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Abstract: We develop a formula for matching a Taylor series about the origin and an asymptotic exponential expansion
for large values of the coordinate. We test it on the expansion of the generating functions for the moments
and connected moments of the Hamiltonian operator. In the former case the formula produces the ener-
gies and overlaps for the Rayleigh–Ritz method in the Krylov space. We choose the harmonic oscillator
and a strongly anharmonic oscillator as illustrative examples for numerical test. Our results reveal some
features of the connected–moments expansion that were overlooked in earlier studies and applications of
the approach.
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1. Introduction

Some time ago Horn and Weinstein [1] and Horn et al. [2]proposed the calculation of the ground–state energy ofquantum–mechanical systems by means of the Taylor ex-pansion of the generating function for the cumulants orconnected moments. The main problem of this approachis the extrapolation of the t–expansion for t → ∞. Thoseauthors proposed approximate expressions based on Padéapproximants that did not produce encouraging results.For that reason Cioslowski [3] suggested the extrapola-tion by means of a series of exponential functions. This
∗E-mail: paolo.amore@gmail.com
†E-mail: fernande@quimica.unlp.edu.ar (Corresponding author)

and other approaches were discussed and compared byStubbins [4]. Cioslowski’s approach leads to a nonlin-ear system of equations for the parameters in the ex-ponential expansion that he solved by means of a sys-tematic algorithm that avoids the explicit calculation ofthe unnecessary variables. The resulting approach hassince been known as the connected–moments expansion orCMX. Later, Knowles [5] developed an elegant expressionfor the CMX approximants to the energy of the groundstate in terms of matrices built from the connected mo-ments. Since then, the CMX has been applied to a widevariety of problems and has been extensively discussedand generalized. A complete list of references is givenelsewhere [6]; here we restrict ourselves to those papersthat are relevant to the present discussion.In a recent paper Amore et al. [6] analyzed the CMX bymeans of simple quantum–mechanical models and conjec-
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tured that the parameters in the exponential expansionproposed by Cioslowski [3] may give a clue on the suc-cess of the approach. However, the seminal papers onthe CMX [3, 5] as well as all the later applications of themethod (see, for example, the references in [6]) were fo-cused on the calculation of the energy avoiding the explicitcalculation of the parameters of the exponential expansion.The main purpose of this paper is to provide the full so-lution to the nonlinear equations that appear in the prob-lem of matching a Taylor series about the origin and anasymptotic exponential expansion at infinity. In particu-lar, we specialize in the CMX equations because the ex-ponential parameters proved useful to predict the successof the approach [6]. In order to test the main equationsto any desired order of approximation we select simplequantum–mechanical models that allow the calculation ofa sufficiently great number of connected moments. In Sec-tion 2 we develop the main equations for the general prob-lem of matching the two asymptotic series. In Section 3we apply these equations to the generating functions forthe moments and connected moments. In Section 4 weconduct a numerical test on simple quantum–mechanicalmodels. Finally, in Section 5 we discuss the results, drawconclusions and propose further applications of the mainequations.
2. Matching the expansions
Suppose that a function F (t) can be expanded in a formalpower series for small t

F (t) = ∞∑
j=0

(−t)j
j! Fj (1)

and in an exponential expansion for large t
F (t) = ∞∑

j=0 dje
−tej (2)

where Re(ej ) > 0. We can match both expansions at
t = 0 provided that the series in the right–hand side ofthe equations

Fk = ∞∑
j=0 dje

k
j , k = 0, 1, . . . (3)

converge.We are interested in the case that we do not know the pa-rameters dj and ej of the exponential expansion. There-fore, we try an ansatz of the form
F (N)(t) = N−1∑

j=0 dje
−tej (4)

and match its Taylor expansion about t = 0 with the actualpower series (1). In this way we obtain the followingsystem of 2N nonlinear equations with the 2N unknowns
dj and ej :

