz method in the Krylov space. We choose the harmonic oscillator
and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some
features of the connected—moments expansion that were overlooked in earlier studies and applications of

the approach.
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1. Introduction

Some time ago Horn and Weinstein [1] and Horn et al. [2]
proposed the calculation of the ground-state energy of
quantum—mechanical systems by means of the Taylor ex-
pansion of the generating function for the cumulants or
connected moments. The main problem of this approach
is the extrapolation of the t—expansion for t — oco. Those
authors proposed approximate expressions based on Padé
approximants that did not produce encouraging results.
For that reason Cioslowski [3] suggested the extrapola-
tion by means of a series of exponential functions. This

*E-mail: paolo.amore@gmail.com
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and other approaches were discussed and compared by
Stubbins [4]. Cioslowski's approach leads to a nonlin-
ear system of equations for the parameters in the ex-
ponential expansion that he solved by means of a sys-
tematic algorithm that avoids the explicit calculation of
the unnecessary variables. The resulting approach has
since been known as the connected—moments expansion or
CMX. Later, Knowles [5] developed an elegant expression
for the CMX approximants to the energy of the ground
state in terms of matrices built from the connected mo-
ments. Since then, the CMX has been applied to a wide
variety of problems and has been extensively discussed
and generalized. A complete list of references is given
elsewhere [6]; here we restrict ourselves to those papers
that are relevant to the present discussion.

In a recent paper Amore et al. [6] analyzed the CMX by
means of simple quantum—mechanical models and conjec-
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tured that the parameters in the exponential expansion
proposed by Cioslowski [3] may give a clue on the suc-
cess of the approach. However, the seminal papers on
the CMX [3, 5] as well as all the later applications of the
method (see, for example, the references in [6]) were fo-
cused on the calculation of the energy avoiding the explicit
calculation of the parameters of the exponential expansion.
The main purpose of this paper is to provide the full so-
Llution to the nonlinear equations that appear in the prob-
lem of matching a Taylor series about the origin and an
asymptotic exponential expansion at infinity. In particu-
lar, we specialize in the CMX equations because the ex-
ponential parameters proved useful to predict the success
of the approach [6]. In order to test the main equations
to any desired order of approximation we select simple
quantum—mechanical models that allow the calculation of
a sufficiently great number of connected moments. In Sec-
tion 2 we develop the main equations for the general prob-
lem of matching the two asymptotic series. In Section 3
we apply these equations to the generating functions for
the moments and connected moments. In Section 4 we
conduct a numerical test on simple quantum—mechanical
models. Finally, in Section 5 we discuss the results, draw
conclusions and propose further applications of the main
equations.

2. Matching the expansions

Suppose that a function F(t) can be expanded in a formal
power series for small t

Fp=y “F (1)

i I

and in an exponential expansion for large t

F(ty=) die )

j=0

where Re(e;) > 0. We can match both expansions at
t = 0 provided that the series in the right-hand side of
the equations

Fe=) dief, k=0,1,... 3)

converge.

We are interested in the case that we do not know the pa-
rameters d; and e; of the exponential expansion. There-
fore, we try an ansatz of the form

z

-1
FM(t)y =) dje' (4)

-
I
o

and match its Taylor expansion about t = 0 with the actual
power series (1). In this way we obtain the following
system of 2N nonlinear equations with the 2N unknowns
d; and e;:

N-1
Fi=) dnek, k=01, 2N-1. (5)

n=0

Strictly speaking, we should write d, y and e, n because
these parameters depend on the number of terms in the
ansatz. However, we just write d, and e, to keep the
notation simpler.

