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• The effect of human mobility on the spatio-temporal dynamics of Dengue is explored.
• Human mobility strongly affects the spread of infection.
• Because of human mobility, multiple foci appear throughout the evolution of the outbreaks.
• The coalescence of these foci with the main one generates a fast spreading of the outbreaks.
• This effect increases the propagation of the outbreak before arrival of the winter season.
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a b s t r a c t

Weexplored the effect of humanmobility on the spatio-temporal dynamics of Denguewith
a stochastic model that takes into account the epidemiological dynamics of the infected
mosquitoes and humans, with different mobility patterns of the human population. We
observed that human mobility strongly affects the spread of infection by increasing
the final size and by changing the morphology of the epidemic outbreaks. When the
spreading of the disease is driven only by mosquito dispersal (flight), a main central focus
expands diffusively. On the contrary, when humanmobility is taken into account, multiple
foci appear throughout the evolution of the outbreaks. These secondary foci generated
throughout the outbreaks could be of little importance according to their mass or size
compared with the largest main focus. However, the coalescence of these foci with the
main one generates an effect, throughwhich the latter develops a size greater than the one
obtained in the case driven only by mosquito dispersal. This increase in growth rate due
to human mobility and the coalescence of the foci are particularly relevant in temperate
cities such as the city of Buenos Aires, since they give more possibilities to the outbreak
to grow before the arrival of the low-temperature season. The findings of this work
indicate that human mobility could be the main driving force in the dynamics of vector
epidemics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Dengue fever is a vector-borne disease caused by a virus of the family flaviviridae [1] and transmitted mainly by the
mosquitoes Aedes aegypti and Aedes albopictus.

Newton and Reiter [2] introduced the first SEIR model for dengue in the form of a system of Ordinary Differential
Equations (ODE), in which the mosquito population was not modelled. Other ODE models have been developed with
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different considerations and assumptions: variability of vector population [3], human population [4], effect of vertical
transmission of Dengue in vectors [5], seasonality [6], age structure [7], incomplete gamma distributions for the incubation
and infectious times [8] and spatial heterogeneity as well [9].

Focks et al. [10,11] began describing mosquitoes populations by using a Dynamic Table Models, where later the human
population and the disease were introduced [12].

Otero and Solari developed a spatially explicit stochastic dengue model [13] which includes the evolution of the
mosquitoes population [14,15] but in which humans are considered as a spatially fixed population, i.e. the spatial spreading
of the disease is possible only due to mosquito dispersal. Two later models [16,17] modelled the human population as an
individual basedmodel and studied the effect of different humanmobility patterns on the final size, probability and duration
of the epidemic outbreaks.

Recent studies [18–21] suggest that the spatial spreading of a dengue outbreak occurs not only in a diffusive way, but
also because of many other secondary foci that appear at spatial scales not compatible with a spatial dynamics driven only
by mosquito dispersal. Therefore, it is really important to evaluate the contribution of human mobility to the evolution of
the epidemic outbreaks, i.e. the dynamics of the main focus and secondary foci along the dengue outbreaks.

Several works tackle the issue of the correct description of the human beingsmobility, relaying on differentmethods and
databases [22–29]. Databases from cellular phone networks, credit cards, hotel reservations, flight reservation databases,
etc. are currently used to model human mobility and to study disease spreading. Nevertheless, they could introduce an
intrinsic bias on the obtained results because human behaviour can change or adapt in presence of a disease [30–35].

Several studies consider human mobility in human–human transmitted diseases [36,34,37,35,33,38,32,31,39,40], but
only a few consider human mobility in vector borne diseases [41–43,17].

In this work we review some details of the model [17] regarding human mobility (Section 2), we present the results
of our numerical investigations related to the spatial distribution of recovered individuals, the foci dynamics according to
different mobility patterns, the evolution of the main focus of recovered individuals, and an analysis of the contribution of
short-range human movements to the evolution of dengue epidemic outbreaks (Section 3). Finally conclusions are drawn
in Section 4.