Fk = N−1∑
n=0 dne

k
n, k = 0, 1, . . . , 2N − 1 . (5)

Strictly speaking, we should write dn,N and en,N becausethese parameters depend on the number of terms in theansatz. However, we just write dn and en to keep thenotation simpler.In order to solve equations (5) we consider the auxiliarysystem of N linear equations with N unknowns ci
N−1∑
i=0
(
Fi+j+1 −WFi+j) ci = 0, j = 0, 1, . . . , N − 1 . (6)

There are nontrivial solutions only if its determinant van-ishes ∣∣Fi+j+1 −WFi+j ∣∣N−1
i,j=0 = 0 (7)

and W is one of the N roots W0,W1, . . . ,WN−1 of thecharacteristic polynomial
p(W ) = N∑

j=0 pjW
j = 0 (8)

given by Eq. (7).If we define
γj = N−1∑

i=0 Fi+jci, j = 0, 1, . . . , N − 1 (9)
then equations (6) reduce to γj+1 = Wγj ,
j = 0, 1, . . . , N − 1 and γj = W jγ0, so that

N∑
j=0 γjpj = N−1∑

i=0 ci
N∑
j=0 Fi+jpj = γ0

N∑
j=0 pjW

j = 0 . (10)
Taking into account Eq. (5) it is clear that

N∑
j=0 Fi+jpj = N−1∑

n=0 dne
i
n

N∑
j=0 pje

j
n . (11)

Therefore, if we choose the exponential parameters to bethe roots of the pseudo–secular determinant (7): en = Wn,
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n = 0, 1, . . . , N −1 we then conclude that the coefficients
pj of the characteristic polynomial (8) are given by

N∑
j=0 Fi+jpj = 0, i = 0, 1, . . . , N − 1 . (12)

If, without loss of generality, we choose p0 = 1, then theremaining polynomial coefficients p1, p2, . . . , pN are thesolutions to the nonhomogeneous linear system of equa-tions 
F1 F2 · · · FN
F2 F3 · · · FN+1... ... . . . ...
FN FN+1 · · · F2N−1



p1
p2...
pN

 =

= −

F0
F1...
FN−1

 (13)

provided that the square matrix F = (
Fi+j+1)N−1

i,j=0 is non-singular. Otherwise the truncated Taylor (1) and expo-nential (2) expansions cannot be successfully matched atorigin.Once we have the roots of p(W ) = 0 the nonlinear equa-tions (5) become linear equations for the remaining un-knowns dn. There are 2N such equations but we onlyneed N of them; for concreteness we arbitrarily choose thefirst N ones. The occurrence of multiple roots en = Wnreduces the order N of the ansatz F (N)(t).The starting point of present proof Eq. (6) was motivatedby an earlier paper where Fernández [7] proved the equiv-alence between the Rayleigh–Ritz variation method in theKrylov space and the connected–moments polynomial ap-proach [8].
3. Generating functions for the mo-
ments and connected moments
The expansion of the generating function

Z (t) = 〈φ| e−tĤ |φ〉 (14)
in a Taylor series about the origin

Z (t) = ∞∑
j=0

(−t)j
j! µj (15)

yields the moments µj = 〈φ| Ĥ j |φ〉 of the Hamiltonianoperator Ĥ with respect to a trial or reference state |φ〉.If the spectrum of Ĥ is discrete
Ĥ
∣∣ψj〉 = Ej

∣∣ψj〉 , j = 0, 1, . . . (16)
and its eigenfunctions form a complete set then

Z (t) = ∞∑
j=0
∣∣〈φ| ψj〉∣∣2 e−tEj (17)

provided that 〈ψi| ψj〉 = δij . Therefore, we can apply themethod developed in the preceding section with Fj = µj .For concreteness we assume that E0 ≤ E1 ≤ E2 ≤ . . ..In this case equations (6) and (7) are the secular equationsand secular determinant, respectively, for the Rayleigh–Ritz method in the Krylov space [7] (and referencestherein). Therefore, the roots Wj are real and for eachof them we have an approximate solution
∣∣φj〉 = N−1∑

i=0 cij |φi〉 ,
j = 0, 1, . . . , N − 1, |φi〉 = Ĥ i |φ〉 (18)

