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Turbulent transport with intermittency: Expectation of a scalar concentration
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Scalar transport by turbulent flows is best described in terms of Lagrangian parcel motions. Here we measure the
Eulerian distance travel along Lagrangian trajectories in a simple point vortex flow to determine the probabilistic
impulse response function for scalar transport in the absence of molecular diffusion. As expected, the mean
squared Eulerian displacement scales ballistically at very short times and diffusively for very long times, with the
displacement distribution at any given time approximating that of a random walk. However, significant deviations
in the displacement distributions from Rayleigh are found. The probability of long distance transport is reduced
over inertial range time scales due to spatial and temporal intermittency. This can be modeled as a series of
trapping events with durations uniformly distributed below the Eulerian integral time scale. The probability of
long distance transport is, on the other hand, enhanced beyond that of the random walk for both times shorter than
the Lagrangian integral time and times longer than the Eulerian integral time. The very short-time enhancement
reflects the underlying Lagrangian velocity distribution, while that at very long times results from the spatial
and temporal variation of the flow at the largest scales. The probabilistic impulse response function, and with
it the expectation value of the scalar concentration at any point in space and time, can be modeled using only
the evolution of the lowest spatial wave number modes (the mean and the lowest harmonic) and an eddy based
constrained random walk that captures the essential velocity phase relations associated with advection by vortex
motions. Preliminary examination of Lagrangian tracers in three-dimensional homogeneous isotropic turbulence
suggests that transport in that setting can be similarly modeled.
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I. INTRODUCTION

Understanding, predicting, and modeling scalar and vector
transport is a key goal of turbulence research. The aim of such
efforts is a turbulent transport model that depends only on the
statistical properties of the flow, not the detailed dynamics of
any single flow realization. If the role of molecular diffusion
is small (high Péclet number flows), scalar transport is best
described in terms of Lagrangian parcel motions [see early
work (e.g. [1–5]), and later reviews (e.g. [6–9]) and the
many references therein]. Specific turbulent flow structures,
vortices (e.g. [10–12]) or straining stagnation points [13,14],
have been identified as likely important to the statistics of
those motions, and both of these have been employed as
fundamental dynamical components in models of Lagrangian
velocity increments [15–17] and pair dispersion [18–21].

In this paper we develop a statistical model of Lagrangian
parcel motions as realized in a stochastically driven point
vortex flow [17,21]. Our goal is to show that the scalar
transport properties of this simplified turbulence analog can
be reproduced by a Lagrangian stochastic model based on
measurable flow statistics. We compute the probabilistic
impulse response function and show that, while to lowest order
scalar transport follows random walk statistics, with ballistic
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and diffusive scaling at short and long times respectively,
higher order departures result from the spatial and temporal
intermittency of the flow. Over inertial range time sales, the
probability of long-distance transport is reduced below that of
a random walk. This is due to vortex trapping delays and can
be modeled as a random series of such events. Over very short
and very long time scales, on the other hand, long-distance
scalar transport is enhanced. At the shortest time scales this is
due to individual point vortex contributions, and at the longest
it reflects the spatial and temporal variability of the largest
scale motions.

The transport equation for a scalar concentrate per unit
volume c in an incompressible medium without molecular
diffusion can be written in the continuum approximation as

∂c

∂t
+ u · ∇c = S(x,t). (1)

If the flow field is turbulent, the expectation value of c is given
by

〈c(x,t)〉 =
∫ t

−∞

∫ ∞

−∞
P (x,t |x′,t ′)S(x′,t ′)dx′dt ′ (2)

(e.g. [8] and references therein), where S(x′,t ′) is the source
distribution and P (x,t | x′,t ′) is the probabilistic impulse
response (or Green’s) function, the probability density of
finding a parcel at (x,t) given a previous location (x′,t ′).
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Similarly, the variance of the concentration can be expressed
as

〈c2(x,t)〉 =
∫

P (x,x,t,t |x1,x2,t1,t2)

×S(x1,x2,t1,t2)dx1dx2dt1dt2 (3)

(e.g. [8] and references therein). Since the flow is turbulent
the value of the concentration at any point in space and time
(x,t) has a variance that depends on P (x,x,t,t |x1,x2,t1,t2),
the probability density that parcels from different locations
(x1,t1) and (x2,t2) end up at that position in different flow
realizations. This motivates the time reversed pair dispersion
problem, though it is more general in time. Note that integrals
over all x1 and x2 between ±∞ and all t1 and t2 less than or
equal to t are implied by the single integral sign in Eq. (3).

If P (x,t ; x′,t ′) and P (x,x,t,t |x1,x2,t1,t2) could be fully
specified for a turbulent flow, one could exactly solve for the
expectation value of the scalar concentration and its variance
at any position and time given a prior source distribution. This
is in general not possible; these probability densities must be
measured or modeled. The simplest models are Markovian
random walk models, with steps δ-correlated in space and
time so that the future state of the system depends only on its
current state not the sequence of events leading up to it. With
Gaussian distributed isotropically directed steps these yield
scalar diffusion, with ballistic and diffusive scaling at short and
long times respectively [1]. Beyond this, Markovian random
flight models incorporate the statistics of the turbulent velocity
fluctuations in the solution of a first order stochastic differential
equation for the Lagrangian velocity (a Langevin equation)
or alternatively a Fokker-Planck equation for the Lagrangian
velocity probability density function [22–25]. Such models
can account for some temporal correlation along Lagrangian
trajectories, and those which take the autocorrelation of the
velocity or acceleration to decay exponentially yield solutions
with additional time dependence in the diffusion coeffi-
cient [15,26]. Departures from diffusive behavior can result
from nonfinite variance velocity distributions, nonexponential
autocorrelations, or vortex trapping (e.g. [15,27]).