2. Theory and calculations

The epidemiological model used in this work has already been published [17]. There are four key processes involved in
the dengue contagion and spatial spreading: the epidemiological dynamics of the infected mosquitoes, the epidemiological
dynamics of the infected humans, the mobility pattern of the individuals and the mosquito dispersal by flight. From an
epidemiological point of view we divided the adult female vector population in three compartments representing the
disease status: susceptible (S), exposed (E) and infectious (I), i.e. a SEI compartmental model. Humans are considered at
the individual level, i.e., with an Individual Based Model (IBM) [16], and follow a susceptible (S), exposed (E), infectious (I)
and recovered (R) (SEIR) sequence. In this section we are going to review only some aspects of the model regarding human
mobility, for more details about the model and its implementation, we refer to Ref. [17].

The simulation of the evolution of dengue fever is performed in a schematic city (square grid) whose basic unit is the
city block (a square of 100 m × 100 m), in which a human population of 100 individuals is placed. We worked with grids
of different sizes: L = 20, 50, 100 and 150, being L the side length of the square grid, with L measured in city block units
i.e. a grid with L = 150 corresponds to a square grid of 150 × 150 city blocks. The spatial scale simulated goes from small
towns (L = 20) to a big city (L = 150). Mosquito populations were simulated using climatic data tuned to Buenos Aires city,
Argentina, and a breeding site density of 400 BS/ha [15,17]. An exposed human (index case) is placed in the centre of the
grid, on January 1st, considered as the beginning of the epidemic outbreak t = 0.

In order to describe the mobility patterns of the human population we have adopted the same schematic model already
presented in Ref. [17]: 50 individuals of each block are randomly selected to bemobile, while the other 50 individuals stay in
their original block (Home) during the simulation. Eachmobile individual spends 2/3 of the day in its original block (Home),
while the other 1/3 of the day the mobile individual stays in a randomly assigned block (Work) according to a particular
distribution, which is assigned to each of themobile individuals. Themobile individuals go to this destination everyday, and
at the end of the day they return back to their original block. This random assignment is performed according to certain
rules that characterize the human mobility pattern. Following recent works on human mobility (referred in Ref. [17]) the
distribution of the displacement lengths of the individuals follow a truncated Levy distribution [23] given by Eq. (1):

P(r) ∝ (r + r0)−β exp(−r/κ). (1)

being P(r) the probability that an individual reaches a distance r , where r0, β and κ are parameters that characterize the
distribution.

In this work we have used the parameters shown in Table 1.
The implementation is as follows. One of these distributions is chosen and then each mobile human randomly selects

(from this distribution) the distance ‘r to the ‘‘Work’’ block, with a cut-off equal to L/2. This means that the distances are
drawn from distributions with a displacement up to half of the city length for all individuals. Once the distance r is chosen
the next steps are followed:
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Table 1
Parameters of the Levy-Flight distribution.

r0(m) β κ (m)

Levy1.65 100 1.65 1500
Levy2 100 2.00 1500
Levy3 100 3.00 1500

Fig. 1. Spatial distribution of recovered individuals for three different conditions: No human mobility (left panel), a human movement pattern according
to a Levy-flight distribution with parameter β = 2.00 (central panel) and a human movement pattern according to a uniform random distribution R1
(right panel) for t = 350 (after the end of the epidemic outbreak) and a grid size of 50 × 50 blocks.

1. r is rounded to its nearest higher integer ([r] + 1)
2. Distances fromHomeblock to any other block ‘‘j’’ are considered as the nearest integer of the euclidean distances between

their centres (D(j))
3. From all blocks whose D(j) = [r] + 1, one of them is chosen uniformly.
4. This chosen block will be the work block which the individual will visit everyday

In order to compare these human movement patterns with other reference scenarios, we simulated two other
possibilities: the case in which the final destinations of the mobile individuals are assigned according to a uniform random
distribution (R1) and the case with no human mobility, in which the spreading of the disease is only due to mosquito
dispersal.