Without loss of generality we assume that 〈φi| φj〉 = δij .Besides, we know that the approximate variational eigen-values are upper bounds to the exact ones: W (N)
j >

W (N+1)
j > Ej .The projection operator

P̂N = N−1∑
j=0
∣∣φj〉 〈φj ∣∣ (19)

satisfies
P̂N |φi〉 = |φi〉 , i = 0, 1, . . . , N − 1 . (20)

For the projected Hamiltonian
ĤN = P̂NĤP̂N (21)

we have
Ĥ j
N |φ〉 = P̂NĤ j |φ〉 , j = 0, 1, . . . , N . (22)

Therefore
〈φ| Ĥ j

N |φ〉 = 〈φ| Ĥ j |φ〉 , j = 0, 1, . . . , 2N − 1 . (23)
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The approximate generating function
Z (N)(t) = 〈φ| e−tĤN |φ〉 (24)

exhibits a finite exponential expansion
Z (N)(t) = N−1∑

j=0
∣∣〈φ| φj〉∣∣2 e−tWj (25)

and its Taylor series about t = 0 yields the first 2N − 1exact moments
Z (N)(t) = 2N−1∑

j=0
(−t)j
j! µj + ... . (26)

Therefore, if we apply the method of the preceding sectionthe parameters dj and ej of the approximate exponentialexpansion (4) should be dj = ∣∣〈φ| φj〉∣∣2 and ej = Wj ifthere is no degeneracy. If Wj is m–fold degenerate thenthe coefficient dj will be the sum of the corresponding moverlaps ∣∣〈φ| φj〉∣∣2. We think that it is surprising thatmerely matching an exponential–series ansatz and a Tay-lor series may lead to the results of the Rayleigh–Ritzmethod.The function
E(t) = −Z ′(t)Z (t) (27)

is monotonically decreasing [1] and its Taylor expansionabout t = 0 yields the connected moments Ij :
E(t) = ∞∑

j=0
(−t)j
j! Ij+1 (28)

that one easily obtains in terms of the moments µj bymeans of the recurrence relation [1]
I1 = µ1 ,

Ij+1 = µj+1 −
j−1∑
i=0
(
j
i

)
Ii+1µj−i, j = 1, 2, . . . . (29)

In order to extrapolate E(t) to t → ∞ and obtain an ap-proximation to the ground–state energy E0 Cioslowski [3]proposed the exponential–series ansatz
E (N)(t) = A0 + N∑

j=1 Aje
−bj t (30)

where the unknown parameters bj are supposed to bereal and positive. Matching this expression with the
t–expansion (28) leads to the set of equations

I1 = N∑
n=0 An ,

Ik+1 = N∑
n=1 Anb

k
n, k = 1, 2, . . . , 2N . (31)

Arguing as in the preceding section we conclude that theexponential parameters bj , j = 1, 2, . . . , N are the rootsof the pseudo–secular determinant∣∣Ii+j+1 − bIi+j ∣∣Ni,j=1 = 0 . (32)
Once we have the exponential parameters we solve N ofthe remaining linear equations (31) for the coefficients Ajand then we obtain A0 from the first equation:

A0 = I1 −
N∑
n=1 An . (33)

In order to test the consistency of the main CMX assump-tion we can try the alternative ansatz
U (N)(t) = N∑

j=0 Aje
−bj t (34)

and verify that there is a stable root b0 that approacheszero as N increases. The corresponding pseudo–seculardeterminant is slightly different from the previous one:∣∣Ii+j+2 − bIi+j+1∣∣Ni,j=0 = 0 . (35)
It is not unlikely that we find difficulties in matching theTaylor and exponential series for the connected momentsbecause the denominator of E(t) exhibits zeros in the com-plex t–plane Z (t) = 0. Amore et al. [6] have already dis-cussed this point by means of simple examples and herewe will show that present mathematical formulas are ofconsiderable help for that purpose.In the standard implementation of the CMX one does notcalculate the parameters bj explicitly [3]. For example,Knowles [5] derived the following explicit expression forthe approximant of order M to the coefficient A0:

A0,M = I1 − ( I2 I3 · · · IM+1 ) ·
·


I3 I4 · · · IM+2
I4 I5 · · · IM+3... ... . . . ...
IM+2 IM+3 · · · I2M+1


−1

I2
I3...
IM+1

(36)
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where lim
M→∞

A0,M = A0 = E0 (37)
provided that the method converges. If we compare equa-tions (5) and (31) we realize that Fj = Ij+2 and the matrix
F in Eq. (13) is exactly the matrix inverted in Eq. (36).Therefore, the approximant A0,M becomes singular whenit is not possible to match the truncated Taylor and expo-nential expansions at origin.If we define the matrices B = (

Bij = bij
)N
i,j=1,

A = (Aiδij)Ni,j=1 and I = (
Ii+j)Ni,j=1 then we can rewriteequations (31) with k = 2, 3, . . . , 2N as I = BABT (wherethe superscript T stands for transpose). Therefore, if thedeterminant of the square matrix in Eq. (36) vanishes then:

• one or more roots bj vanish;
• there are multiple roots (bj = bk = · · · );
• one or more coefficients Aj vanish.

In any such case the approximation of order N reduces toan approximation of lesser order.It is not difficult to prove that
S(t)2 = Z (t/2)2

Z (t) (38)
satisfies [9]

lim
t→∞

S(t)2 = S2
∞ = |〈φ |ψ0〉|2 . (39)

From
d
dt lnS(t)2 = E(t)− E(t/2) (40)

one easily derives an approximation to the overlap in termsof the parameters of the exponential expansion:
lnS2

N = ln |〈φ |φ〉|2 − N∑
j=1

Aj
bj
. (41)

When 〈φ |φ〉 = 1 this expression agrees with the one de-rived by Cioslowski [9] except for the minus sign that ismissing in his Eq. (21). Cioslowski did not use this expres-sion directly but an equivalent one in terms of matricesbuilt from the connected moments. Here we will use it inorder to test the formulas derived above for the parame-ters of the exponential series. For generality we keep theterm ln |〈φ |φ〉|2 because in some cases our trial functionswill not be normalized to unity.

4. Illustrative examples
In order to test the equations developed in the precedingsection in what follows we apply them to some simple ex-amples where we can carry out calculations of sufficientlylarge order.
Table 1. Exact overlaps between the trial functions (43) and the

harmonic–oscillator eigenfunctions

j
∣∣〈φg∣∣ ψj〉∣∣2 ∣∣〈φe| ψj〉∣∣20 1.969393167 0.0060783739742 0.01215674794 1.5158789314 0.0001125624810 0.055864689836 0.000001158050216 0.001291015111

We first consider the harmonic oscillator
Ĥ = − d2

dx2 + x2 (42)
and the unnormalized trial functions

〈x| φg
〉 = exp(−2x25

)
,

〈x| φe〉 = (
x2 − 12

)exp(−2x25
) (43)

already chosen by Amore et al. [6] for their analysis ofthe convergence properties of the CMX. Tab. 1 shows theexact overlaps ∣∣〈φ| ψj〉∣∣2, j = 0, 2, 4, 6, for these two trialfunctions. We appreciate that ∣∣φg〉 and |φe〉 exhibit largeroverlaps with the ground and second excited state, respec-tively.Tab. 2 shows the parameters Wj and dj for the trial func-tion ∣∣φg〉. The former converge (from above) towards theeigenvalues of the harmonic oscillator and the latter to-wards the exact overlaps shown in Tab. 1 in completeagreement with the general proof given in the precedingsection.Tab. 3 shows the parameters Aj and bj , j = 0, 1, 2, 3, forthe second CMX ansatz U (N)(t) proposed in the preced-ing section. Note that the exponential parameter b0 tendsto zero as N increases suggesting that the CMX appliessuccessfully to this problem. Tab. 4 shows the same pa-rameters but with b0 set equal to 0 as in the first approach
E (N)(t). The results of both tables approach each other as
N increases.Tab. 5 shows that the approximate overlap S2