In order to solve equations (5) we consider the auxiliary
system of N linear equations with N unknowns ¢;

z

—1

(F[+j+1—WF,‘+]‘)C,':O,j:0,1,...,N—1. (6)

Il
=}

There are nontrivial solutions only if its determinant van-
ishes

N-T
ij=0 —

|Firjer — WFi| 0 (7)

and W is one of the N roots Wy, Wy, ..., Wxn_1 of the
characteristic polynomial

N
pW)=3 pW =0 (8)
j=0
given by Eq. (7).
If we define
N—1
yi=) Fiujci, j=0,1,...,N-1 (9)
i=0
then equations (6) reduce to yjuq = Wy;,

j=0,1,...,N—=1and y; = Wy, so that

N —1 N N
Y vipi=) Y Fupi=wy pW =0. (10)
j=0 i= j=0 j=0

Taking into account Eq. (D) it is clear that

N N-1 ) N )
> Fiypj=Y) dnely pjel . (11)
j=0 j=0

n=0

Therefore, if we choose the exponential parameters to be
the roots of the pseudo—secular determinant (7): e, = W,,



Paolo Amore, Francisco M. Fernandez

n=20,1,...,N—1 we then conclude that the coefficients
p; of the characteristic polynomial (8) are given by

N
Y Fijpj=0,i=01,... ,N-1. (12)
j=0

If, without loss of generality, we choose py = 1, then the
remaining polynomial coefficients pq, p2, ..., pn are the
solutions to the nonhomogeneous linear system of equa-

tions

R Py P
o F3 oo Fa P2

Fn Fnstr -0 Fanea PN

Fo
F
—_ (13)
Frn-
provided that the square matrix F = (F,-+,-+1)i\j:0 is non-

singular. Otherwise the truncated Taylor (1)'and expo-
nential (2) expansions cannot be successfully matched at
origin.

Once we have the roots of p(W) = 0 the nonlinear equa-
tions (5) become linear equations for the remaining un-
knowns d,. There are 2N such equations but we only
need N of them; for concreteness we arbitrarily choose the
first N ones. The occurrence of multiple roots e, = W,
reduces the order N of the ansatz FN)(t).

The starting point of present proof Eq. (6) was motivated
by an earlier paper where Fernandez [7] proved the equiv-
alence between the Rayleigh—Ritz variation method in the
Krylov space and the connected—moments polynomial ap-
proach [8].

3. Generating functions for the mo-
ments and connected moments

The expansion of the generating function

Z(t) = (¢ e " |¢) (14)

in a Taylor series about the origin

Z(=3y_ (_.,t)j u; (15)
T

yields the moments 1; = (¢| A/ |$) of the Hamiltonian
operator H with respect to a trial or reference state |¢).
If the spectrum of H is discrete

’:’|‘/’/>:E/|¢/>,j=0,1,.._ (16)

and its eigenfunctions form a complete set then

Z(t)=3_|(g| )|’ et (17)

j=0

provided that (¢;| ¢;) = &;;. Therefore, we can apply the
method developed in the preceding section with F; = p;.
For concreteness we assume that Eg < E1 < E5 < ...

In this case equations (6) and (7) are the secular equations
and secular determinant, respectively, for the Rayleigh—
Ritz method in the Krylov space [7] (and references
therein). Therefore, the roots W; are real and for each
of them we have an approximate solution

N1
o) = D _cylen).
i=0

0,1,....N=1, |¢) = H'|¢) (18)

~.
I

Without loss of generality we assume that (@] ¢;) = 6.

Besides, we know that the approximate variational eigen-

values are upper bounds to the exact ones: W,-(N) >
(N+1)

W; > E;.

The projection operator

ﬁ’N:gVPJ(‘P/\ (19)
j=0
satisfies
Pulg) =|¢i), i=01,...,N—=1. (20)
For the projected Hamiltonian
Hy = PNHPN (21)
we have
19y = Puf|g), j=01. .. N (22)
Therefore

(¢l Fl |py = (@l F/|$), j=0,1,....2N=1. (23)

=
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The approximate generating function

ZM(t) = (¢l e |¢) (24)
exhibits a finite exponential expansion

N—
ZM() =" (¢l ¢) e (25)

j=

N

and its Taylor series about t = 0 yields the first 2N — 1
exact moments

2N-1 f
AU LI (26)

j=0

Therefore, if we apply the method of the preceding section
the parameters d; and e; of the approximate exponential
expansion (4) should be d; = [(¢] (p,->|2 and e; = W, if
there is no degeneracy. If W, is m—fold degenerate then
the coefficient d; will be the sum of the corresponding m

2
overlaps [(¢| ¢;)|".
merely matching an exponential-series ansatz and a Tay-

We think that it is surprising that

lor series may lead to the results of the Rayleigh-Ritz
method.
The function

Z(1)
2

E(t) = (27)

is monotonically decreasing [1] and its Taylor expansion
about t = 0 yields the connected moments /;:

En =y 0, 28)
A

that one easily obtains in terms of the moments y; by
means of the recurrence relation [1]

h = m,
j—1

it = B — ( ! ) ity j=1,2,... . (29)

i=0

In order to extrapolate E(t) to t — oo and obtain an ap-
proximation to the ground-state energy Ey Cioslowski [3]
proposed the exponential-series ansatz

N
EN(t) = Ag+ ) Ae! (30)
j=1

where the unknown parameters b; are supposed to be
real and positive. Matching this expression with the
t—expansion (28) leads to the set of equations

N
ho=3) A,
n=0
N
lyr =) Ak, k=1,2,...,2N. (31)
n=1

Arquing as in the preceding section we conclude that the
exponential parameters b;, j = 1,2,..., N are the roots
of the pseudo—secular determinant

N
i,j=1

|Ii+j+1 - bli+j| =0. (32)
Once we have the exponential parameters we solve N of
the remaining linear equations (31) for the coefficients A;
and then we obtain Aj from the first equation:

N
A() = I1 - ZAN . (33)
n=1

In order to test the consistency of the main CMX assump-
tion we can try the alternative ansatz

N
UN() =) A (34)
j=0

and verify that there is a stable root by that approaches
zero as N increases. The corresponding pseudo—secular
determinant is slightly different from the previous one:

|liejso = blisjia]} o = 0. (35)

It is not unlikely that we find difficulties in matching the
Taylor and exponential series for the connected moments
because the denominator of £(t) exhibits zeros in the com-
plex t—plane Z(t) = 0. Amore et al. [6] have already dis-
cussed this point by means of simple examples and here
we will show that present mathematical formulas are of
considerable help for that purpose.

In the standard implementation of the CMX one does not
calculate the parameters b; explicitly [3]. For example,
Knowles [5] derived the following explicit expression for
the approximant of order M to the coefficient Ap:

Ao = h=(h b i ) -
—1

/3 /4 e IM+2 IZ
I4 I5 s IM+3 I3

(36)
vz vz 0 bms I
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where
Ml..Lm AO,M = Ao = EO (37)

provided that the method converges. If we compare equa-
tions (5) and (31) we realize that F; = /;;; and the matrix
F in Eq. (13) is exactly the matrix inverted in Eq. (36).
Therefore, the approximant Apa becomes singular when
it is not possible to match the truncated Taylor and expo-
nential expansions at origin.

If we define the matrices B = (B = )

N N
A= (Aiéif)[,j:1 and | = (If+/’)i,,':1
equations (31) with k = 2,3,...,2N as | = BAB' (where
the superscript T stands for transpose). Therefore, if the

N
ij=1"
then we can rewrite

determinant of the square matrix in Eq. (36) vanishes then:
e one or more roots b; vanish;
e there are multiple roots (b; = by = ---);

e one or more coefficients A; vanish.

In any such case the approximation of order N reduces to
an approximation of lesser order.
It is not difficult to prove that

S(t)* = Z(Zt(/tz))z (38)
satisfies [9]
lim S(02 = S2 = [(@ |40)” - 9)
From
9w s(e = () - E(172) (40)

one easily derives an approximation to the overlap in terms
of the parameters of the exponential expansion:

‘ B

N
InSZ = In|(¢ |P)|° Zb (41)

When (¢ |¢) = 1 this expression agrees with the one de-
rived by Cioslowski [9] except for the minus sign that is
missing in his Eq. (21). Cioslowski did not use this expres-
sion directly but an equivalent one in terms of matrices
built from the connected moments. Here we will use it in
order to test the formulas derived above for the parame-
ters of the exponential series. For generality we keep the
term In |(¢ |$)|* because in some cases our trial functions
will not be normalized to unity.

4. lllustrative examples

In order to test the equations developed in the preceding
section in what follows we apply them to some simple ex-
amples where we can carry out calculations of sufficiently
large order.