3. Results and discussion

The main observable in our work is the spatio-temporal distribution of recovered individuals throughout the epidemic
outbreaks. In Fig. 1 we analyse the spatial distribution of recovered individuals for three different conditions: No human
mobility (left panel), a human movement pattern according to a Levy-flight distribution with parameter β = 2.00 (central
panel) and a human movement pattern according to a uniform random distribution R1 (right panel), the three cases for
t = 350 (at the end of the epidemic outbreak) and a grid size of 50×50 blocks. Only in the case without humanmobility the
epidemic outbreaks are restricted to the centre of the grid and display a symmetric shape, while in the other two cases with
humanmobility (Levy2 and R1) the epidemic outbreaks reach the borders of the grid and presentmultiple foci. In the case of
the Levy-flight distributions the spatial spreading of the epidemic outbreak depends on the value of the β parameter, while
in the case of the total uniform random distribution R1 (showed here as reference for comparison) the epidemic outbreaks
always reach the border of the grid for any grid size. In order to understand themechanisms involved in the spatio-temporal
spreading of the disease we are going to study quantitatively the spatial distribution of the recovered individuals and its
temporal evolution.

3.1. Radial recovered probability function

We define the Radial Recovered Probability Function gn(r) (Eq. (2)) as a measure of the probability of finding at least ‘‘n’’
recovered individuals at a distance ‘‘r ’’ away from a given reference position, the index case position in the centre of the
grid.

gn(r) =


Blocks at

a distance r

H


# of recovered
in a block − n


# Blocks at a
distance r

(2)

where H(x) is a Heaviside function for discrete variables.
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Fig. 2. Radial Recovered Probability Function gn(r), for n = 10 and a human movement pattern according to a Levy-flight distribution with parameter
β = 1.65. The left panel (panel A) corresponds to a square grid of size 50×50 blocks and the right panel (panel B) to a square grid of size 100×100 blocks.
Curves for different times (t): star t = 60 days, square t = 90 days, circle t = 120 days, triangle t = 150 days and rhombus t = 190 days.

Fig. 3. Radial Recovered Probability Function gn(r), for n = 10, a human movement pattern according to a Levy-flight distribution with parameter
β = 1.65 and for t = 190. Size of the grid (in blocks): 20 × 20 (cross), 50 × 50 (square), 100 × 100 (circle) and 150 × 150 (triangle).

This Radial Recovered Probability Function gn(r) is calculated for r ≤
L
2 , being L the side length of the square grid, in order

to ensure that any angular position can be reached from the centre of the grid, and it is calculated when all the individuals
are at home in their original blocks.

Fig. 2 depicts the Radial Recovered Probability Function gn(r) for n = 10 and a human movement pattern according to a
Levy-flight distributionwith parameterβ = 1.65. The different curves correspond to five different times along the epidemic
outbreak: 60, 90, 120, 150 and 190 days after the arrival of the index case. The left panel (panel A) corresponds to a square
grid of size 50× 50 blocks and the right panel (panel B) to a square grid of size 100× 100 blocks. In the left panel (50× 50)
we observe that the epidemic outbreak reaches the border of the grid while in the right panel (100 × 100) the borders play
an unimportant role in the outbreak, i.e. the probability of finding at least 10 recovered individuals in the border of the grid
is lower than 1%.

Fig. 3 shows the Radial Recovered Probability Function gn(r) for n = 10, for a human movement pattern according to a
Levy-flight distribution with parameter β = 1.65 and for a particular day close to the end of the epidemic outbreak (day
190). We observe four curves corresponding to four different grid sizes: 20 × 20, 50 × 50, 100 × 100 and 150 × 150 blocks
and we perceive that no significant differences can be observed between the curves corresponding to the two largest sizes
considered: 100 × 100 and 150 × 150 blocks (curves with circles and triangles respectively). This result indicates that for
the two largest grids studied and consequently for larger ones, the epidemic outbreaks do not reach the border of the grids,
being the final size of epidemics independent of the grid size, according to the elimination of any kind of border effects.
Nevertheless, for smaller grids the border effects are quite important, meaning that our simulations correspond to cities of
different sizes but not for neighbourhoods of different sizes in a city.