We examine the importance of these processes to scalar
transport in a stirred point-vortex flow by measuring the
Lagrangian trajectories of passive tracers and constructing
the probabilistic impulse response function from them. We
find that over inertial range time scales, the probability of
long distance transport is reduced from that expected based
on a random walk. On shorter and longer time scales,
enhanced long-distance transport occurs. Moreover, these
behaviors can be successfully modeled using just two flow
components, an eddy based random walk and a spatially or
temporally intermittent large scale flow, the parameters of
which can be determined from measurable properties of the
full flow. Preliminary examination of Lagrangian trajectories
in fully nonlinear three-dimensional homogeneous isotropic
turbulence yields the same behaviors, suggesting that a similar
modeling strategy may be useful in that setting.

II. TURBULENT FLOW ANALOG

We employ a simplified stirred point-vortex flow [17] as
an analog for highly intermittent turbulence. Point vortices are

randomly generated at a constant average rate with Gaussian
distributed intensities in a two-dimensional biperiodic domain
of dimension x2

max. The velocity field is constructed from the
individual contributions of each vortex,

u(x) =
N∑

k=1

�k

2π |x − xk| (ẑ × (x̂ − xk)), (4)

where ẑ is perpendicular to the plane of motion, �k are the
individual vortices’ circulations, and the contribution range
of each vortex is truncated at a distance of |x − xk| = xmax.
Each point vortex moves in the flow generated by all the
others with no self-interaction. Vortex merger is imposed
when vortices are closer than a fixed critical separation,
unit one distance. New vortex positions after merger are
taken to be the amplitude-weighted average position of the
merged pair, and the new intensities are taken alternatively
as either the sum of the circulations or the signed square
root of the absolute value of the sum of the signed squared
circulations [28]; the first preserves total circulation while
the later preserves the total signed squared circulation. This
point-vortex system would ultimately decay due to the merger
of oppositely signed vortices but for the continuous stirring
provided by the generation of new point vortices at random
locations in the domain. Thus the algorithm introduces sources
and sinks of vorticity and energy not otherwise available to
two-dimensional point-vortex systems [17].

We examine the statistics of Lagrangian tracers in these
flows, and present the results of three simulations in this
paper. Simulation A is an extended version of the simulation
presented in [17], but here recomputed with an improved
fourth-order Runge-Kutta integration scheme. Simulation B
is identical to A except that it employs the energy rather
than the circulation conserving merger scheme. Simulation
C is identical to B but draws new vortex amplitudes from a
distribution that is three times as wide. All other parameters of
the simulations are identical. For example, all three simulations
are initialized with a same number of vortices randomly placed
in the domain (64 in these cases). The total number of vortices
increases rapidly before settling down to an equilibrium value
which results from a balance between the vortex merger
frequency (dynamically determined by the solution) and the
vortex creation rate (common to all simulations) [17]. Figure 1
plots solution snapshots for each of these simulations at a late
time (at the end of the time series plotted), along with time
series of the total vortex number N and interaction energy

W = − 1

4π

N∑
α

N∑
β

�α�β ln(rαβ) (5)

in each of them. The double sum in Eq. (5) extends over
all vortex pairs (α �= β), and rαβ is the distance between
pair members. In an infinite domain of constant point-vortex
membership, the interaction energy W is a constant of motion
(see e.g. [29]). In our simulations, it shows significant variation
with time, due to the model processes of vortex creation and
merger and the domain periodicity [17].

The sources and sinks of kinetic energy and enstrophy in
these point vortex simulations depend on the merger scheme
employed. In the circulation preserving scheme, summing
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FIG. 1. Snapshots [(a), (d), and (g)], and associated time series
[(b) and (c), (e) and (f), and (h) and (i)] to their right, of three point
vortex simulations. Simulations A and B [(a) and (d)] sample the same
new vortex amplitude distribution and employ circulation conserving
and energy conserving merger schemes, respectively. Simulation C
[snapshot (g)] draws new vortex amplitudes from a distribution that is
three times as wide and employs the same energy conserving merger
scheme as B. All three snapshots are taken from the end of the time
series plotted and show the instantaneous positions of vortices of
positive and negative circulation in red and blue, respectively, with
the magnitude of the symbol indicating the individual point vortex
amplitudes. The instantaneous positions of passive Lagrangian tracers
are indicated with black dots. Time series plots in (b), (e), and (h) show
the total vortex number N (black) and the number of positive (red) and
negative (blue) vortices separately. The interaction energy W [Eq. (5)]
is plotted as a function of time in panels (c), (f), and (i). Apparent
correlations between the time series reflect the simulations’ common
initial conditions and random number seeds, so that imbalances in
the number of positive and negative vortices occur at similar times
in the solutions. The circulation conserving merger scheme yields
a solution with an inverse energy cascade and a consequent secular
increase in W , while the energy conserving scheme does not.

