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� Abstract
Cellular functions emerge from the collective action of a large number of different pro-
teins. Understanding how these protein networks operate requires monitoring their com-
ponents in intact cells. Due to intercellular and intracellular molecular variability, it is
important to monitor simultaneously multiple components at high spatiotemporal reso-
lution. However, inherent trade-offs narrow the boundaries of achievable multiplexed
imaging. Pushing these boundaries is essential for a better understanding of cellular proc-
esses. Here the motivations, challenges and approaches for multiplexed imaging of intra-
cellular protein networks are discussed. VC 2016 International Society for Advancement of

Cytometry
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INTRODUCTION

UNDERSTANDING cellular processes requires identifying the involved biochemical

components, finding out how these components affect each other and inferring how

such causality network gives rise to functionality (1,2). The intracellular components

conducting and regulating cellular functions include proteins, as well as lipids (e.g.,

phosphatidylinositol 3,4-bisphosphate), ions (e.g., Ca21), small inorganic molecules

(e.g., H2O2), small organic molecules (e.g., retinoic acid), and RNAs (e.g., micro-

RNAs) (3–8). These components can affect each other via direct interactions causing

changes in their levels and states. In the case of a protein, the state attributes include

its level, post-translational modifications (PTMs), conformation and interactions.

Ultimately, such attributes have to be monitored for all the key components of a pro-

tein network in order to resolve how it works. However, it is insufficient to measure

these parameters one by one in different cells, since considerable molecular variabili-

ty exists between cells. One kind of cell-to-cell variability is between different types

of cells within the same organism (e.g., fibroblasts, epithelial cells, different types of

leukocytes, and cancer cells) that differentiated to have distinct gene expression pro-

files (9,10). Also included in this kind of variability are cells at different stages along

a developmental lineage (11). Another kind of variability is between cells of the same

type having different protein levels and states in response to different environmental

conditions or different stages of a cellular process such as proliferation or adhesion.

Such variability is commonly referred as extrinsic noise. Finally, cell-to-cell variabili-

ty is also generated by intrinsic stochastic fluctuations (hence termed intrinsic noise),

mainly in gene expression levels (12,13). Importantly, cell-to-cell variability at the

molecular level can alter qualitatively the properties of a given protein network and

consequently the cellular phonotype (13–17). Therefore, monitoring one component

per cell would not be sufficient for uncovering the different states of the protein net-
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work nor what underlies the distinct cellular behaviors. In

order to overcome and utilize this diversity, it is essential to

measure multiple components within the same cell (18–21).

A powerful method to quantify multiple components per

cell is flow cytometry (FCM), in which cells in a fluid stream

are measured one by one as they flow through a beam of light

(22–24). Using just the scattering of light, multiple properties

can be measured such as their size and granularity. More

importantly, with the aid of fluorescently labeled specific anti-

bodies, the levels of multiple proteins can be quantified in sin-

gle cells (25). FCM can also quantify per cell the levels of

multiple PTMs, such as phosphorylation, using specific anti-

bodies (26,27). Thus, FCM can be used to quantify changes in

the state of multiple proteins in response to stimuli or differ-

ences in the state of proteins between cell populations

(28–30). Importantly, in FCM the fluorescence signal is inte-

grated over the whole cell. Therefore FCM excels at measuring

with a good signal to noise ratio a large number of single cells

in a very short time. Nevertheless, the spectral width of avail-

able fluorophores poses a practical limit to the number of

components that can be simultaneously measured by FCM.

Tandem dyes, consisting of a covalently bound F€orster reso-

nance energy transfer (FRET) donor fluorophore (e.g., allo-

phycocyanin) and acceptor fluorophores, enable to achieve a

variety of Stokes shifts between the excitation and emission

spectra. Thus, tandem dyes facilitate the detection of multiple

components using one excitation laser wavelength (31–33).

Phycoerythrin (PE) and allophycocyanin (APC) are being

commonly used as donor fluorophores in these tandem dyes

due to their brightness (32,34,35). The usage of spatially sepa-

rated excitation beams further facilitates the multiplexity in

FCM. Due to its multiplexity and throughput, FCM pioneered

quantification of multiple components in single cells. Still,

due to the spectral overlap between fluorophores, the FCM

multiplexity is currently limited to around 18 different com-

ponents—proteins or phosphorylation states (36). Mass

cytometry overcomes the spectral limitation of FCM by using

time-of-flight mass spectrometry, instead of fluorescence

measurements, to quantify the abundance of multiple compo-

nents in single cells (37–48). In this technique, antibodies

which are linked to rare earth metal isotopes (metal tags) are

used to label the proteins of interest and the cells are nebulized

one by one to mass spectrometric analysis. State-of-the-art

mass cytometers can distinguish up to 100 different metal

tags, however, their multiplexed implementation is practically

limited by the number of tags that are available in high purity,

currently around 40 (37,44,45).

Along the signal-to-noise advantage in FCM and mass

cytometry, achieved by whole-cell signal integration, comes

inevitably a limitation—the lack of spatial information. Only

limited spatial information could be derived by FCM and only

in case that the labeling is compartment-specific, particularly

monitoring the surface levels of proteins using cell imperme-

able labels. Therefore, FCM and mass cytometry are mostly

valuable for studying protein networks in cases where changes

in protein localization do not take place or at least are not

essential for the operation of the network. However, in many

cases the spatial organization of proteins and its changes in

response to signals are critical for the function of intracellular

protein networks (49). First, in steady-state the spatial distri-

butions of protein levels and activities is inhomogeneous

within the cell and dynamically maintained far from equilib-

rium to form intracellular localization patterns needed for the

cell functions. Furthermore, signals rapidly change the steady-

state spatial patterns of many proteins and activities within

the cell (50). For example, the activity of proteins can vary

between the cytoplasm and the nucleus as well as between the

front and rear edges of a migrating cell. Similarly, the molecu-

lar composition of intracellular structures and organelles can

vary within an individual cell (51–55). Such spatial organiza-

tion of protein networks within a cell can change rapidly in

response to cues, as a key mode of signaling, information

processing, conceiving spatial information and generating

spatial patterns (49,56,57). Therefore, for revealing how pro-

tein networks operate their components should be monitored

at high spatial and temporal resolutions within the cells.

Importantly, measuring one component per object (i.e., a

structure or an organelle) cannot reveal the compositional

diversity between them. Therefore, multiplexed imaging is

required in order to monitor the levels of multiple compo-

nents at subcellular resolutions.