3.2. Foci dynamics

As it was shown in Fig. 1 the symmetry and compacticity of the spatial density structure of recovered individuals depend
on the human mobility pattern. Let us introduce the concept of ‘‘focus of recovered individuals’’ in order to perform an
analysis of the spatial structure. Given a city block i we consider that this block is occupied if the number of recovered
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Fig. 4. Spatial distribution of occupied blocks according to different thresholds. Simulation conditions: grid of 50 × 50 blocks, human movement pattern
according to a Levy-flight distribution with parameter β = 2.00 and t = 350 (end of the epidemic outbreak). A block is white if the number of recovered
individuals in that block is higher than a given threshold ‘‘T = 0, 10, 30, 50, 70 and 90’’.

individuals in that block is higher than a given threshold T . We define a focus as a set of occupied blocks which share at least
one neighbour (first and second neighbours) that belongs also to the focus. Then, a block i belongs to a focus C if it satisfies
the relation:

i ∈ C ⇐⇒ ∃j ∈ C/i is neighbour of j. (3)

Fig. 4 illustrates how the choice of the threshold affects the focus structure. The focus splits into smaller pieces as the
threshold increases, remaining only those blocks with higher density of recovered individuals.

From Fig. 4 it can be seen that for a threshold of T = 0 the epidemic outbreak has reached the whole grid, but for T = 90
only the central region is strongly occupied by recovered individuals.

In order to understand the development of the epidemic outbreaks we analyze the temporal evolution of the foci
throughout the outbreak. Fig. 5 exhibits the temporal evolution of the number of foci and its dependence on different
thresholds for two different grid sizes and human mobility patterns. The top panels (A and B) correspond to a Levy-flight
distributionwith parameter β = 1.65 and the bottompanels (C and D) to a Levy-flight distributionwith parameter β = 3.0.
Panels A and C correspond to a grid size of 50 × 50 blocks and panels B and D to a grid size of 100 × 100 blocks.

For a human mobility pattern according to a Levy-flight distribution with parameter β = 3.0 (panels C and D of Fig. 5)
we observe that the number of foci grows almost monotonically with time for all the thresholds considered and that the
number of foci decreases as the threshold rises. On the contrary, some curves for the Levy-flight distributionwith parameter
β = 1.65 show that the number of foci grows, reaches a peak and then goes down until it levels off (for the grid of 50 × 50
blocks, thresholds: T = 0 and 10 (panel A) and for the grid of 100 × 100 blocks only for the lowest threshold: T = 0 (panel
B)). This suggests that two different contrasting effects take place throughout the outbreak. During the outbreak, new foci
are being constantly created because of the propagation of the infection. Then these foci begin to merge reducing the final
number of foci, but these final remaining foci become larger due to this coalescence process. The different shapes of the
curves in Fig. 5 depend on the competition between these two contrasting effects.

In order to study these two effects separately Fig. 6 shows the temporal decrease in the number of foci because of
coalescence for different thresholds (T = 0, 10 and 30) and for two grid sizes: 50 × 50 blocks (panel A) and 100 × 100
blocks (panel B), and Fig. 7 shows the number of new foci generated day by day (grid sizes: 50 × 50 blocks (panel A)
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Fig. 5. Time evolution of the number of foci for thresholds T : cross (violet) 0, star (green) 10, square (red) 30, circle (brown) 50, triangle (black) 70, rhombus
(blue) 90. Human mobility pattern and grid sizes (in blocks): panel A: levy1.65—50× 50, panel B: levy1.65—100× 100, panel C: levy3—50× 50 and panel
D: levy3—100 × 100. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Temporal decrease of the number of foci because of coalescence for thresholds T : square 0, circle 10, triangle 30. Panel A: levy1.65—50× 50, panel
B: levy1.65—100 × 100.

Fig. 7. Time evolution of the number of new foci for thresholds T : square 0, circle 10, triangle 30. Panel A: levy1.65—50×50, panel B: levy1.65—100×100.

and 100 × 100 blocks (panel B)), considering as new foci only the ones which do not belong to a pre-existent focus and
which appear because the number of recovered individuals in a block reaches a value higher than the threshold considered
(T = 0, 10 and 30).
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Fig. 8. Temporal evolution of the number of new foci for a Levy1.65 distribution and for grid sizes (blocks): square 50 × 50, circle 100 × 100 and triangle
150 × 150. Thresholds T : ‘‘0 and 10’’ (panels A and B), ‘‘30 and 50’’ (panels C and D) and ‘‘70 and 90’’ (panels E and F).