like-signed vortices conserves angular momentum but injects
kinetic energy because (�1 + �2)2 > �2

1 + �2
2, while merging

oppositely signed vortices dissipates both angular momentum
and energy because in this case (�1 + �2)2 < �2

1 + �2
2. In the

signed squared circulation preserving scheme, summing like-
signed vortices conserves kinetic energy but dissipates angular

momentum because
√

�2
1 + �2

2 < �1 + �2, while summing

oppositely signed vortices dissipates energy and adds angular

momentum because sgn(�2
1 − �2

2)
√

|�2
1 − �2

2 | > �1 − |�2|,
where �1 is taken to be positive and �2 negative. It is these
differences in the merger schemes employed that determine
the secular trends in Fig. 1. Simulation A, which employs
the circulation conserving merger scheme, shows an inverse
energy cascade, the slow accumulation of vortices into two
large like-signed groups, and a consequent secular increase in
W . Simulations B and C, which employ the energy conserving
scheme, show large fluctuations in W but no secular trends.
The apparent correlations between the three time series of
W in Fig. 1 result because the three runs were started with
the same random number seed, yielding imbalances in the
total numbers of positive and negative vortices at similar times
during the solution.

It is important to note that, while the details (e.g., vortex
number density and amplitude distributions) of the statistical
flow equilibria achieved in these simulations are affected by
the merger scheme and the new vortex amplitude distribution
employed, the general scalar transport properties of the flows
are not. The transport properties described in this paper are
common to all solutions. In fact, they are more generally seen
in any two-dimensional collection of point vortices, even one
in which neither vortex creation or merger occurs, so long as
the vortices dynamically interact [30]. The details of the flow
determine the Lagrangian and Eulerian integral time scales,
but transport behaviors in relation to these are common to all
solutions.

III. PROBABILISTIC IMPULSE RESPONSE

As indicated in Sec. I, if P (x,t |x′,t ′) could be fully specified
for a turbulent flow, the expectation value of the scalar
concentration could be calculated exactly for any given source
distribution. Such specification is generally not possible, and
even direct measurement of P (x,t |x′,t ′) is overly ambitious as
it would require determining the probability that the turbulent
flow connects any two space-time points along any possible
Lagrangian trajectory.

To make progress, we focus on flows that are isotropic,
and take P (x,t |x′,t ′) = P (r,t)/2πr , where r = |x − x′| and t

is redefined as the time interval, t ≡ �t = t − t ′, with only
positive values of t considered to preserve causality. We
note that taking P (r,t) to be dependent only on �t assumes
stationarity over the time intervals considered. Small scale
motions are indeed statistically stationary in our solutions, but
on the largest scales some of the simulations vary slowly with
time. Transport on time scales of the largest eddy turnover time
or longer is affected by this modulation of the flow amplitudes
at the largest scales, and that modulation must be accounted
for in any transport model. We undertake this in Sec. IV B
below.

We use the motions of the Lagrangian tracers in the
point-vortex simulations to measure P (r,t), the distribution
of Eulerian distances r traveled via Lagrangian trajectories
over time t (the straight line distances particles travel over
that time). Starting two hundred time units into each of the
simulations (indicated by the vertical dotted fiducial lines in
Fig. 1), in order to avoid the initial transient solution, we
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FIG. 2. Contour plots of the logarithm of the probabilistic impulse
response, the probability density of traveling an Eulerian distance r in
time t along a Lagrangian trajectory, log(P (r,t)). In black, contours of
log(P (r,t)) measured using the passive Lagrangian tracer trajectories
of simulations A (top), B (middle), and C (bottom). In red, contours of
log(P (r,t)) constructed from the best fit Rayleigh distribution (two-
dimensional random walk) to the simulation passive tracer probability
density at each time t . Vertical solid fiducial lines indicate TI for each
simulation, and vertical dashed lines indicate the Lagrangian and
Eulerian velocity autocorrelation times at shorter and longer times,
respectively.

construct P (r) for a given t (and for multiple values of t)
by determining all the Eulerian distances traveled over that
time interval anywhere along 64 passive Lagrangian particle
trajectories computed during the simulations. We note that,
because the vortices themselves have finite lifetimes, we do
not employ their trajectories in this calculation. Since the flows
are integrated for very long times, any single passive particle
trajectory provides many realizations of the Lagrangian path
over a given time interval, and thus, despite the relatively low
number of particles employed, the distributions obtained are
robust even over subsets of the data. Contour plots of P (r,t)
are shown in Fig. 2.