A method termed imaging mass spectrometry enables

imaging high number of proteins and their phosphorylation

states in tissues. In this approach, spatial resolution is

achieved by localized sampling of a tissue specimen with an

ionizing laser beam (58–63). The resulting ions are transferred

to the mass spectrometer, for the identification of the molecu-

lar content in the sampled spot. Subsequently, a next spot at a

defined distance in this specimen gets equivalently sampled

and analyzed, and so on repeatedly till the whole area of inter-

est is raster-scanned. In addition to the unprecedented power

of imaging mass spectrometry in quantifying a large number

of components, it has a critical advantage that it does not

require specific labeling of the components. On the other

hand, a current drawback of imaging mass spectrometry is its

low spatial resolution (typically> 10 mm), in comparison to

light-based imaging. Therefore, although mass spectrometry

can identify hundreds of components in a pool of intracellular

structures upon fractionation or enrichment, it currently can-

not achieve this for individual structures, such as cell–matrix

adhesion sites (64,65). In addition, imaging mass spectrome-

try is destructive for the sample and hence inherently cannot

be used to follow dynamic processes in the same cell.

Fluorescence microscopy enables the imaging of multiple

components (referred hereafter as multiplexed imaging) in

live cells at high spatial and temporal resolutions. As such, it

is an essential tool for studying complex intracellular proc-

esses. Multiplexed imaging enables not only overcoming inter-

cellular and intracellular heterogeneities in molecular content,

but also resolving these heterogeneities spatiotemporally and

utilizing them as a source of information. Furthermore, multi-

plexed imaging facilitates sensitive coupled comparisons

between the dynamics and spatial distributions of two or

more components. A coupled comparison between
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components in the same object (cell, organelle, a structure, or

a pixel) enables to detect temporal and spatial differences that

are smaller than the abovementioned inter- and intracellular

variability. In this review we discuss the fundamental chal-

lenges for multiplexed imaging and the current approaches to

address them.

FUNDAMENTAL TRADE-OFFS IN MULTIPLEXED IMAGING

The term “multiplexing” was coined for telecommunica-

tion systems that transmit several messages via the same chan-

nel (66). Since this term became widely adopted also for the co-

imaging of multiple components in cells, it is noteworthy

explaining the analogy. The first step in multiplexing is encod-

ing the different input messages into one message in the com-

munication channel by a device termed muxer. Following

transmission of this message, a demuxer retrieves from it the

multiple original messages (Fig. 1). In multiplexed imaging, the

equivalent of the muxer are the labeling tools used to label dif-

ferent cellular components with different fluorophores. Thus,

the levels of these components in each pixel are encoded in one

mixed message—the integrative excitation and emission spectra

(Fig. 1). The demuxer in multiplexed imaging consists of the

optical and computational instrumentations that derive the

level of each labeled component from the integrative spectra.

Beside the terminology aspect, conceiving co-imaging of multi-

ple components as a multiplexing process provides a general

formulation of the challenge and types of solutions. Accord-

ingly, the fundamental challenge in multiplexed imaging is how

to encode information about the levels of multiple components

using a single medium, light, with specificity, sensitivity, spatio-

temporal resolution, and sufficient throughput (67).

Spectrally tunable excitation and detection is the first

important aspect for achieving multiplexed imaging. Light

emitting diodes (LED) illumination, combined with optical

filter sets to select and isolate the excitation and emission

light, are broadly used to achieve multiplexed imaging. Two

types of filter sets provide alternative solutions to achieve

multiple imaging channels, named after their originators.

“Pinkel” filter set consists of multiple single-bandpass excita-

tion filters and a single multibandpass emission filter. Such fil-

ter sets enable high-speed multiplexed imaging, as only the

excitation filters have to be changed in a filter wheel while the

multiband beamsplitter and emission filter are fixed. “Sedat”

filter sets consist of multiple single-bandpass excitation filters

and multiple single-bandpass emission filters. These filter sets

can provide the highest signal-to-noise ratio for a given com-

bination of fluorophores, while still enabling rapid sequential

acquisition of each of the color. QUAD-Sedat or QUAD-

Pinkel filter sets are optimized for multiplexed imaging of

blue, green, orange, and red light emitting fluorophores.

Penta-Sedat or Penta-Pinkel filter set enables multiplexed

imaging of blue, green, orange, red, and infrared emitting flu-

orophores. Beside filters with fixed optical properties, spectral

filtering can be achieved also with acousto-optical tunable fil-

ter (AOTF) and acousto-optic beam splitters (AOBS) that use

radiofrequency sound waves to diffract and shift light. AOTF

enables to control the range of transmitted light wavelength

via changing the frequency of sound waves. Similarly to

AOTF, liquid crystal tunable filters (LCTF) enable to control

the wavelength range of transmitted light via changing the

applied electric potential. Both AOTF and LCTF provide a fast

and flexible mean to spectrally control the light path, thus to

design optimal acquisition setups for multiplexed imaging. In

comparison, AOTF enables a faster spectral selection while

LCTF provides a better photon collocation and thus a better

signal-to-noise ratio.

The photophysical properties of fluorophores that are

directly relevant for multiplexed imaging are their spectral

attributes, as they determine the capability to obtain a specific

signal from a given fluorophore in the presence of other given

fluorophores in the sample. The larger is the separation

between the excitation or emission spectra of the two fluoro-

phores, the larger signal can be collected from them without

bleed-through. However, as we increase the number of

Figure 1. Imaging and multiplexing. The concept of multiplexing refers to the transmission of multiple messages via a single communication

channel. In this terminology, the section that convolves the multiple messages onto one channel is called muxer, while demuxer is the section

that after transmission retrieves the original messages. Accordingly, multiplexed imaging refers to the imaging of multiple components in the

same cell via a single channel—the light spectrum. The messages are the levels of different components in each resolvable voxel in the cell.

These messages are encoded by labeling the components with fluorophores, which generates for each pixel an integrative, mixed, emission

and excitation spectra. From these mixed spectra, the relative levels of each component in each pixel are resolved by optical (e.g., filters) or

computational (e.g., linear unmixing) approaches. [Color figure can be viewed in the online issue which is available at wileyonlinelibrary.com]

Review Article

Cytometry Part A � 00A: 00�00, 2016 3



components to be co-imaged, the spectral overlap between the

fluorophores labeling them inevitably increases. Sequential

imaging, that is, exciting and detecting each fluorophore one

after the other, can be used to reduce crosstalk at the expense of

a longer imaging time. But this only mildly mitigates the prob-

lem for highly spectrally overlapping fluorophores. Another way

to cope with spectral overlap is to narrow-down the spectral-

detection range of emitted light wavelengths collected by the

detectors for each fluorophore, thus to avoid bleed-through.