Table 1. Exact overlaps between the trial functions (43) and the
harmonic—-oscillator eigenfunctions

i (o] o) (el )]

0 1.969393167 0.006078373974
2 0.01215674794 1.515878931

4 0.0001125624810 0.05586468983

6 0.000001158050216 0.001291015111

We first consider the harmonic oscillator

A d?
A=—rstx (42)

and the unnormalized trial functions
2x2
(x| ¢g) = exp (—?) ,
2x2
(] 6) = (-%) =

already chosen by Amore et al. [6] for their analysis of

|
—_—
>
N
I
N| —
~—
)
<
©

the convergence properties of the CMX. Tab. 1 shows the
exact overlaps ’(¢>| t,[/,)‘z, j=0,2,4,6, for these two trial
functions. We appreciate that |¢,) and |¢.) exhibit larger
overlaps with the ground and second excited state, respec-
tively.

Tab. 2 shows the parameters W, and d; for the trial func-
tion |¢g>. The former converge (from above) towards the
eigenvalues of the harmonic oscillator and the latter to-
wards the exact overlaps shown in Tab. 1 in complete
agreement with the general proof given in the preceding
section.

Tab. 3 shows the parameters A; and b;, j = 0,1,2,3, for
the second CMX ansatz UM(t) proposed in the preced-
ing section. Note that the exponential parameter by tends
to zero as N increases suggesting that the CMX applies
successfully to this problem. Tab. 4 shows the same pa-
rameters but with by set equal to 0 as in the first approach
EW)(t). The results of both tables approach each other as
N increases.

Tab. 5 shows that the approximate overlap S?, given by
Eq. (41) for the unnormalized trial function |¢g> tends
to the corresponding exact result in Tab.1. Cioslowski’s
approach [9] applies successfully to this example.
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Table 2. Parameters W; and d; for the harmonic oscillator and the trial function |¢, ) (43)

N Woldo Wi /d,

W /d; W3 /d3

2 1.00000699 5.006424635
1.969404521

3 1.0000001
1.96939336

4 1.00000000

5.000187579

5.000004232

9.368568397 —
0.01216455133 0.00009457604481
9.027741984
0.01215747214 0.000112048591
9.001287128
1.969393169  0.01215677486 0.000112568657

13.67205836
0.000007675514617

13.07302878
0.000001130187743

Table 3. Parameters b; and A; of the ansatz (34) for the harmonic oscillator and the trial function | ¢, ) (43)

N bo/Ao b1/A4 ba/A; b3/A3
2 0.002381248414 4.198837892 — —
1.00145413 0.02354586947 — —
3 0.00004431997162  4.010093259 8.439885 —

1.000036479
4 0.000000731108
1.000000709

0.02471528396
4.000338156
0.02469399105

0.0002482361748 —
8.037169546 12.76249194
0.0003029268491 0.000002372560526

The second column in Tab. 6 shows that the CMX approx-
imants (36) converge rapidly towards the ground state as
N increases. This success is unsurprising in the light of
the preceding analysis of the CMX parameters b;. We
obtain the same results from Eq. (33) and the parameters
Aj given in Tab. 4 derived from the general equations of
the preceding section.

Tab. 7 shows the parameters W; and d; for the trial func-
tion |¢.). The former converge (from above) towards the
eigenvalues of the harmonic oscillator and the latter to-
wards the exact overlaps shown in Tab. 1. Since the over-
lap of the trial function with the second excited state is
larger than the overlap with the ground state we expect
an anomalous behaviour of both ansitze E™ and UM
as discussed by Amore et al. [6]. This is in fact the case
and some of the parameters b; for this trial function are
negative or complex. However, the second ansatz U™
discussed in the preceding section exhibits a small ex-
ponential parameter by that appears to tend to zero as
N increases. At the same time, the corresponding coeffi-
cient Ay tends to the energy of the second excited state
as N increases as shown in Tab. 8. This behaviour is con-
sistent with the convergence of the CMX sequence (36)
to the second excited state shown in the third column of
Tab. 6 and discussed earlier by Amore et al [6]. Note that
the CMX does not provide bounds to the energies as the
Rayleigh—Ritz method already does.