The probability density of the Eulerian distance traveled
along Lagrangian trajectories P (r,t) approximates that of

FIG. 3. Expectation value of the Eulerian distance traveled along
Lagrangian trajectories 〈r〉. This scales ballistically at short times (t
less than the Lagrangian velocity autocorrelation time) and diffusively
for long times (t greater than the Eulerian velocity autocorrelation
time). For simulation A (black curve), TI is indicated with a vertical
solid fiducial line and the velocity autocorrelation times are indicated
with vertical dashed fiducial lines. For all simulations (simulation B
blue and simulation C red), the ballistic and diffusive scalings are
overplotted with long dashed lines, and dotted vertical fiducial lines
indicate 0.01TI and 20TI . Cuts through P (r,t) at these times are
shown in Fig. 4.

a two-dimensional random walk, a Rayleigh distribution,
P (r,t) = r/σ 2exp(−r2/2σ 2) (Fig. 2, red curves), with the
variance σ 2 proportional to 〈r2〉 and a function of the time
interval t . The variance scales ballistically, as t2, for short time
intervals and diffusively, as t , for long time intervals. This
is true of all the point vortex simulations examined (Fig. 3).
The crossover time between ballistic and diffusive behavior,
hereafter labeled TI , is indicated with vertical solid fiducial
lines for all simulations in Fig. 2 and for simulation A in
Fig. 3. If transport by a turbulent flow could be reduced to a
random walk, then it would be well described as diffusion, and
only σ (t) would be needed to compute the expectation of the
scalar concentration. This is not the case.

The true probabilistic impulse response function P (r,t)
required to compute 〈c(x,t)〉 shows significant departures
from the Rayleigh random-walk distribution (Figs. 2 and 4).
Over time intervals either short compared to the Lagrangian
velocity autocorrelation time or long compared with the
Eulerian velocity autocorrelation time (these shown with
vertical dashed fiducial lines for all three simulations in
Fig. 2 and for simulation A in Fig. 3), the probability of
long distance transport is enhanced over that of a random
walk. Over intermediate time intervals (inertial range time
scales), however, the probability of long distance transport
is substantially reduced compared to that of a random walk.
Figure 4 shows plots of P (r,t) from the simulations at fixed
times: t = 0.01TI (for simulation A this is about 0.025 times
the Lagrangian autocorrelation time), t = TI , and t = 20TI

(for simulation A the later is about 8.25 times the Eulerian
autocorrelation time). For reference, the shortest time interval
for which the distributions are shown [t = 0.01TI in Fig. 4(a)]
is 6, 13, and 4 simulation time steps long in Simulation A,
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(a)

(b)

(c)

FIG. 4. Probabilistic impulse response function P (r,t) at fixed
times (a) t = 0.01TI , (b) t = TI , and (c) t = 20TI measured using
the passive Lagrangian tracer trajectories of simulations A (black),
B (blue), and C (red). These are vertical cuts through the two-
dimensional probability density functions contoured in Fig. 2. The
probability of long distance transport is enhanced over the best
fit two-dimensional random walk Rayleigh distribution (overplotted
with solid curves) at very short and, in some cases, very long times
[(a) and (c)] but suppressed over intermediate (inertial range) time
scales (b). Inset plots show the cores of the simulation A distributions
in more detail, illustrating the distortion of the core from Rayleigh at
intermediate times.

B, and C, respectively. This is very much shorter than the
Lagrangian autocorrelation time in any case. The best fit
Rayleigh distributions are also shown in Fig. 4. Those random
walk distributions approximate the cores of the measured
probability density functions but not their tails, though it is
important to note that over inertial range times scales even the
cores of the distributions are distorted [see Fig. 4(b) inset].
The probability of long distance transport (the distribution
tail) is enhanced at very short times and, in some cases,
very long times [Figs. 4(a) and 4(c)] but suppressed over
intermediate (inertial range) time scales [Fig. 4(b)]. The
very long time enhancement of long distance transport is
particularly surprising as it occurs for times long compared
to any correlation time in the flow.

(a)

(b)

FIG. 5. Distributions of the Lagrangian particle speed U0 in the
three simulations, A (black), B (blue), and C (red), with Rayleigh
distribution fits overplotted with solid curves of the same color. In
(b) the Lagangian speed has been scaled by the width of the best fit
Rayleigh distribution σ .

These deviations in transport probability densities, from
those of a random walk, can be qualitatively understood
as follows. At very short times [Fig. 4(a)], the Lagrangian
distance traveled reflects the underlying distribution of step
sizes. The particle motions are dominated by single vortex
interactions and configurations, as the time interval is too
short (well below the Lagrangian integral time) for multiple
sequential vortex interactions or the evolution of the vortex
configuration to be important. The distribution of distances
traveled over very short time intervals thus reflects ballistic
motion with speeds sampled from the underlying Lagrangian
speed distribution. The Lagrangian speed distribution is not
necessarily Rayleigh, and often has a high speed tail (Fig. 5).
This may be due to the singular nature of the point vortex
flow we are examining, but the exact shape of the distribution
also depends on the simulation details. Somewhat counterintu-
itively, solutions with high numbers of low amplitude vortices
(such as simulation B) show more pronounced high speed
tails [Fig. 5(b)]. This likely reflects the dominance of nearest
neighbor vortex contributions in those flows [17].