Similarly, a sub-optimal wavelength for the excitation of a given

fluorophore might be used in order to decrease dramatically the

degree of excitation of the other used fluorophores. Both of

these solutions cause a reduction in the amount of emitted pho-

tons collected from each fluorophore for a given dose of excita-

tion light, in comparison to the optimal acquisition setups if

that fluorophore would had been used alone.

Additional photophysical properties of fluorophores

important for multiplexed imaging are the extinction coeffi-

cient and quantum yield. The extinction coefficient (e) is a

wavelength-dependent property that determines its capability

to absorb light. Measured at the peak of the extinction spec-

trum, its value ranges from 103 to 105 in Mol21 cm21 for typi-

cal fluorophores used in fluorescence microscopy, but can be

larger than 106 Mol21 cm21 for quantum dots (68). While e is

related to the probability to absorb excitation energy, the

quantum yield (QY) indicates the probability that such energy

is emitted as photons. A higher QY implies that the fluores-

cent protein provides a higher number of emitted photons per

a given excitation dose, thus may provide a sufficient signal

even with sub-optimal excitation and emission setups. Impor-

tantly, a lower QY usually leads to a larger generation of reac-

tive oxygen species, which affect signaling and cause

phototoxicity (69–72). Together, the extinction coefficient and

QY determine the brightness of the fluorophore. However, it is

convenient to define the effective brightness for a fluorophore

m in a particular imaging channel n as:

bm;n 5

ð1
0

LnðkÞUnðkÞ emðkÞ dk

� �

3 QYm

ð1
0

FmðkÞVnðkÞDnðkÞ dk

� � (1)

where the first and last terms are related to the probability of

exciting the fluorophore and detecting its fluorescence, respec-

tively [Eq. (1)]. In more detail, and related to the imaging

channel n, LnðkÞ is the spectrum of the light source (e.g.,

lamp, laser), DnðkÞ is the spectral sensitivity of the detector

(e.g., camera, photomultiplier tube), UnðkÞ and VnðkÞ are the

transmission spectra of the filters in the emission and excita-

tion paths, respectively (taken in a generic sense, as the spec-

tral filtering might be achieved with other elements such as a

monochromator or AOTF). Related to the fluorophore, and

in addition to the previously described e and QY, FmðkÞ
describes the emission spectrum.

Another important parameter for multiplexed imaging is

the photostability of the fluorophores. A more photostable

protein would tolerate better a higher dose of excitation light

before getting gradually and irreversibly bleached. Therefore,

higher photostability enables to compensate for the sub-

optimal collection of emitted photons in multiplexed imaging

by increasing the intensity of the excitation light. Photostabil-

ity is particularly important when imaging dynamic processes,

as otherwise significant photobleaching might occur before

the monitored process is concluded. Another more subtle,

and therefore obstructing, effect of poor photostability is the

differential photobleaching of distinct species, leading to inac-

curate determination of the stoichiometry over time.

The signal in each pixel (i, j) for a given channel n is the

product of the brightness and the concentration of fluorescent

molecules:

Sn;i;j 5
X

m

Cm;i;jbm;n (2)

Equation (2) illustrates the challenge to achieve multicolor

imaging. The effective brightness is potentially not null for all

combinations of fluorophores and imaging channels. In other

words, for a cell transfected with green and red fluorescent pro-

teins (e.g., GFP and RFP) and an imaging system with two

channels (named Green and Red), the fluorescence of GFP will

be visible in the red channel (i.e., brightness bGFP;RED > 0).

An identity between imaging channels and fluorophores

is achieved only if bm;n is diagonal (i.e., have non-null values

only when m5n). In such a case, imaging of each component

does not contain any bleed-through from the other channels

and therefore the acquired image can be directly interpreted

as the intensity levels of this component. In cases where bm;n

is not diagonal, computational methods to extract the

“fluorophore signal” from the “imaging channel signal” have

to be used. Such computational approaches are called spectral

unmixing (73–78) and involve inverting the problem to

obtain Cm;i;j from bm;n and Sn;i;j. In other words, finding

which combinations of fluorophores sum up to the measured

spectra in a given pixel. The possibility to perform this calcu-

lation is directly related to the ability to invert the matrix

bm;n—that is, a unique concentration vector C will be

obtained if the equations represented in matrix b are linearly

independent. The most widely used implementation of spec-

tral unmixing involves determining first the spectral finger-

print (or signature) of all fluorescent species using a set of

pure samples, that is, samples labeled with a single fluoro-

phore. By measuring them with the same imaging channels

used in the experiment, the matrix bm;n can be experimentally

determined. The same can be achieved without the need of

pure sample, if pixels containing signal from only one fluoro-

phore are present and identifiable in the image. Finally, the

abundance of the different fluorophores in each pixel Cm;i;j

can be then obtained by using any of the established algebraic

methods such as inverting bm;n. This calculation becomes

more sensitive to noise and prone to errors as a function of

the number of fluorophores, their spectral overlap, their spa-

tial overlap and the differences in their local relative abundan-

ces. In such cases, inverting bm;n might yield meaningless

negative concentration values. Therefore, bounded minimiza-

tion methods, such as non-negative least square, are in many
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occasions more appropriate. These methods are also conven-

ient when the number of channels is larger than the number

of fluorophores, since such a system is over-determined and

might be inconsistent due to the presence of noise. In certain

cases, the spectral fingerprint of one or more species cannot

be easily determined independently in pure samples. This is

quite common in remote sensing applications but can also

occur in fluorescence microscopy with autofluorescence. In

such cases, methods that infer the spectral fingerprint from

the data, such as principle component analysis and supervised

classification analysis, could be used (79,80). Notably, analyz-

ing simultaneously, in a single model, spectral mixing, optical

blurring and detection noise has been demonstrated to pro-

vide better sensitivity and accuracy in comparison to sequen-

tial considerations of these aspects (81).