As a nontrivial example we choose the simple anharmonic

oscillator

A d?
H= _W+X4 (44)

and the unnormalized trial functions

(x] ¢g>

I

@
x
o
—_—
N[ X

N
~—

(x| de)

Il
—_—
>

)
|
|
—_—
¢}
pas
o
—_—
|
w
N
S
—_—
=
G

also considered by Amore et al. [6]. This oscillator is
strongly anharmonic and enables us to calculate as many
terms as desired for all the approximants discussed above.

Tab. 9 shows the parameters W, and d;, j = 0,1,2 for
the trial function |¢g>. The former converge (from above)
towards the well known eigenvalues as N increases and
the latter provide the overlaps. Since the overlap with
the ground state dominates the CMX will converge to-
wards this state [6]. The second column of Tab. 10 shows
the great rate of convergence of the CMX sequence (36)
towards the ground state of the anharmonic oscillator, al-
ready calculated by Amore et al. [6]. Once again we ap-
preciate that the CMX does not provide bounds.

Tab. 11 shows the parameters for the ansatz UN). The pa-
rameter by tends to zero and Ay towards the energy of the
ground state of the anharmonic oscillator as N increases.
However, spurious roots b; and values of the correspond-
ing parameters A; appear when N > 3. We have just
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Table 4. Parameters b; and A; of the ansatz (30) for the harmonic oscillator and the trial function | ¢, ) (43)

N b1/A4

by /A; b3 /A3

2 4.003491206

3 4.000086984

4 4.000001796
0.02469138991

8.296508793 —
0.02472188733  0.0002743493113
8.019485444
0.02469258182  0.0003046174966
8.000821311
0.0003048780599

12.58042783
0.000002754219691

12.05918785
0.000003706290872

Table 5. Overlap for the ground state of the harmonic oscillator from
Eq. (41)

N SZ,

2 1.969399291
3 1.969393256
4 1.969393168

Table 6. Convergence of the CMX for the harmonic oscillator and the
two trial functions | ¢, ) and |@. ) (43)

N Aon(g) Ao,n(e)

1 1.000304878 4.931822888
2 1.000003763 5.014793896
31 5.002413906
4 1 5.001402117
51 4.999955757
6 1 5.002955554
7 1 5.000013363
8 1 5.000011300
9 1 5.000001215
10 1 4.999999154

chosen those that follow the reasonable sequences deter-
mined by the results for smaller values of N.

Tab. 12 shows the parameters for the ansatz E(N. Note
that the agreement between the parameters of the two
ansatze for the anharmonic oscillator is not as good as in
the case of the harmonic one. In this case we also obtain
apparently spurious roots b; and coefficients A; for N > 4.
For example, when N = 6 b, and A, are the complex
conjugates of by and As, respectively. Consequently, the
complex parts of A, and Az cancel each other in Eq. (33)
that yields a reasonable approach to the ground-state
energy Ay = 1.0603680. We conclude that the parameters
Aj and b; should not necessarily be real and positive for
the CMX approximants (36) to converge neatly towards
the ground-state energy.

Tab. 13 shows that the overlap between the ground state of
the anharmonic oscillator and |q,’>g> calculated by means
of Eq. (41) agrees with the result of Tab. 9 (dy). Once
again we realize that the complex parts of the parame-
ters A; and b; cancel out to produce a reasonable real
approximation to the expected result. The occurrence of
complex parameters in the exponential ansatz is not re-
vealed by the CMX approximants (like Eq. (36)) based on
the connected moments.

As a two-dimensional example we choose the Pullen-
Edmonds Hamiltonian

I:I:—%V2+%(x2+y2)+ax2y2 (46)
that has been already treated by the CMX [10], the gen-
eralized moments expansion (GMX) and the canonical se-
quence method (CSM) [11]. A reasonable trial function for
the ground state is given by the unnormalized Gaussian
function

(x,y| ¢) = e (V) (47)

where a > 0. Cioslowski [10] obtained satisfactory results
for 0.1 < a < 0.5 with the CMX and a = 1/2.

Tab. 14 shows the exponents b; for a = 0.5 (the great-
est value considered by Cioslowski [10] and Fessatidis et
al. [11]), and two values of a (¢ = 0.5 and @ = 1). Since
all the exponents are positive we expect that the CMX
will give satisfactory results for both values of a. How-
ever, note that the sequence of values of by converges
towards O more rapidly when @ = 1 so that we also ex-
pect the rate of convergence of the CMX to be greater for
this case.