The short time impulse response functions of all the
simulations can to some extent be captured by artificial
displacement time series explicitly constructed using velocity
components with the same auto and cross correlations as
those observed in the simulation data. To do this [31], the
Fourier transform of the artificial x velocity time series ũx is
determined from the Fourier transform of the autocorrelation
of the point-vortex simulation Lagrangian velocity time series
Ã as

ũx =
√

Ã eiδx , (6)

043120-5



RAST, PINTON, AND MININNI PHYSICAL REVIEW E 93, 043120 (2016)

taking the modes to have uniformly distributed random phases,
0 � δx < 2π . The Fourier transform of the artificial y velocity
time series ũy is constructed from that of ũx as

ũy = ũxe
−iδy , (7)

with the phases δy taken to be

δy = −i ln

(
C̃

Ã

)
, (8)

where C̃ is the Fourier transform of the cross correlation of the
point-vortex simulation Lagrangian velocity component time
series. By the Wiener-Khinchin and cross-correlation theorems
the final artificial velocity time series thus constructed share
the point vortex simulation Lagrangian velocity auto and
cross correlations. Importantly, however, unlike for the real
Lagrangian trajectories, the phases of the Fourier components
that make up the velocity time series in this construction are
random.

Over very short time intervals the long distance tail of the
probability density of the Eulerian distance traveled along
trajectories determined using these artificial velocity time
series is elevated over that of a random walk, as in the point
vortex simulation [Fig. 6(a)]. This is because, for these very
short times, few steps have been taken, the motions are strictly
ballistic at each time step with the distance traveled given
by the speed and elapsed time, and the underlying speed
distribution is non-Rayleigh (Fig. 5). The tail of the artificial
time series distribution falls somewhat short of that of the
Lagrangian motions in the point vortex simulation (over the
range of distance values shown in the plot) because the phase
continuity of the eddy motions in the simulation is not captured
by the random phase prescription used in the construction of
the artificial velocity components. For longer distances than
those show in the plot the tail of the artificial time series
distribution should exceed that of the simulations because
of the finite eddy size limit in the real flow (see trapping
discussion below).

The importance of the nonrandom phase to Lagrangian
motions in the point vortex simulation is even more apparent
at longer time intervals; displacement time series constructed
to share the observed velocity component auto and cross
correlations do not yield the observed P (r,t) distributions at in-
termediate and long time intervals, producing instead Rayleigh
or nearly Rayleigh random walk distributions [Figs. 6(b)
and 6(c)]. At intermediate (inertial range) times the phase
relations between the velocity components are particularly
critical to the real flow. Random vector orientations can
capture the observed auto and cross correlation of the velocity
components, as they were explicitly constructed to do in
the artificial time series, without reproducing the dynamical
trapping events which result from coherent eddy motions in
the point vortex simulations. Similarly, long-distance transport
over long time intervals depends on key flow dynamics, in this
case the time variability of the large scale flow, again only
captured in part by the auto and cross correlations.

Unlike for short and intermediate times, for which all point
vortex simulations show deviations of P (r,t) from Rayleigh,
only some of the simulations show the prominent long-time
long-distance excess [Fig. 4(c)]. Moreover, the long-time

(a)

(b)

(c)

FIG. 6. Probabilistic impulse response function P (r,t) at fixed
times (a) t = 0.01TI , (b) t = TI , and (c) t = 20TI for Lagrangian
trajectories extracted from the point vortex flow (black curves)
and trajectories calculated from velocity component time series
constructed to share the same auto and cross correlations as those
observed in the point vortex simulations (red curves). For clarity only
the results for simulation A are plotted.

excess does not depend directly on the vortex merger scheme
employed; it is found in simulations both with and without an
inverse cascade. We find instead that the enhanced distribution
tail at long times requires the presence of a spatially and/or
temporally intermittent large scale flow. A constant and
uniform large scale flow adds only a Galilean invariant mean
to the particle trajectories, with the net effect on the Eulerian
distances traveled depending only on the trajectory directions.
The variance of the resulting distribution increases but the
distribution shape is unaltered, remaining Rayleigh at long
times as in simulation B [Fig. 4(c), blue]. In that simulation the
distribution approaches the Rayleigh distribution from below
as the time interval increases because vortex trapping, which
dominates at intermediate times, becomes increasingly less
likely for times longer than the Eulerian integral time and the
Lagrangian trajectories become increasingly autodecorrelated.
If the large scale flow is spatially or temporally intermittent,
however, Lagrangian particles each sample the large scale
flow for different amounts of time along their trajectory

043120-6



TURBULENT TRANSPORT WITH INTERMITTENCY: . . . PHYSICAL REVIEW E 93, 043120 (2016)

thus effectively sampling underlying Rayleigh distributions of
different widths. Summed together these yield the distribution
with the characteristically elevated tail seen in some of our
simulations at long times [simulations A and C, Fig. 4(c), black
and red]. Equivalently the enhanced long-time long-distance
tail can be artificially reproduced by a series of random walks
which differ in the total number of steps taken. We explicitly
illustrate the dependence of the long-time enhancement on the
large scale flow variability realized in simulation A in Sec. IV C
below.

The deviations of P (r,t) from the two-dimensional random
walk distribution described above can be captured using a
highly simplified scalar transport model, one that relies on
measurable properties of the flow, not flow simulation, to
duplicate the probabilistic Green’s function of the real flow. In
order to construct such a model the key dynamics discussed
above must be accounted for.