N given byEq. (41) for the unnormalized trial function ∣∣φg〉 tendsto the corresponding exact result in Tab.1. Cioslowski’sapproach [9] applies successfully to this example.
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Table 2. Parameters Wj and dj for the harmonic oscillator and the trial function
∣∣φg 〉 (43)

N W0/d0 W1/d1 W2/d2 W3/d32 1.00000699 5.006424635 9.368568397 —1.969404521 0.01216455133 0.00009457604481 —3 1.0000001 5.000187579 9.027741984 13.672058361.96939336 0.01215747214 0.000112048591 0.0000076755146174 1.00000000 5.000004232 9.001287128 13.073028781.969393169 0.01215677486 0.000112568657 0.000001130187743

Table 3. Parameters bj and Aj of the ansatz (34) for the harmonic oscillator and the trial function
∣∣φg 〉 (43)

N b0/A0 b1/A1 b2/A2 b3/A32 0.002381248414 4.198837892 — —1.00145413 0.02354586947 — —3 0.00004431997162 4.010093259 8.439885 —1.000036479 0.02471528396 0.0002482361748 —4 0.000000731108 4.000338156 8.037169546 12.762491941.000000709 0.02469399105 0.0003029268491 0.000002372560526

The second column in Tab. 6 shows that the CMX approx-imants (36) converge rapidly towards the ground state as
N increases. This success is unsurprising in the light ofthe preceding analysis of the CMX parameters bj . Weobtain the same results from Eq. (33) and the parameters
Aj given in Tab. 4 derived from the general equations ofthe preceding section.Tab. 7 shows the parameters Wj and dj for the trial func-tion |φe〉. The former converge (from above) towards theeigenvalues of the harmonic oscillator and the latter to-wards the exact overlaps shown in Tab. 1. Since the over-lap of the trial function with the second excited state islarger than the overlap with the ground state we expectan anomalous behaviour of both ansätze E (N) and U (N)as discussed by Amore et al. [6]. This is in fact the caseand some of the parameters bj for this trial function arenegative or complex. However, the second ansatz U (N)discussed in the preceding section exhibits a small ex-ponential parameter b0 that appears to tend to zero as
N increases. At the same time, the corresponding coeffi-cient A0 tends to the energy of the second excited stateas N increases as shown in Tab. 8. This behaviour is con-sistent with the convergence of the CMX sequence (36)to the second excited state shown in the third column ofTab. 6 and discussed earlier by Amore et al [6]. Note thatthe CMX does not provide bounds to the energies as theRayleigh–Ritz method already does.

As a nontrivial example we choose the simple anharmonicoscillator
Ĥ = − d2

dx2 + x4 (44)
and the unnormalized trial functions

〈x| φg
〉 = exp(−3x22

)
,

〈x| φe〉 = (
x2 − 14

)exp(−3x22
) (45)

also considered by Amore et al. [6]. This oscillator isstrongly anharmonic and enables us to calculate as manyterms as desired for all the approximants discussed above.
Tab. 9 shows the parameters Wj and dj , j = 0, 1, 2 forthe trial function ∣∣φg〉. The former converge (from above)towards the well known eigenvalues as N increases andthe latter provide the overlaps. Since the overlap withthe ground state dominates the CMX will converge to-wards this state [6]. The second column of Tab. 10 showsthe great rate of convergence of the CMX sequence (36)towards the ground state of the anharmonic oscillator, al-ready calculated by Amore et al. [6]. Once again we ap-preciate that the CMX does not provide bounds.Tab. 11 shows the parameters for the ansatz U (N). The pa-rameter b0 tends to zero and A0 towards the energy of theground state of the anharmonic oscillator as N increases.However, spurious roots bj and values of the correspond-ing parameters Aj appear when N ≥ 3. We have just
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Table 4. Parameters bj and Aj of the ansatz (30) for the harmonic oscillator and the trial function
∣∣φg 〉 (43)