An important practical consideration in choosing

between the spectral handling approaches for multiplexed

imaging is whether the goal is to identify spatially separated

structures (such as distinct chromosomes in metaphase or dis-

tinct organelles) or alternatively to quantitatively compare the

molecular content of structures (such as adhesion sites). In

the former case, each object (e.g., a chromosome) retains its

spectral signature, which could be resulting from a single fluo-

rophore or from several fluorophores with a relatively fixed

stoichiometry. Since these objects are spatially separated, their

signatures do not mix during detection and therefore many

objects with distinct signatures could be discriminated and

identified with high accuracy and sensitivity. Thus, for exam-

ple, spectral karyotyping (SKY) and multiplexed fluorescence

in-situ hybridization (M-FISH) can identify all chromosomes

and many chromosomal aberrations using combinatorial

labeling scheme combined with either Fourier spectroscopy or

filter-based spectra measurements, respectively (82–87). In

general, multispectral imaging approaches are more powerful

in differentiating between spectral signatures, as they measure

the whole spectra rather than sampling a few number of

regions of it. However, if the multiplexed imaging goal is to

quantitatively compare and monitor the molecular composi-

tion of structures, then there are no discrete spectral signa-

tures but rather mixed spectra that must be accurately

unmixed to retrieve the level of each fluorophore in each pixel.

As abovementioned, this task becomes less and less feasible

the more fluorophores are being used or the more incompara-

ble is there levels in a given structure. Therefore, in practice,

multispectral imaging is more suited for imaging a large num-

ber of components that are mostly non-overlapping within

the cell, or different types of structures having each a rather

fixed stoichiometry of the labeled components. On the other

hand, for imaging multiple components that are co-localized

within the same intracellular structure, it is often required to

use fluorophores that can be spectrally separated pre-

acquisition.

As can be concluded, multiplexed imaging has trade-offs

with the signal to noise ratio—either because of reducing the

number of collected photons to avoid bleed-through or

because of error levels in calculating the contribution of each

fluorophore to the mixed spectrum in each pixel. Therefore, it

is challenging to combine multiplexity with other aspects of

imaging which by themselves also reduce the signal to noise

ratio: spatial resolution, temporal resolution, and throughput

(Fig. 2a). A higher spatial resolution implies a lower copy

number of the label components in each resolvable area unit

and therefore a lower signal. A higher temporal resolution

implies a lower integration time, therefore a lower number of

photons and signal-to-noise ratio. This integration time is

confined not only by the required sampling rate but also by

the need to avoid bleaching, which is particularly important

in time-lapse live cell imaging. High-throughput requires fast

acquisition and therefore motivates minimization of the inte-

gration time. Different techniques set different compromise

points along the trade-offs between multiplexity, spatial reso-

lution, and temporal resolution (Fig. 2b). Some of these tech-

niques, particularly imaging-based, enable a relative freedom

in setting the trade-off points according to the particular

needs of the given experiment.

MULTIPLEXED IMAGING OF PROTEINS IN FIXED CELLS

Live cell imaging is limited by the need to label the intra-

cellular components without harming or affecting the cells.

Imaging fixed cells is not subjected to such limitation, allowing

for post-fixation and permeabilization labeling of the compo-

nents of interest. This is particularly helpful for multiplexed

imaging since it enables the use of antibodies conjugated with

organic fluorophores for the labeling of specific proteins within

the cell. The brightness and photostability of organic dyes are

in general higher than those of fluorescent proteins, thus ena-

bling to obtain images with a higher signal-to-noise ratio.

Another important advantage of immunofluorescence, in com-

parison to fluorescent proteins, is the ability to monitor directly

PTMs, for example, by using phospho-specific antibodies. Since

the activity of many proteins depends on their PTMs, immuno-

fluorescence thus enables imaging the active states of multiple

components in the same cell.

In addition to organic fluorophores, during the last

15 years quantum dots have become an important class of fluo-

rescent labels for imaging cells (88–95). Quantum dots are

semiconductor nanocrystals with several unique and useful

photophysical properties: (i) they are by far brighter and more

photostable than organic dyes and fluorescent proteins,

(ii) their emission spectra is relatively narrow and tunable,

being more red-shifted as the size of the quantum dot is bigger,

(iii) their excitation spectra is common, regardless of their

emission spectra, enabling exciting them all simultaneously

with a 405 nm laser line. Surface functionalization of quantum

dots enables to attach them to peptides and proteins, such as

antibodies (96). These properties make quantum dots valuable

for multiplexed imaging, particularly in fixed and permeablized

cells (88–90,94,96–102). Since the size of antibody-quantum

dots conjugate is considerably bigger than that of antibody-

organic dye conjugate (94), the accessibility of the former to

the target epitops within the cell should be carefully evaluated

for each particular application. The large size of quantum dots

(6–60 nm), in comparison to organic dyes (�0.5 nm) also
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challenges their applicability in live cells, as it requires their

insertion into the cell by microinjection or other techniques.

Although the photophysical properties of organic fluoro-

phores and quantum dots are in general better than that of flu-

orescent proteins for multiplexed imaging, spectral overlap is

still a limiting factor for increasing the number of co-imaged

components in fixed cells. In direct immunofluorescence, in

which the primary antibodies are directly labeled, the spectral

overlap is the main fundamental limitation for multiplexed

imaging, although in practice the limitation is often the avail-

ability of primary antibodies against the proteins of interest

that are conjugated with spectrally separable fluorophores. Mul-

tiplexed imaging using indirect immunofluorescence is limited

by the need to avoid cross-reactivity of the secondary antibod-

ies with the used primary antibodies. This is usually addressed

by using primary antibodies from different host species, such as

mouse, goat, and rabbit, and secondary antibodies that are spe-

cific to the antibodies of a given species. Therefore, the number

of components that can be co-immunolabeled is in practice

confined by the availability of primary antibodies from differ-

ent host species and of secondary antibodies that are conju-

gated with spectrally separable fluorophores. This number can

be further increased by combining immunofluorescence with

other labeling approaches, such as fluorescently tagged small

molecules (e.g., phalloidin for the labeling of actin filaments)

and genetic tagging with fluorescent proteins (53,103). In addi-

tion, multiple different primary antibodies from the same host

species can be used together by pre-complexing each of them

separately with fluorescently labeled Fab fragments that bind

their Fc domain (53). Thus for example, by combining the

abovementioned labeling approaches, multiplexed imaging of

five components of cell–matrix adhesion sites in fixed fibro-

blasts was achieved (Fig. 3) (53).

An important approach for multiplexed imaging of fixed

cells that overcomes the limitations caused by spectral overlap

is cyclic immunofluorescence (also called toponome imaging).