IV. STATISTICAL TRANSPORT MODEL

The goal is to model the scalar transport probabilistic im-
pulse response function P (r,t) using only measurable statistics
of the flow, so that the expectation of the scalar concentration
can be calculated for any source distribution without explicit
computation of the flow itself. The challenge is that two-
dimensional random walk processes with finite variance step
size distributions (as the Lagrangian velocity distribution in our
point-vortex simulation) robustly yield Rayleigh distributions
for P (r,t). Correlations between velocity components, not
random phases, are thus required, but even then purely circular
motions (the underlying dynamics of a point vortex flow)
are indistinguishable from random vector orientations if eddy
trapping is not accounted for.

We find that a simplified yet accurate model of scalar
transport in a point vortex flow can be constructed using
just two components: an eddy constrained random walk and a
spatially or temporally intermittent large scale flow. The first
of these is determined by the statistical properties of the flow,
while the second requires explicit knowledge of the amplitudes
of its lowest wave number components, ([kx,ky] = [0,0],
[0,1], [1,0], and [1,1]). With these ingredients P (r,t) can be
reconstructed.

A. Eddy constrained random walk

To statistically capture in a random walk formulation
the underlying velocity component phase relationships and
temporal continuities, we take the flow geometry to be circular
motion and thus the Eulerian distance dr traveled after each
step as the chord of a circle traveled by the Lagrangian parcel

dr = 2rt | sin θ |, (9)

where rt is the radius of the circular trapped motion and θ is
the central angle given by

θ = U0

rt

tt . (10)

Here U0 is the magnitude of the Lagrangian velocity, and the
circular motion is taken to persist for a time tt . We note that
a random walk constructed from such steps is Markovian, in

the sense that each step is independent of the previous as the
particle moves from one eddy to the next, but importantly,
memory is introduced into the random walk at the eddy scale.
Since the motions are circular, the acceleration of the fluid
parcel is autocorrelated within each trapping eddy, though
memory is lost between steps.

Given distributions of eddy size P (rt ), trapping time P (tt ),
and Lagrangian particle velocity P (U0), we construct random
walk trajectories from the motions induced by successive
uncorrelated eddies each entered with a random phase.
Equivalently the random walk is constructed as a sum over
steps of length dr determined from Eqs. (9) and (10) taken in
random directions after time tt . The result is a continuous-time
random walk (e.g. [32–34]), but one in which the step size
and time delays are nonlinearly related [Eqs. (9) and (10)]
and determined from distributions of physically motivated
variables: eddy size, circulation speed, and trapping time.
Remarkably, the trap radius rt (eddy size), Lagrangian velocity
U0 (circulation speed), and trapping time tt that determine dr

can be chosen independently from simple physically motivated
distributions, and when the resulting constrained random walk
is combined with advection by the lowest wave number
components of the flow, the trajectories yield the correct
probabilistic Green’s function P (r,t).

Motivated by previous work [21], we take the trapping time
distribution P (tt ) to be uniform between zero and the Eulerian
integral time. The Eulerian integral time is measured by an
exponential fit to the autocorrelation of one component of the
velocity at fixed position in the point vortex simulation. This
sets that the longest possible time a Lagrangian particle can
remain trapped in an eddy to be equal to the characteristic
eddy lifetime. Further, we take P (U0) to be that observed
in the point-vortex simulation or, if P (r,t) is not needed at
very short times, the speed distribution can be approximated
by a Rayleigh fit to its core (Fig. 5) and only the width
of the distribution is needed. Finally, the eddy trap size is
taken to be distributed as length in Kolmogorov turbulence
P (rt ) ∼ r

4/3
t for rt � L/2 = xmax/4, where L is Eulerian

integral length; larger higher-energy eddies are the dominant
trapping structures. One-half the integral length is chosen for
the largest eddy in the eddy constrained random walk because
a Lagrangian particle cannot escape the largest eddy in the
domain. Eddies of size L = xmax/2, the lowest wave number
harmonic mode of the domain, are treated along with any
mean flow as large scale motions upon which the random
walk is superimposed. We note that imposing a small eddy
cutoff (at the Kolmogorov scale) had no noticeable impact on
the solutions and was omitted for simplicity.

B. Low wave number contributions

In addition to the eddy constrained random walk described
above, the statistical transport model accounts for domain
scale motions. These are modeled as contributions that depend
on the Eulerian position of the Lagrangian parcel; the eddy
constrained random walk is superimposed on the largest scale
motions in the domain, with the local parcel velocity equal to
the sum of the random walk velocity and the lowest spatial
wave number component of the turbulent flow at the parcel’s
Eulerian position.
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(a)

(b)

(c)

FIG. 7. Vector plot of the flow reconstructed from the time
average amplitudes of the smallest wave number harmonic modes (a),
with arrow positions chosen randomly and arrow lengths indicating
relative flow speeds. The magnitudes of the complex amplitudes of
the lowest nonzero wave number modes, in (b) ux [kx,ky] = [0,1]
(gray) and [1,1] (black) and in (c) uy [kx,ky] = [1,0] (gray) and [1,1]
(black), are plotted as a function of time t .