N b1/A1 b2/A2 b3/A32 4.003491206 8.296508793 —0.02472188733 0.0002743493113 —3 4.000086984 8.019485444 12.580427830.02469258182 0.0003046174966 0.0000027542196914 4.000001796 8.000821311 12.059187850.02469138991 0.0003048780599 0.000003706290872

Table 5. Overlap for the ground state of the harmonic oscillator from
Eq. (41)

N S2
N2 1.9693992913 1.9693932564 1.969393168

Table 6. Convergence of the CMX for the harmonic oscillator and the
two trial functions

∣∣φg 〉 and |φe 〉 (43)
N A0,N (g) A0,N (e)1 1.000304878 4.9318228882 1.000003763 5.0147938963 1 5.0024139064 1 5.0014021175 1 4.9999557576 1 5.0029555547 1 5.0000133638 1 5.0000113009 1 5.00000121510 1 4.999999154

chosen those that follow the reasonable sequences deter-mined by the results for smaller values of N .Tab. 12 shows the parameters for the ansatz E (N). Notethat the agreement between the parameters of the twoansätze for the anharmonic oscillator is not as good as inthe case of the harmonic one. In this case we also obtainapparently spurious roots bj and coefficients Aj for N > 4.For example, when N = 6 b2 and A2 are the complexconjugates of b3 and A3, respectively. Consequently, thecomplex parts of A2 and A3 cancel each other in Eq. (33)that yields a reasonable approach to the ground–stateenergy A0 = 1.0603680. We conclude that the parameters
Aj and bj should not necessarily be real and positive forthe CMX approximants (36) to converge neatly towardsthe ground–state energy.

Tab. 13 shows that the overlap between the ground state ofthe anharmonic oscillator and ∣∣φg〉 calculated by meansof Eq. (41) agrees with the result of Tab. 9 (d0). Onceagain we realize that the complex parts of the parame-ters Aj and bj cancel out to produce a reasonable realapproximation to the expected result. The occurrence ofcomplex parameters in the exponential ansatz is not re-vealed by the CMX approximants (like Eq. (36)) based onthe connected moments.As a two-dimensional example we choose the Pullen-Edmonds Hamiltonian
Ĥ = −12∇2 + 12 (x2 + y2) + αx2y2 (46)

that has been already treated by the CMX [10], the gen-eralized moments expansion (GMX) and the canonical se-quence method (CSM) [11]. A reasonable trial function forthe ground state is given by the unnormalized Gaussianfunction
〈x, y| φ〉 = e−a(x2+y2) (47)