This approach is based on serial cycles of immunolabeling,

imaging, and photobleaching or chemical inactivation of the

fluorophore or protease-mediated antibody stripping

(104–112). Thus, the same fluorophore, or set of fluoro-

phores, can be used repeatedly to label multiple components

within the same cell. So far this approach was applied mainly

using fluorescently labeled primary antibodies, thus overcom-

ing the problem of cross-reactivity between secondary and

primary antibodies. Also, the imaged components were mostly

cell-surface ones (113–117), which makes the labeling and

washout of the unbound antibodies more feasible. In this way,

cyclic immunofluorescence can enable to image around a

hundred of different components in the same cells and tissue

(118). Noteworthy, cyclic immunofluorescence was applied

also on intracellular components, yet in a relatively low multi-

plexity (119,120). In order to broaden the applicability of

Figure 2. Imaging trade-offs. (a) The signal in imaging is the number of photons collected per each resolvable space-time unit, thus is pro-

portional to the range of wavelengths within which emitted photons are being collected (spectral integration), the size of the resolvable area

(or volume) in the sample from which emitted photons are collected (spatial integration) and the time duration during which emitted pho-

tons are collected (temporal integration). Higher multiplexing reduces spectral integration, as it imposes narrowing it down to avoid bleed-

through or using noise-sensitive spectral unmixing calculations. Higher spatial and temporal resolutions reduce the spatial and temporal

integrations, respectively. Thus, it is challenging to achieve sufficient signal levels in multiplexed imaging at high spatial and temporal reso-

lutions. (b) A qualitative comparison between different cytometry and imaging approaches according to their typical multiplexity, spatial

resolution, temporal resolution and throughput. [Color figure can be viewed in the online issue which is available at wileyonlinelibrary.com]
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cyclic immunofluorescence imaging for the study of large

intracellular protein networks, it would be important to opti-

mize labeling protocols and instrumentation for cycling the

immunolabeling of intracellular proteins. Cyclic immunofluo-

rescence offers a generic solution for multiplexed imaging of

fixed cells. Yet, it requires a large set of labeled primary anti-

bodies, long staining and washout cycles and verifying that

the accessibility of antibodies to their epitopes is retained.

LIVE CELL MULTIPLEXED IMAGING

Early imaging studies of proteins in live cells were based

on microinjecting these proteins, fluorescently labeled, into

cells (121–126). These studies monitored mostly only one

component within a cell, plausibly due to the technical diffi-

culties of purifying, labeling and microinjecting functional

proteins. The discovery and first implementations of the green

fluorescent protein as a tool in cell biology (127–131) revolu-

tionized the feasibility to monitor the spatiotemporal dynam-

ics of proteins within live cells. However, as long as only one

fluorescent protein was available, multiplexed imaging

required a combination with other techniques of labeling,

such as immunofluorescence (55). During the last 15 years,

extensive research has been conducted to isolate fluorescent

proteins from various organisms and mutate them to generate

proteins with a variety of photophysical properties (132–138).

Two-color live cell imaging with two spectrally separated fluo-

rophores can be performed without a significant loss of signal,

in comparison of using each of the fluorophores separately in

different cells (135). However, due to the relative wide excita-

tion and emission spectra of fluorescent proteins within the

total light spectrum range, a three-color live cell imaging

Figure 3. Five-color imaging of components of cell-matrix adhesion sites in fixed cells. Labeling of five different components in fixed

REF52 cells was achieved by combining different labeling approaches and fluorophores: (i) actin filaments were labeled via CPITC-

conjugated phalloidin, (ii) b3-integrin-GFP integrin was stably expressed in these cells, hence enabling the imaging of this component,

(iii) a-actinin was labeled using mouse IgM anti-a-actinin followed by an isotype-specific Cy3-conjugated goat anti mouse-IgM, antibody

(iv) paxillin was labeled with mouse IgG anti-paxillin pre-complexed with Alexa-750-conjugated Fab fragments, (iv) vinculin was labeled

by rabbit IgG anti-vinculin followed by Cy5-conjugated goat-anti-rabbit IgG. The arrows are numbered according to the order by which

the reagents were joined along the labeling procedure of each component. Note that the five components are localized largely in the

same structures, posing a bigger challenge for multiplexed imaging, in comparisons with cases in which the components are spatially

separated. Scale bar, 10 lm. Reproduced with modifications from Zamir et al. 2008 (53). [Color figure can be viewed in the online issue

which is available at wileyonlinelibrary.com]
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requires already narrowing down the range of collected emis-

sion wavelengths to avoid bleed-through. The extent of spec-

tral overlap increases dramatically with the addition of any

further fluorophore to the labeling scheme, making it practi-

cally unfeasible to image quantitatively more than four com-

ponents with sufficient sensitivity if they are all co-localized in

an overlapping manner in the same intracellular structures. Of

note, five component live cell imaging was achievable, for

components that are localized in different cellular compart-

ments and labeled with organic dyes (139).

An important complementary method for labeling pro-

teins in live cells is fusing them genetically with a tag that

binds specifically a cell-permeable synthetic dye (140–146).

The advantages of such protein chemical labeling are the supe-

rior photophysical properties of the synthetic dyes in compar-

ison to most fluorescent proteins, and their smaller size. The

firstly developed system for such labeling consists of tetracys-

teine tags and fluorescein arsenical hairpin (FlAsH) binder

(144). Several years later, resorufin arsenical hairpin (ReAsH),

a red-emitting analog of the green-emitting FlAsH, was devel-

oped (145). Since both FlAsH and ReAsH bind to tetracys-

teine tags, they cannot be straightforwardly combined with

each other for multiplexed imaging. Noteworthy, a sequential

labeling approach, utilizing the differential affinities of two

different tetracysteine tags to FlAsH and ReAsH, enabled spe-

cific dual color labeling of parathyroid hormone and

b-arrestin2 (147). More generically, having the two analogs,

FlAsH and ReAsH, facilitates multiplexity by providing flexi-

bility in using one of them together with a fluorescent protein.

A consecutively developed labeling system consists of the

SNAP-tag and CLIP-tag that bind chemical probes with O6-

benzylguanine and O2-benzylcytosine derivatives, respectively

(148). Similarly, Halo-tag binds synthetic dyes having a chlor-

oalkane linker (149–152). Furthermore, cell-permeable fluores-

cent probes that bind His-tag were recently developed (153).