While typically this large scale flow would be readily
observed or extracted from a numerical solution, determining
it in our case requires significant computational effort. The
n-body point vortex contributions must be reconstructed on a
grid, Fourier transformed, and filtered. With many hundreds
of individual vortices contributing to the velocity at every
point in the domain (Fig. 1) and hundreds of thousands of
time steps computed over the course of each simulation, this
reconstruction of the discretized velocity field from the n-body
point-vortex solution is quite expensive. We present here the
results for simulation A only, as reconstructed on a 5122

grid evaluated every 10 time steps (with the step size in the
simulation equal to 0.01 time units on the plots). The same
calculations were done for simulation C, which does not show
an inverse cascade, and support the conclusions we present.

The finite resolution of the low wave number reconstruc-
tion, compared to that of the n-body point vortex flow itself,
means that in modeling P (r,t) (Sec. IV C below) the large scale
flow is well resolved over long times and large scales but less
so over short times and lengths. The full effects of this on the
statistical transport model are not completely understood and
may contribute to the difficulty the model has in obtaining the
correct distribution core widths at short and intermediate time
scales. Inadequate resolution of the large-scale flow over short
time scales leads to an overestimation of the distance traveled
over those times since flow variations not captured could
facilitate cancellation by directional changes. The magnitude
of this effect may however be too small to explain model
difficulties below.

The large scale flow in simulation A evolves significantly
with time. Figure 7 illustrates the structure and variability of
the largest scale flows in the domain. Shown are the magnitudes
of the complex amplitudes of the ux velocity [kx,ky] = [0,1]
and [1,1] modes and the uy velocity [kx,ky] = [1,0], and [1,1]
modes as a function of time, along with a vector plot of the flow
reconstructed from the the time average amplitudes of those
modes. The remaining largest scale modes ([kx,ky] = [0,0],
and [1,0] for ux and [kx,ky] = [0,0], and [0,1] for uy) have
lower amplitudes by an order of magnitude or more. The

(a)

(b)

(c)

FIG. 8. Two component model of scalar transport. The black
curves are cuts through the probabilistic impulse response function
P (r,t) of simulation A at fixed times t = 0.01TI , TI , and 20TI (as in
Fig. 4). The red curves plot the probability densities of the Eulerian
distance traveled by the constrained random walk superimposed with
random orientation on the temporal average large scale flow in the
simulation [Fig. 7(a)]. These have been scaled by the point-vortex
flow Rayleigh distribution fit widths (solid curves). The gray curve
in panel (a) plots the short time distribution if only the Rayleigh fit to
the Lagrangian velocity core is used in the constrained random walk.
The blue curve in panel (c) shows the model results when the actual
temporally evolving large-scale component of the point vortex flow
(rather than its temporal average) is employed in the model.

inverse energy cascade, and the consequent secular increase
in the large scale flow amplitude discussed earlier (Sec. II),
is clearly apparent in the amplitudes of the ux [kx,ky] = [0,1]
and the uy [kx,ky] = [1,0] modes. Perhaps more importantly
for modeling the transport probabilities, the amplitudes of
the large scale modes show temporal variability down to
the resolution of the Eulerian velocity reconstruction. The
large-scale eddies evolve in amplitude and form even over
quite short time intervals.
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C. Model results

Figure 8 illustrates how these simple components combine
to reproduce the probabilisitic Green’s function P (r,t) of the
full point-vortex turbulent flow analog. The black curves are
cuts through the probabilistic impulse response function of
simulation A at fixed times t = 0.01TI , TI , and 20TI (as in
Fig. 4). The red curves plot the probability densities of the
constrained random walk distances from the origin after the
same elapsed times. One million constrained random walk tra-
jectories were constructed as described above, superimposed
with random orientations on the average large scale flow of
Fig. 7(a). Since the average flow is taken to be steady, its
influence may be overestimated (as discussed in Sec. IV B),
and the distribution widths have been scaled by factors of
about 0.95, 0.88, and 0.74 for t = 0.01TI , TI , and 20TI ,
respectively. These scalings are the ratio of the full point-vortex
and two-component model Rayleigh distribution fit widths.

The scaled steady model distribution shapes fit the data
at short and intermediate times very well. As discussed
previously (Sec. III), the non-Rayleigh tail of the short time
distribution [Fig. 8(a)] results directly from the tail of the
Lagrangian speed distribution (Fig. 5). If only the Rayleigh
fit to the low speed core is employed in the constrained
random walk component of the model, the enhanced short-time
long-distance travel tail disappears. This is illustrated in
Fig. 8(a) in gray. We note that whether the full Lagrangian
speed distribution or the Rayleigh fit to it is used has very
little effect on the probability densities at later times, and
model results using the full distribution are plotted in Figs. 8(b)
and 8(c).

At intermediate time intervals, those for which trapping
is important, the probabilistic Green’s function of the point
vortex flow is well captured by the simplified model. We
note in particular that the flattened shape of the distribution
core is reproduced [Fig. 8(b) inset] along with the tail deficit.
This core shape is quite difficult to obtain, and results here
only by the combination of the two components; both the
constrained random walk and the large-scale Eulerian flow are
required. This is likely why the intermediate time distribution
of simulation B, the simulation for which there is little evidence
of the influence of a large-scale flow at long times, shows little
distortion in its core [Fig. 4(b), blue curve].