where a > 0. Cioslowski [10] obtained satisfactory resultsfor 0.1 ≤ α ≤ 0.5 with the CMX and a = 1/2.Tab. 14 shows the exponents bj for α = 0.5 (the great-est value considered by Cioslowski [10] and Fessatidis et
al. [11]), and two values of a (a = 0.5 and a = 1). Sinceall the exponents are positive we expect that the CMXwill give satisfactory results for both values of a. How-ever, note that the sequence of values of b0 convergestowards 0 more rapidly when a = 1 so that we also ex-pect the rate of convergence of the CMX to be greater forthis case.Tab. 15 shows the CMX results for the ground-state en-ergy of the Pullen-Edmonds Hamiltonian for both valuesof a. The rate of convergence is greater for a = 1 assuggested by the analysis of the convergence of the ex-ponent b0. The entries in the second column are similarto Cioslowski’s results [10] (note that Cioslowski’ index nis equal to present N + 1) and those in the third col-umn correspond to a = 1. The last two rows show theresults provided by the GMX (GMX(1,3), fifth order) and
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Table 7. Parameters Wj and dj for the harmonic oscillator and the trial function |φe 〉 (43)
N W0/d0 W1/d1 W2/d2 W3/d32 2.911817131 5.079618783 9.870638470 —0.04317577925 1.498883666 0.03707877419 —3 1.060922282 5.002758941 9.097824481 14.146515890.006448836455 1.517139667 0.05488390863 0.00066580748294 1.001339803 5.000101462 9.007425114 13.183337630.006087180960 1.515949720 0.05588279435 0.0012098458245 1.000026913 5.000003052 9.000381181 13.019034130.006078565317 1.515881592 0.05586900205 0.001287657490

Table 8. Parameters b0 and A0 for the harmonic oscillator with the trial function |φe 〉 (43)
N b0 A02 0.01634078866 5.0132270713 −0.002960622766 4.9993886804 0.006737033331 4.9972471735 0.0003889752190 5.000207908

Table 9. Parameters Wj and dj for the anharmonic oscillator (44) and the trial function
∣∣φg 〉 (45)

N W0/d0 W1/d1 W2/d22 1.069780255 7.871169487 20.457628610.9487351539 0.07314504796 0.0014465059813 1.061229046 7.516944429 17.259385170.9451196068 0.07523345172 0.0029464536654 1.060427446 7.462353629 16.446505310.9447200769 0.07517101138 0.0033520726655 1.06036628 7.456258219 16.286170730.944686457 0.07513217688 0.003396340115

Table 10. Convergence of the CMX towards the ground–state (g) and second–excited state (e) energies of the anharmonic oscillator (44)
M A0(g) A0(e)5 1.060692159 7.43937125710 1.060363186 7.45606990715 1.060362073 7.45001795420 1.060362093 7.45136630325 1.060362090 7.45511870430 1.060362090 7.45418397335 " 7.45164248640 " 7.45436427450 " 7.45421474560 " 7.45386473770 " 7.45506676680 " 7.45518589090 " 7.453941990100 " 7.453833053exact 1.060362090 7.455697938
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Table 11. Parameters bj and Aj of the ansatz (34) for the anharmonic oscillator (44) with the trial function
∣∣φg 〉 (45)

N b0/A0 b1/A1 b2/A22 0.08325285817 6.885234502 20.866798361.099547538 0.4729461665 0.010839628143 0.001993821505 6.359516968 17.314750861.06101123 0.4997973255 0.022327190764 −0.003775464406 6.306016728 16.746920011.057884464 0.5006911384 0.02434537896

Table 12. Parameters bj and Aj of the ansatz (30) for the anharmonic oscillator (44) with the trial function
∣∣φg 〉 (45)

N b1/A1 b2/A2 b3/A32 6.470844472 19.19699588 −0.503507803 0.01645848089 −3 6.343642152 17.18884282 34.420609850.5002800387 0.02285212523 0.00022297523674 6.342827268 17.16971044 34.251228880.5002367582 0.02290363548 0.00023093828545 5.692034185 5.980920104 16.54089332
−0.5783779771 1.075044172 0.02550181868

Table 13. Overlap for the ground state of the anharmonic oscillator from Eq. (41)
N S2