These labeling systems are orthogonal (i.e., do not crosstalk with

each other) and therefore can be combined together for multi-

plexed imaging in live cells (154–156). Moreover, these labeling

approaches facilitated super-resolution and multiplexed super-

resolution imaging in live cells (154–158). In principle, combin-

ing all these aforementioned tools could allow the co-labeling of

5–6 components in live cells with synthetic dyes. However, for

translating this capability to 5–6 multiplexed imaging, a broader

repertoire of tag-binding dyes with distinct spectra is needed. In

parallel, development of additional orthogonal tags and chemi-

cal labeling schemes would be valuable for advancing sensitive

multiplexed imaging of protein networks in live cells.

Another generic method to label proteins in live cells is

Fab-based live endogenous modification labeling (FabLEM)

(159,160). This method is based on microinjecting fluorescently

labeled specific Fab antibody fragments. Since Fab fragments,

unlike the complete antibody, are monovalent they are not

causing dimerization of their target cellular proteins. Yet, a con-

siderable drawback of FabLEM is the need to insert the Fab

fragments into the cell by microinjection or other techniques,

such as glass beads loading (161). To overcome this, genetically

encoded single-chain variable fragment of the antibody can be

genetically fused with a fluorescent protein and expressed in

cells (162). Important aspect that should be carefully controlled

here is the possible impact of the Fab on the interactions and

activities of the labeled protein, particularly since the Fab binds

the protein itself and not a fused tag. Further generalization of

this approach can be achieved by genetically fusing the protein

of interest with SunTag and co-express it together with GFP-

conjugated single chain variable antibody fragment, scFv, that

binds this tag (163). Furthermore, tagging a protein with tan-

dem repeats of SunTag provides high photon count per mole-

cule, which is particularly valuable for single-molecule

miscroscopy methods (163). Since it is possible to generate sev-

eral orthogonal tag-scFv pair combinations, future develop-

ments of such tools can facilitate sensitive live cell multiplexed

imaging. Yet, the effects of multiple scFv bound to tandem tags

on the dynamics and localization of the target protein should

be assessed carefully for each particular implementation.

MULTIPLEXED FLUORESCENCE-FLUCTUATION

MEASUREMENTS IN LIVE CELLS

An important class of live cell fluorescence microscopy

approaches derives the information from the fluctuations of the

fluorescence intensity, rather than from the level of the inten-

sity. A major subclass of these methods includes fluorescence

correlation spectroscopy (FCS) and its derivatives. In FCS, the

diffusion speed and concentration of labeled species are derived

by correlation analysis of their fluorescence fluctuation in a

given confocal volume within the cell (164). Moreover, exem-

plifying the value of multiplexing at the protein–complex level,

in fluorescence cross-correlation spectroscopy (FCCS), two dif-

ferent proteins are monitored simultaneously, enabling to infer

their physical association based on co-diffusion (165–168).

Recent advances in detection and spectral separation enable

triple-color FCCS and thereby the monitoring of ternary pro-

tein complexes (169–172). Another subclass of fluorescence-

fluctuation methods is based on analyzing the relative ampli-

tudes of the fluctuations to derive the copy number of a protein

in a complex. These number-and-brightness approaches have

also been extended to two and three colors to infer the stoichi-

ometry of protein complexes (173–175).

The basic, original, mode of data acquisition in fluorescence-

fluctuation based techniques is point measurements (i.e., meas-

uring in one spot, confocal volume) of fluorescence fluctuations

at a high sampling rate (typically tens of millions times per sec-

ond) within a living cell. The fast sampling of fluorescence inten-

sity is important for capturing the intensity fluctuations as the

labeled particles move into and out from the observed confocal

volume. The temporal resolution of these methods is confined by

the minimal integration time, along which fluorescence fluctua-

tions are collected, that is needed to obtain a sufficient signal-to-

noise ratio. Expansions of fluorescence-fluctuation based techni-

ques achieve spatial dimension, generally by compromising on the

sampling rate (hence on capturing fast diffusions), or on the tem-

poral resolution (hence on capturing rapid changes in diffusion

speed, concentrations and interactions) or on the signal-to-noise

ratio (hence on capturing weak interactions and small changes in
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concentrations and mobility). Such spatially resolved fluctuation

methods include line scan FCS, image correlation spectroscopy

(ICS), imaging FCS, raster image correlation spectroscopy (RICS)

and their derivatives (176–178). Dual color implementations of

these methods provide spatiotemporal information about protein

complexes mobility and stoichiometry (177–181).

High multiplexing of fluorescent fluctuation methods

would be valuable for the detection of high-order protein

complexes—that is, complexes containing three or more pro-

teins. A large variety of such complexes is expected to be

formed in the cytosol considering the abundance of multiva-

lent interactions within protein networks (165,182). Indeed,

ternary protein complexes have been identified in few cases

using biochemical and proteomic approaches (183,184). Dis-

covering and studying high-order protein complexes in intact

cells is essential for understanding signaling and structures

assembly processes (184–186). However, currently the moni-

toring of soluble high-order protein complexes in intact live

cells is challenging already for ternary complexes, being rather

unfeasible for complexes with more than three components.

The main cause for this difficulty is that in all fluorescence

fluctuation-based methods an important parameter for a good

signal is the brightness per molecule, rather than the total

brightness of a structure. Therefore, narrowing the spectral

integration, for a better spectral separation, reduces the signal

in a way that cannot be compensated by an increase in the con-

centration of the labeled proteins. A practical way to address

this is to use as bright fluorophores as possible and if needed,

to label each protein of interest with several copies of the fluo-

rophore, for example by tandem repeats of a fluorescent protein

(165,187). From that sense, quantum dots are valuable for fluo-

rescence fluctuation-based methods (166) and for facilitating

their multiplexed implementations.

MULTIPLEXED SUPER-RESOLUTION IMAGING

In order to understand how interactions between pro-

teins give rise to the properties of an intracellular system it is

important to connect their nanoscale and meso-scale spatio-

temporal organizations. This line of research has become

more accessible in the last two decades by the revolution of

super-resolution microscopy (188–192). Yet, for revealing

how the nanoscale spatiotemporal organizations of proteins

relate to each other multiplexed super-resolution is required.