Over time intervals long compared to the Eulerian integral
time, the steady mean large-scale flow does not capture
the real flow behavior, and the model pdf does not match
the probabilistic impulse response of the point vortex data
[Fig. 8(c), red]. As discussed previously the elevated tail at
these late times reflects the nonsteady nature of the large-scale
flow. We illustrate this by utilizing the reconstructed flow
time series directly. Starting each constrained random walk
at a uniformly random location and time, we advect the
particle based on the evolving amplitude of the low wave
number modes (the mean and lowest harmonic) at its Eulerian
position in the point vortex solution. Despite the somewhat low
temporal resolution of the flow evolution (necessitated by the
expense of the Eulerian flow reconstruction), when the large
scale flow is accounted for in this way P (r,t) is reproduced.
This is illustrated by the blue curves in Fig. 8(c). The long-time

large-distance excess can be reproduced by introducing the
observed time variability of the large scale flow.

The same was not true for the short and intermediate
time transport pdfs. At those shorter times the reconstructed
low wave number flow, when combined with the constrained
random walk in the transport model, had too large an amplitude
to reproduce the probabilistic impulse response. It is unclear
why this is the case or why at these shorter times using the time
averaged large scale flow in the model reproduces the distribu-
tion shapes extremely well but not their widths without scaling.
These issues may be related to the mixed Eulerian-Lagrangian
formulation of the two component model; the largest eddy in
the domain is not exactly equivalent to the lowest wavenumber
Eulerian component as we have assumed in the model.
Resolution of these difficulties remains the focus of current
research, but it is notable that the model could potentially
inform a true parameterless large-eddy subgrid model of scalar
transport. It requires only the observed amplitude evolution
of the lowest wave number modes (the mean and the lowest
harmonic) and measurable statistics of the smaller scale flows
(used in a constrained eddy to eddy random walk) to reproduce
the scalar transport probabilistic impulse response function.
With this in hand, and for any given initial source distribution,
the expectation value of a scalar concentration at any location
in space and time could then be predicted.

V. CONCLUSION

We have demonstrated for a turbulent analog flow that,
while the expectation value of the Eulerian distance traveled
scales ballistically at short times and diffusively at long,
the full probability density of the Eulerian distance traveled
along Lagrangian trajectories deviates from that of a random
walk and therefore scalar transport cannot be treated as a
diffusion process. We have interpreted the observed deviations
from random walk behavior in terms of small-scale flow
intermittency and large-scale flow variability, and modeled
the effects using two flow components: measured amplitudes
of the lowest wave number modes and a constrained random
walk based on successive vortex trapping. The later depends
only on independently sampled distributions that describe
successive independent trapping events: a Kolmogorov eddy
size distribution, uniformly distributed trapping times, and
a Lagrangian speed distribution that for all but the shortest
time intervals can be taken as Maxwellian (Rayleigh in two
dimensions).

Preliminary work shows that significant deviations from
random walk distributions also occur for the Eulerian distance
traveled by Lagrangian particles in fully nonlinear simulations
of three-dimensional homogeneous isotropic turbulence. In
such simulations the Lagrangian speed distribution is nearly
Maxwellian so no deviation occurs at the shortest time
intervals, but at intermediate times a similar deficit in long
distance travel to that observed in the point-vortex flow is
found. The deficit differs somewhat in form because account
must be taken of motions parallel to the underlying randomly
oriented vortex filaments in addition to the trapping motions in
the planes perpendicular to them. As in the point vortex flow,
at long times (longer than the Eulerian integral time) the three-
dimensional turbulence simulations show a long-distance
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excess that depends on the presence of an unsteady large-scale
flow component. These similarities suggest that the scalar
transport probabilistic impulse response function P (r,t) for
three-dimensional homogeneous isotropic and incompressible
turbulence can be modeled in a way similar to that presented
here, and that the expectation value of a scalar concentration in
such turbulence can be predicted, given a source distribution,
based exclusively on the amplitude of the lowest wave number
modes and readily measurable statistics of the flow.

The success achieved in quantitatively reproducing the
transport behavior of the turbulence analog flow is noteworthy.
The eddy based constrained random walk description captures
fundamental turbulent intermittency effects that reduce long-
distance transport over inertial range time scales. It does so by
incorporating essential velocity phase relationships into the
statistical description of the step sizes and durations, thereby
capturing the dynamics of vortex trapping. The enhancement
of long-distance transport at long times is also captured,
in this case by including the nonstationarity of the flow at
the largest scales. These distribution tails play an important

role in risk assessment, and the model potentially provides
a way to compute scalar transport probabilities that could
be used instead of solving directly for particle motions. The
fluid equations must still be solved (or the flow observed),
but only to obtain the statistics of the flow, the eddy size,
trapping time, and Lagrangian velocity distributions, and
possibly the largest scale flow amplitudes if they are time
varying. Once these are obtained, the expectation of the scaler
concentration at any location and time can be computed from
the modeled transport probability distribution function given
any source distribution. Similar modeling of the concentration
variance requires that the generalized and time reversed pair
dispersion probability density P (x,x,t,t |x1,x2,t1,t2) can simi-
larly be reconstructed base on the presumed underlying eddy
dynamic.
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