N2 0.94590767573 0.94446148364 0.94445387675 0.94494170756 0.9446880500

Table 14. Exponents bj for the Pullen-Edmonds Hamiltonian with α = 0.5 for two values of a

a = 1/2
a = 1

N b0 b1 b2 b3 b42 0.02906068543 8.2550039790.05137853443 3.1792789703 0.01302652881 6.306411183 21.793356510.005884721637 2.588321084 6.8356859384 0.007719495186 5.474848514 15.83509229 42.120303010.0008448771176 2.469668165 5.742988280 10.940380865 0.005264561288 4.956739629 12.87136665 30.93888458 69.907215930.0002110290626 2.441442453 5.283795070 8.720985401 14.719879306 0.003841243108 4.558996554 10.98579271 25.27139705 52.385670300.00005030482040 2.427133379 4.784038202 7.033461737 11.56668194
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its cousin the CSM (CSM(13)) that Fessatidis et al. [11]considered to be excellent. However, Tab. 15 clearly re-veals that at least for this model neither the GMX nor theCSM appear to improve the results of the much simplerand more straightforward CMX.
Table 15. Ground-state energy for the Pullen-Edmonds with α = 0.5

N a = 1/2 a = 12 1.101104251 1.098968383 1.09978076 1.098107494 1.099074971 1.0979916185 1.098653642 1.0979632386 1.098396191 1.0979589517 1.098238541 1.0979587728 1.098141493 1.0979587469 1.098080974 1.09795937610 1.098042519 1.09795905911 1.098017546 1.09795903712 1.098000958 1.09795903413 1.097989693 1.09795903414 1.097981882 1.09795903315 1.097976358 1.09795901616 1.097972383 1.09795904717 1.097969474 1.09795904318 1.097967314 1.09795904219 1.097965688 1.097959042
GMX (1, 3) 1.11022
ECSM0 (13) 1.09843

5. Conclusions
In this paper we propose a systematic procedure for solv-ing the nonlinear equations that appear when matching aTaylor series about t = 0 and an asymptotic exponentialexpansion valid for large t. We applied it to the analysisof the extrapolation of the t–expansions for the generatingfunctions of the moments and connected moments. Obvi-ously, Z (t) is more suitable for matching both expansionsat origin because this function does not exhibit singularpoints. Unfortunately, results coming from it are not sizeconsistent. On the other hand E(t) exhibits singularitiesat the zeroes of Z (t) in the complex t–plane that may hin-der the extrapolation (see also Amore et al. [6] for otherexamples). The full solution of the nonlinear equations en-ables us to test whether the main assumptions of the CMXare valid for the reference state chosen for the study ofa given quantum–mechanical problem. We have analyzedtwo cases for the harmonic oscillator and two more for ananharmonic one and have shown that the CMX equationsyield better results for the former which is not surpris-ing. We have also seen that the rate of convergence ofthe CMX approximants (36) may be large even when theparameters in the ansatz E (N)(t) are complex. This most

interesting feature of the CMX was not revealed by ear-lier applications of the approach because they were basedon algorithms that bypass the explicit calculation of theparameters of the ansatz E (N)(t).Knowles’ equation (36) for the energy and Cioslowski’sequation (41) for the overlap (in terms of the connectedmoments [9]) are remarkable ways of bypassing the explicitcalculation of the apparently unnecessary variables in thenonlinear equation (5). However, we have shown that itis not difficult to calculate all those variables explicitlyand obtain additional information on the behaviour of theapproach.We want to point out that the main results of sections 2and 3 are quite general and apply to any quantum–mechanical problem. In Section 4 we have chosen ex-tremely simple models with the only purpose of facilitatingthe calculation of the necessary moments (which appearsto be the main difficulty in the application of all the mo-ments methods). Even the treatment of a two-dimensionaloscillator offers no difficulty as illustrated in Section 4.The main results of Section 2 are not restricted to theanalysis of the generating functions for the momentsand connected moments. In future works we will ex-plore their utility in other problems of physical inter-est. Just to mention one example, note that Z (it) =
〈ψ(0)| exp (−itĤ) |ψ(0)〉 is the projection of the state attime t |ψ(t)〉 = exp(−itĤ) |ψ(0)〉 onto the initial state
|ψ(0)〉 (correlation function). We easily obtain Z (it) forthe harmonic and anharmonic oscillators from the resultsof tables 2, 7 and 9.
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