In comparison to diffraction-limited microscopy, multiplexed

imaging at a super-resolution faces additional challenges,

including a higher sensitivity to chromatic aberrations due to

the nanometer scale resolution and the difficulty to find com-

patible imaging buffers for the different fluorophores. One

method to overcome these challenges is by performing cycles

of labeling, STORM (stochastic optical reconstruction micros-

copy) imaging and fluorophore destruction (193,194). Simi-

larly, in exchange-PAINT (point accumulation for imaging in

nanoscale topography), diffusing fluorescent molecules that

interact transiently with their target epitopes are being applied

on the specimens for stochastic super-resolution imaging

methods and then exchanged with other ones (195). Using

exchange-PAINT, multiplexed super-resolution imaging of

four proteins in different compartments within a fixed HeLa

cell was demonstrated—b-tubulin in the microtubules, COX

IV in the mitochondria, TGN46 in the Golgi, and PMP70 in

peroxisomes (195). Both methods enable multiplexed super-

resolution imaging of multiple targets using only one fluoro-

phore, thereby avoiding chromatic aberrations and imaging-

buffer incompatibilities. Multicolor STORM was facilitated by

a combinatorial pairing of photo-switchable reporter fluoro-

phores and shorter wavelength fluorophores that facilitates

photo-activation of the reporter. Thus, the same reporter

(Cy5) can be activated by spectrally distinct activators (Cy2,

Cy3, and Alexa 405) or alternatively spectrally distinct report-

ers (Cy5, Cy5.5, and Cy7) can be activated by the same activa-

tor (Cy3), hence facilitating multiplexed STORM (196). In a

more recent study, spectrally resolved STORM (SR-STORM)

combined wide-field spectral measurements with photo-

switching to achieve 4-color 3-dimensional multiplexed

super-resolution imaging (197). Stimulated emission deple-

tion (STED) utilizing AOTF or fixed filters for spectral separa-

tion enabled super-resolution imaging of two fluorophores in

three dimensions (198,199). Multi-lifetime multi-color STED

microscopy separates fluorophore signals based on both their

spectra and fluorescence lifetime, thus enabling super-

resolution multiplexed imaging of three proteins with a single

STED beam (200).

The variety of super-resolution microscopy approaches

can be also applied for multiplexed imaging in live cells

(201,202). The additive challenge here is collecting fast

enough separable signals from two or more fluorophores. An

important advantage of single-molecule techniques facilitating

multiplexed imaging is that all photons emitted during an

acquisition frame can be attributed to one fluorophore,

thereby providing its pure spectra and its identity. In this way,

in contrast to diffraction-limited imaging, it is possible to dis-

criminate between several emission spectra using only two

detection channels (67,203–205). Thus, two-color STORM of

mitochondria and the ER was performed in live cells using

MitoTracker Red and ER-Tracker Red, having 16 nm separated

emission spectra, using two-channel spectra sampling and a

single laser line excitation (206). Similarly, ground state deple-

tion followed by individual molecule return (GSDIM), utiliz-

ing the transitions between the fluorophores singlet and

triplet states as a stochastic on-off switch, achieved multi-

plexed super-resolution imaging of three and two proteins in

fixed and live cells, respectively (203). In another study, com-

bination of direct STORM (dSTORM) with photoactivation

localization microscopy (PALM) enabled simultaneous triple-

color super-resolution imaging of the two subunits of type I

interferon receptors and actin in live HeLa cells (155). While

the obtained three-color super-resolution images integrated

1,000 frames taken within 90 seconds, for many nano-scale

dynamics a faster temporal resolution is needed, imposing a

compromise on the signal-to-noise ratio. Using dual color

STED microscopy, the nano-scale dynamics of epidermal

growth factor (EGF) and EGF receptor (EGFR) was moni-

tored in live cells at a temporal resolution of about 12 seconds
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(156). Similarly, dual color STED imaging of synapses in live

cells was reported (207).

HIGH-THROUGHPUT MULTIPLEXED IMAGING

Multiplexed imaging overcomes inter-cellular and intra-

cellular variability since it monitors the state of a protein net-

work in each optically resolvable area unit, rather than integrat-

ing it over the cell (e.g., as in FCM) or over a cell population

(e.g., as in Western blot). On the other hand, high-throughput

measurements of only one component per object (a cell in a

population or areas within a cell) can by itself uncover the het-

erogeneity of these objects in respect to the level of this compo-

nent. The combination of these two aspects, multiplexing and

high-throughput, allows uncovering the statistical relations

between the measured components. High-throughput multi-

plexed measurements facilitate the identification and charac-

terization of cell subpopulations based on multi-parametric

classifications (20,22,208). In the case of a cell population

responding to a stimulus, the emergence of discrete subpopula-

tions indicates important properties of the system, such as bist-

ability and multistability—having two or more stable steady

states for the same input conditions (209). High-throughput

multiplexed imaging can identify sub-populations of cells

based on the distinct patterns of protein localization. In addi-

tion, multiplexed imaging can uncover molecular diversity

between intracellular structures, like adhesion sites or endo-

somes (51,53,210). If these structures are plentiful within cells, a

large sampling can be obtained already with the analysis of few

cells. Still, in order to overcome cell-to-cell variability, it is valu-

able to infer inter-structure diversities based on a large number

of cells.

Molecular heterogeneity has in many cases a functional

significance from which causality can be derived (211–213).

For example, variation analysis within a subpopulation can be

used to determine the presence of positive and negative feed-

backs (Fig. 4a) (212). However in many cases high-throughput

quantification of a single observable is insufficient for untan-

gling the source of the variation. For example, the strength in

the response to a given growth factor might be related to the

expression level of the different components, in particular to

the corresponding receptor. High-throughput multiplexed

measurements can capture multi-dimensional statistical rela-

tions between the labeled components, thus to uncover the

source of variation. Moreover, co-measuring the variances in

the levels of multiple components facilitates network construc-

tion approaches (214,215). Although predictions based on

observational data cannot replace those derive from perturba-

tion analysis, they are valuable for confining the possible models

and designing future experiments.

Flow based methods provide unsurpassed throughput and

multiplexity per cell. Such combination enabled, for example,

to reveal that cancer cells of the same patient have distinct set

of alterations in their signaling networks (28). However, as

aforementioned, FCM and mass cytometry do not provide sub-

cellular resolution. Since the alterations in the state of a protein

network could be manifested by its spatial organization within

cells, multiplexed imaging is required to capture these diver-

sities. To add the spatial dimension, in image flow cytometry

the point detector is replaced by a high-speed fluorescence cam-

era, thus adding morphometric characterization of cells to the

obtained parameters (48,216–219). The intracellular (co)-local-

ization of proteins and organelles can be therefore observed,

enabling the quantification of spatially organized processes.

However, additionally, FCM, image cytometry, and mass

cytometry do not allow measuring in a controlled manner the

same cell multiple times. In FCM and image cytometry the

same population could be re-analyzed but single cells cannot be

tracked across these measurements, thereby making it impossi-

ble to follow molecular processes in the same cell. Such time-

lapse quantifications are of relevance, for example, for deter-

mining the fate of distinct populations upon stimulation and

are central for understanding how the network transits from

one molecular state to another.