For a grid of 50 × 50 blocks we can observe that before day 100 the generation of new foci is greater than the decrease
by coalescence, but later this tendency is reverted producing the characteristic maximum observed in Fig. 5. For the grid of
100 × 100 blocks the number of new foci is almost always higher (except for the lowest threshold: T = 0) and the peak of
the curves are reached approximately 50 days later than the case of the grid of 50 × 50.

Fig. 7 reveals an apparent shift of the peak of new foci for the grid of size 50×50 blocks and the lowest threshold (T = 0)
respect to higher thresholds, i.e. the peak of the number of new foci is reached later for higher thresholds in the same grid. In
order to study these observations we compared the temporal evolution of the number of new foci (Fig. 8) for three grid sizes
(50 × 50, 100 × 100 and 150 × 150 blocks), for the Levy-flight distribution with parameter β = 1.65 and for six different
thresholds T : ‘‘0 and 10’’ (panels A and B), ‘‘30 and 50’’ (panels C and D) and ‘‘70 and 90’’ (panels E and F). At the beginning
of the outbreak the curves for threshold T = 0 are similar up to a particular moment in which the number of new foci stops
growing and begins to decrease. The difference in the temporal evolution of the new foci becomes smaller as the threshold
increases, in fact there are differences in the number of new foci between grids of sizes 100 × 100 blocks and 150 × 150
blocks only for the lowest threshold considered (T = 0). A situation which supports the idea of the disappearance of border
effects for larger grid sizes (Fig. 3).

Fig. 9 depicts the normalized difference of the final size of epidemics (ND) for the grids of sizes 50 × 50 blocks and
100 × 100 blocks. We observe that the difference between the two cases studied is lower than 10% throughout the whole
outbreak.

As the final size of epidemics is similar for the grids of 50×50, 100×100 and 150×150 blocks, the density of recovered
individuals must be greater for the smaller grids. Since at time t = 0 there is only one infected individual, the larger the
system, the lower the initial density. Therefore, it takes longer to reach the same density of infected individuals (see Eq. (2)
in Ref. [44]), which is not possible because winter begins at time t ≈ 190. As a consequence, when L increases, the final
density of recovered individuals decreases.

This means that there are less unoccupied blocks in the smaller grids, considering an occupied block as a block with a
number of recovered individuals higher than the threshold. This situation is more important for low thresholds and small
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Fig. 9. Normalized difference (ND) of the final size of epidemics between a grid of size 100× 100 blocks and a grid of size 50× 50 blocks, for a Levy-flight
distribution Levy1.65.

Fig. 10. Final Size of Epidemics and Power of the Epidemics for a grid of 50 × 50 blocks, 400 BS/ha and human movements: R1, Levy1.65, Levy3 and the
case without human movement as reference.

grid sizes. If there is less space for the same amount of occupied blocks then there will be less space for the emergence of
new foci and the probability that two or more foci merge will be higher, as shown in Figs. 5 and 6.

3.3. The largest focus

In order to continue the analysis of the spatial spreading of the disease we study how the size and mass of the foci are
spatially distributed. We define the ‘‘size of the focus’’ Sf as the number of blocks belonging to a focus and the ‘‘mass of the
focus’’Mf as the number of recovered individuals present in a focus.

We define two other new measures (respect to a threshold T of recovered humans): the size proportion of the largest
focus (Sp(T )) and the mass proportion of the largest focus (Mp(T )). Sp(T ) and Mp(T ) are defined by Eqs. (4) and (5)
respectively.