Tab. 15 shows the CMX results for the ground-state en-
ergy of the Pullen-Edmonds Hamiltonian for both values
of a. The rate of convergence is greater for ¢ = 1 as
suggested by the analysis of the convergence of the ex-
ponent by. The entries in the second column are similar
to Cioslowski's results [10] (note that Cioslowski’ index n
is equal to present N + 1) and those in the third col-
umn correspond to a = 1. The last two rows show the
results provided by the GMX (GMX(1,3), fifth order) and

201




Solution to the equations of the moment expansions

Table 7. Parameters W; and d; for the harmonic oscillator and the trial function |¢. ) (43)

N Wo/do

2 2.911817131
0.04317577925
3 1.060922282
0.006448836455
4 1.001339803
0.006087180960
5 1.000026913
0.006078565317

Wi /d,

5.079618783
1.498883666
5.002758941
1.517139667
5.000101462
1.515949720
5.000003052
1.515881592

W, /d;

9.870638470
0.03707877419
9.097824481
0.05488390863
9.007425114
0.05588279435
9.000381181
0.05586900205

W3 /d3

14.14651589
0.0006658074829

13.18333763
0.001209845824

13.01903413
0.001287657490

Table 8. Parameters by and A, for the harmonic oscillator with the trial function |¢. ) (43)

N bo Ao

0.01634078866
—0.002960622766
0.006737033331

5.013227071
4.999388680
4.997247173

O~ WwWN

0.0003889752190 5.000207908

Table 9. Parameters W; and d; for the anharmonic oscillator (44) and the trial function |¢, ) (45)

N

Wo/do

Wi/dy

Wald;

2

1.069780255
0.9487351539
1.061229046
0.9451196068
1.060427446
0.9447200769
1.06036628
0.944686457

7.871169487
0.07314504796
7.516944429
0.07523345172
7.462353629
0.07517101138
7.456258219
0.07513217688

20.45762861
0.001446505981
17.25938517
0.002946453665
16.44650531
0.003352072665
16.28617073
0.003396340115

Table 10. Convergence of the CMX towards the ground-state (g) and second—excited state (e) energies of the anharmonic oscillator (44)

M Ao(9) Ao(e)

5 1.060692159 7.439371257
10 1.060363186 7.456069907
15 1.060362073 7.450017954
20 1.060362093 7.451366303
25 1.060362090 7.455118704
30 1.060362090 7.454183973
35 ! 7.451642486
40 ! 7.454364274
50 ! 7.454214745
60 ! 7.453864737
70 ! 7.455066766
80 ! 7.455185890
90 ! 7.453941990

100 ! 7.453833053

exact 1.060362090 7.455697938
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Table 11. Parameters b; and A; of the ansatz (34) for the anharmonic oscillator (44) with the trial function |, ) (45)

N bo/Ag b1 /A by /Ay

2 0.08325285817 6.885234502 20.86679836
1.099547538 0.4729461665 0.01083962814

3 0.001993821505 6.359516968 17.31475086
1.06101123 0.4997973255 0.02232719076

4 —0.003775464406 6.306016728 16.74692001

1.057884464 0.5006911384 0.02434537896

Table 12. Parameters b; and A; of the ansatz (30) for the anharmonic oscillator (44) with the trial function |, ) (45)

N b1 /A by /A, b3/A3
2 6.470844472 19.19699588 -
0.503507803 0.01645848089 —
3 6.343642152  17.18884282 34.42060985
0.5002800387  0.02285212523 0.0002229752367
4 6.342827268 17.16971044 34.25122888
0.5002367582  0.02290363548 0.0002309382854
5 5.692034185 5.980920104 16.54089332

—0.5783779771  1.075044172 0.02550181868

Table 13. Overlap for the ground state of the anharmonic oscillator from Eq. (41)

N S

0.9459076757
0.9444614836
0.9444538767
0.9449417075

0.9446880500

D OB WN

Table 14. Exponents b; for the Pullen-Edmonds Hamiltonian with a = 0.5 for two values of a

a=1/2
a=1
N bO b1 bz b3 b4

0.02906068543
0.05137853443
0.01302652881
0.005884721637
0.007719495186
0.0008448771176
0.005264561288
0.0002110290626
0.003841243108
0.00005030482040