Automated microscopy based approaches can provide

temporal information of single cell as any cell can be addressed

by its position and revisited periodically (220,221). Also, unlike

flow-based techniques, high-throughput microscopy can be

applied for studying physiological processes in adhesive cells,

like adhesion and migration (222–224). Image registration

methods can be used when monitoring a cellular process pro-

vided that its typical time scale is slower than the imaging rate.

Functional imaging can quantify molecular interactions and

modification state of proteins directly inside the cell (212,225).

In this way a state map, consisting of population evolution of

the different interacting or modified proteins, can be overlaid

with a topographic map of proteins. For example F€orster reso-

nance energy transfer (FRET) measured by fluorescence lifetime

imaging microscopy (FLIM), provides accurate imaging of

PTM with subcellular resolution (Fig. 4a) (226). In contrast to

phenotypic screenings, this method directly measures the

molecular states of the components, thereby overcomes a possi-

ble phenotype-level robustness of the system. More impor-

tantly, being a quantitative technique it enables to investigate

causal relationships between proteins from perturbation

experiments.

Other types functional imaging techniques have also

been implemented in automated microscopy (227–229). For

example, fluorescence anisotropy imaging, which monitors

the depolarization in the emission due to homoFRET and

thus provides valuable information about the degree of clus-

tering of proteins in the plasma membrane and subcellular

compartments (227–231). The total acquisition time in auto-

mated high-throughput microscopy is still order of magnitudes

longer than in flow-based measurements. However recent

advances in tissue scanners, such as those used in histology,

allow imaging a complete microscopy slide with 403 trans-

mission microscopy in a few minutes. Similar advances are

expected to facilitate further high-throughout functional imag-

ing. FCS and FCCS have also been implemented in high-

throughput mode providing previously inaccessible informa-

tion (232). Some of these concepts and techniques are finding

their way in whole-organism developmental studies (233,234).

The ability to quantify in an automated manner a large number
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of zebrafish or Drosophila embryos facilitates robust variation

analysis of these organisms.

SUMMARY AND OUTLOOK

Since the discovery and first observations of cells by Hooke

and Leeuwenhoek in the 17th century, the endeavor to see a cell

is in fact still ongoing, now more intensively than ever. In the

systems biology era, the central question became how molecular

events within the cell give collectively rise to cellular functional-

ities. However a fundamental challenge to address this question

arises from the large number of different proteins that are

involved in cellular processes, their spatiotemporal dynamics

and cell-to-cell variability. Multiplexed imaging is the key

approach to confront this challenge, yet it faces fundamental

difficulties of its own due to trade-offs between multiplexity,

spatial resolution, temporal resolution and throughput. The

ultimate aspiration to co-image all biochemical species that are

relevant for a complex cellular process within intact cells is still

far from being achieved. Yet, we can be encouraged by the per-

sistent improvements in multiplexed imaging, attributed to bet-

ter and more versatile fluorophores, labeling approaches,

detectors, high-throughput microscopy instrumentations, data

handling and data analysis.

Developing further orthogonal approaches for live cell

labeling of tagged proteins with small, bright and photostable

fluorophores with narrow emission spectra is a promising

Figure 4. High-throughput microscopy and multiplexed imaging. (a) The molar fraction of phosphorylated EGFR (EGFR-pY) was imaged

in a large number of single cells by quantifying the FRET between Cy3.5 conjugated to anti-phosphotyrosine antibody and YFP-EGFR.

Plotting this fraction versus the intensity of YFP-EGFR in the different imaged cells revealed a positive correlation between the two param-

eters (212). Such positive correlation indicates that EGFR is embedded in a positive feedback loop (212). Reaction scheme for protein tyro-

sine kinase and phosphatase substrate (PTK/P-S) with a tyrosine (Y) that can be phosphorylated (pY) by the action of an external kinase

with Michaelis constant Km and maximum rate v. Additionally, there is an autocatalytic kinase reaction with constants Km’ and k. (b) Illus-

trative example of multiplexed high-throughput microscopy with high spatial and temporal resolutions. Imaging two components in each

cell at a sufficient temporal and spatial resolution could resolve the differential response to stimulus. However, imaging the cell with high

spatial resolution reduces the throughput, since a lower number of cells would be captured in each frame. Similarly, high temporal resolu-

tion implies a longer period of time spent for each field, therefore also reducing the throughput. Multiplexity reduces the throughput as

well, since each component requires a separated image acquisition. Reproduced with modifications from Grecco et al. 2010 (212). [Color

figure can be viewed in the online issue which is available at wileyonlinelibrary.com]
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path to improve multiplexed imaging in live cells. The recent

CRISPR/Cas9 technology enables endogenous tagging of the

target proteins, thereby considerably strengthens this direction

(235–238). Further developments of infrared fluorophores for

live cell imaging are plausible to take place, thereby further

enlarging the usable part of the spectra and increase the num-

ber of components that could be co-imaged. On the instru-

mentation side, the combination of white light lasers with

AOBS provides an unprecedented flexibility in setting the

optimal imaging channels, thereby facilitating the accessibility

and applicability of multiplexity imaging. The continuous

advances in the semiconductor industry are providing novel

low-noise and highly sensitive detectors with larger dynamic

range. High-throughput with high multiplexity and high spa-

tiotemporal resolution (Fig. 4b) is inherently limited, but

could be improved by massively parallelized acquisition. Har-

vesting high-throughput multiplexed image data will require

increasingly stronger parallel computations for image analysis,

in order to recognize intracellular structures in each compo-

nent channel, match them across the channels and track them

along the time points. Explorations of the obtained multidi-

mensional data would benefit from the progress in machine

learning, in particular deep learning, algorithms for learning

and capturing complex spatiotemporal patterns of protein

networks and their relations with cellular behaviors

(239–243). Considering the high-dimensionality and explo-

sion of data size obtainable by brute-force high-throughput

multiplexed imaging, an intriguing possibility would be cou-

pling in a feedback the image acquisition with computational

deep-learning analysis. Such coupling can enable to automate

machine-based explorations of the multiplexed labeled cells,

accordingly automating gradual dimensionality reduction in

data acquisition and model discovery—already at the level of

data acquisition. The current research on this variety of topics

and the positive feedback between technological capabilities

and biological questions will plausibly push further in the

foreseen future the boundaries of multiplexed imaging and

thereby of our understanding of cells.
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