Sp(T ) =
Number of blocks with at least T recovered humans in the largest focus

Number of blocks with at least T recovered humans
(4)

Mp(T ) =
Number of recovered humans in blocks with at least T recovered humans in the largest focus

Number of recovered humans in blocks with at least T recovered humans
(5)

where the largest focus is the one with the highest population of recovered individuals.
For the analysis of the spatial spreading of the disease we performed simulations in a grid of 50 × 50 for three different

distributions of human movement: Levy1.65, Levy3 and R1. For these simulations the Final Size of Epidemics (record of
the total recovered individuals along the outbreak) and the Power of the Epidemics (ratio between the median of the final
size of the epidemics and the median of the duration of the epidemics) [17] are shown in Fig. 10. We can observe that the
distributions characterized by longer jumps produce larger epidemic outbreaks (Left panel of Fig. 10). Since the end of the
epidemic outbreaks is because of the arrival of the winter season [17], the Power of the Epidemics is meanly determined
exclusively by the Final Size of Epidemics (Left panel of Fig. 10).
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Fig. 11. Mp(T ) and Sp(T ) (inset) for a grid of size of 50 × 50 blocks, thresholds T : cross (red) 0, star (green) 10, square (blue) 70 and triangle (violet) 90.
Humanmovement patterns: R1 (top), Levy1.65 (middle) and Levy3 (bottom). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 11 shows the temporal evolution of Mp(T ) and Sp(T ) (insets) for different thresholds (T = 0, 10, 70 and 90) and
for three different human movement patterns studied: uniform random R1 (top panel) and Levy-flight distributions with
parameters β = 1.65 (central panel) and β = 3.00 (bottom panel).

For both of the Levy-flight distributions studied, more than 85% of themass is concentrated in the largest focus. Although
the total number of foci can reach approximately one hundred foci (see Fig. 5), one single focus concentrates the largest
number of recovered individuals. For the particular case of the Levy-flight distribution with parameter β = 1.65 we
observe a fast growth of the mass ratio for the lower thresholds (T = 0 and 10), which is not observed for the other
thresholds studied. The largest focus is growing faster because of the coalescence of smaller foci with high density of
recovered individuals.

The temporal evolution of the size ratio is qualitatively similar but the values reached are lower compared to the mass
ratio values. This happens because most of the foci that do not belong to largest focus have low density of recovered
individuals, affecting mostly the size ratio than the mass ratio.

For the R1 distribution both ratios reach values as low as 20%. This is consistent with this human movement pattern in
which the main focus does not play a central role in the spreading of the disease because of the high number of secondary
foci that appears in the early stages of the outbreak. Nevertheless, all these foci tend to merge throughout the outbreak.
On the contrary, the results obtained for the Levy-flight patterns suggest that the growth of the epidemic outbreak occurs
mostly from a main central focus such as in the case without human mobility, but with a higher speed.
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Fig. 12. Mass of the largest focus for a grid of 50× 50 blocks, a threshold T = 70 and for different humanmovement patterns: without humanmovement
(cross), Levy1.65 (star), Levy1.65 with a cut-off value at D = 1 (square), Levy1.65 with a cut-off value at D = 3 (circle), Levy1.65 with a cut-off value at
D = 5 (triangle), Levy1.65 without mosquito dispersal (rhombus). Inset: same results in an expanded y-axis scale.

3.4. Difussion vs. jumps

In order to study the evolution of this central focus throughout the outbreak, Fig. 12 displays the temporal evolution of
the mass of the largest focus (Mf of the largest focus) for a grid size of 50×50 blocks, a threshold of T = 70 and for different
scenarios. The curve with cross symbols corresponds to the case without human movement and the one with star symbols
to a Levy-flight distribution with β = 1.65. We can observe that the mass of the largest focus without human mobility is
almost five times smaller than in the case of the Levy-flight distribution (see inset of Fig. 12).

Since we want to evaluate the contribution of the short-range movements of this distribution to the disease spreading,
we performed simulationswith a Levy-flight distribution for different cut-off distancesDwithD = 1, 3 and 5 blocks (Curves
with squares, circles and triangles of Fig. 12 respectively). For example, in a Levy-flight distribution with a cut-off of D = 5
(curve with circles), every jump to a distance greater than five blocks does not occur, remaining the individuals involved
in their original blocks. The aim of these simulations is the study of the temporal evolution of the size of the largest focus
and its growth speed, only due to the short-range human movements, and then compare them with the situation without
human movement. We refer as ‘‘short-range humanmovements’’, those movements that contribute to the spreading of the
disease so that the outbreak grows as one single central focus just as in the diffusive case without human movement. The
results of these simulations are shown in Fig. 12 (curves with squares (D = 1), circles (D = 3) and triangles (D = 5)) and
reveal that the final mass and the growth speed of the largest focus decrease as the cut-off distances decrease.