8.255003979
3.179278970
6.306411183
2.588321084
5.474848514
2.469668165
4.956739629
2.441442453
4.558996554
2.427133379

21.79335651
6.835685938
15.83509229
5.742988280
12.87136665
5.283795070
10.98579271
4.784038202

42.12030301
10.94038086
30.93888458
8.720985401
25.27139705
7.033461737

69.90721593
14.71987930
52.38567030
11.56668194
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its cousin the CSM (CSM(13)) that Fessatidis et al. [11]
considered to be excellent. However, Tab. 15 clearly re-
veals that at least for this model neither the GMX nor the
CSM appear to improve the results of the much simpler
and more straightforward CMX.

Table 15. Ground-state energy for the Pullen-Edmonds with & = 0.5

N a=1/2 a=1
2 1.101104251 1.09896838
3 1.09978076 1.09810749
4 1.099074971 1.097991618
5 1.098653642  1.097963238
6 1.098396191 1.097958951
7 1.098238541 1.097958772
8 1.098141493  1.097958746
9 1.098080974  1.097959376
10 1.098042519  1.097959059
1M 1.098017546  1.097959037
12 1.098000958  1.097959034
13 1.097989693  1.097959034
14 1.097981882  1.097959033
15 1.097976358  1.097959016
16 1.097972383  1.097959047
17 1.097969474  1.097959043
18 1.097967314  1.097959042
19 1.097965688  1.097959042
GMX(1,3) 111022
ECSM(13) 1.09843

5. Conclusions

In this paper we propose a systematic procedure for solv-
ing the nonlinear equations that appear when matching a
Taylor series about t = 0 and an asymptotic exponential
expansion valid for large t. We applied it to the analysis
of the extrapolation of the t—expansions for the generating
functions of the moments and connected moments. Obvi-
ously, Z(t) is more suitable for matching both expansions
at origin because this function does not exhibit sinqular
points. Unfortunately, results coming from it are not size
consistent. On the other hand E(t) exhibits sinqularities
at the zeroes of Z(t) in the complex t—plane that may hin-
der the extrapolation (see also Amore et al. [6] for other
examples). The full solution of the nonlinear equations en-
ables us to test whether the main assumptions of the CMX
are valid for the reference state chosen for the study of
a given quantum-mechanical problem. We have analyzed
two cases for the harmonic oscillator and two more for an
anharmonic one and have shown that the CMX equations
yield better results for the former which is not surpris-
ing. We have also seen that the rate of convergence of
the CMX approximants (36) may be large even when the
parameters in the ansatz E™)(t) are complex. This most

interesting feature of the CMX was not revealed by ear-
lier applications of the approach because they were based
on algorithms that bypass the explicit calculation of the
parameters of the ansatz E(N(t).

Knowles' equation (36) for the energy and Cioslowski's
equation (41) for the overlap (in terms of the connected
moments [9]) are remarkable ways of bypassing the explicit
calculation of the apparently unnecessary variables in the
nonlinear equation (5). However, we have shown that it
is not difficult to calculate all those variables explicitly
and obtain additional information on the behaviour of the
approach.

We want to point out that the main results of sections 2
and 3 are quite general and apply to any quantum-—
mechanical problem. In Section 4 we have chosen ex-
tremely simple models with the only purpose of facilitating
the calculation of the necessary moments (which appears
to be the main difficulty in the application of all the mo-
ments methods). Even the treatment of a two-dimensional
oscillator offers no difficulty as illustrated in Section 4.

The main results of Section 2 are not restricted to the
analysis of the generating functions for the moments
and connected moments. In future works we will ex-
plore their utility in other problems of physical inter-
est. Just to mention one example, note that Z(it) =
(g(0)| exp (—itI:I) |(0)) is the projection of the state at

time t (1)) = exp (—itI:I) |4(0)) onto the initial state
|t)(0)) (correlation function). We easily obtain Z(it) for

the harmonic and anharmonic oscillators from the results
of tables 2, 7 and 9.
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