On the other handwe performed simulationswith humanmobility according to a Levy-flight distributionwith β = 1.65,
in which mosquito dispersal was cancelled in order to study the spreading of the disease purely due to human movement
(curve with rhombus of Fig. 12). The results of these simulations point out that the epidemic outbreaks spread even without
mosquito dispersal, reaching final sizes of epidemics %50 lower than in the case with vector dispersal. In the early stages
of the epidemic outbreak the mass growth of the largest focus is slower than in the cases with flights but then the growth
speed increases so that the final size reaches a value higher than those obtained for the Levy-flights with different cut-offs.
We notice also that the effects of humanmobility and vector dispersal are not independent since the temporal evolution for
the levy flight distribution with vector dispersal cannot be constructed by addition of the results obtained for the cases in
which the spreading were mediated purely by human movement and mosquito dispersal.

We observed previously in Fig. 5 that for every threshold studied the number of foci for the Levy1.65 movement was
higher than for the Levy3 movement, but we showed no information about the mass and size distributions of the foci.
Fig. 13 depicts the size and mass distributions of the foci for the day t = 90, a grid of size 50 × 50 blocks, four different
thresholds T = 0, 10, 70 and 90 and two human movements: Levy 1.65 and Levy3. We selected a moment of the outbreak
t = 90 in which the decrease of the foci by coalescence begins to be more important than the generation of new foci (for
the Levy1.65 movement). It can be seen that the distributions of masses (panels B and D) and sizes (panels A and C) appear
to follow a power law for low values. Beyond this behaviour, we observed a peak corresponding to the largest focus. It is
interesting to notice here that for all sizes andmasses, the number of foci is greater in the case of a Levy1.65movement than
in the case of a levy3 movement.

4. Conclusions

In this work we have explored the effect of human mobility on the spatio-temporal dynamics of Dengue with an
epidemiological model developed in our group [17]. Four main processes involved in the dengue contagion and spatial
spreading are considered in our model: the epidemiological dynamics of the infected mosquitoes, the epidemiological
dynamics of the infected humans, different mobility patterns of the human population and the mosquito dispersal.

From our results we can conclude that human mobility strongly increases the spread of infection, not only by increasing
the final size of epidemics but also by changing the morphology of the epidemic outbreak. When the spreading of the
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Fig. 13. Focus distribution for t = 90 according to focus size (panels A and C) and focus mass (panels B and D), for a grid of size 50 × 50 blocks, and
thresholds T : 0 (violet star), 10 (green square), 70 (light blue circle), 90 (brown triangle). Humanmovement patterns: Levy1.65 (panels A and B) and Levy3
(panels C and D). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

disease is driven only by the mosquitoes, a single focus occurs which expands due to the diffusive dynamics associated
with their dispersal. Instead, when human mobility is considered, multiple foci appear in the course of evolution. Human
mobility increases the final size of the epidemic, the speed of propagation and the morphology of the epidemic outbreaks.
Nevertheless, since the end of the outbreaks is governed by the arrival of the winter, the duration of the epidemic outbreaks
is not sensitive to the different human mobility patterns. Therefore, the power of the epidemics is determined exclusively
by the final size of the epidemics.

The secondary foci could be of little importance according to their mass or size compared with the largest main focus.
However, the union of these foci with the main one generates an effect, through which the latter attains a size greater than
the one obtained in the case without human mobility, e.g.: for a Levy flight 1.65 the mass of the largest focus is ten times
higher than the mass of the focus obtained in the case of epidemic outbreaks spread only with mosquito dispersal. The
increase in growth rate due to human mobility and the coalescence of the foci is particularly relevant in temperate cities
such as the city of Buenos Aires, since it gives more possibilities to the outbreak to grow before the arrival of the winter.

The findings of this work indicate that human mobility could be the main driving force in the dynamics of vector
epidemics. Humanmovement results in a faster and extended epidemic dynamics. Given this situation, when measures are
thought to combat or attenuate the spread of epidemics, humanmobility must be one of the major points to be considered.
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