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The Loschmidt echo—also known as fidelity—is a
very useful tool to study irreversibility in quantum
mechanics due to perturbations or imperfections.
Many different regimes, as a function of time and
strength of the perturbation, have been identified.
For chaotic systems, there is a range of perturbation
strengths where the decay of the Loschmidt echo is
perturbation independent, and given by the classical
Lyapunov exponent. But observation of the Lyapunov
decay depends strongly on the type of initial state
upon which an average is done. This dependence
can be removed by averaging the fidelity over the
Haar measure, and the Lyapunov regime is recovered,
as it was shown for quantum maps. In this work,
we introduce an analogous quantity for systems with
infinite dimensional Hilbert space, in particular the
quantum stadium billiard, and we show clearly the
universality of the Lyapunov regime.

1. Introduction
Understanding the emergence of irreversibility from the
basic laws of physics has been a longstanding problem.
Although, since the eighteenth century it is known
that the second law describes the arrow of time, its
microscopic foundation has been matter of debate until
these days [1,2]. The main problem is that classical
mechanics is time-symmetric and cannot explain the
emergence of the thermodynamic arrow of time. This
contradiction has been apparently resolved with the
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understanding of chaos. The sensitivity to initial conditions of chaotic systems, along with the
notions of mixing and coarse graining, has been the main argument to explain irreversibility in
classical systems [3].

In quantum mechanics, the situation is more involved. Owing to the linearity of the
Schrödinger equation there is no sensitivity to initial conditions, and therefore the origin of
irreversibility in quantum mechanics lies elsewhere. For this reason, an alternative idea was
proposed by Peres [4]. He suggested that quantum mechanics is sensitive to perturbations in
the evolution rather than to the initial conditions. A suitable dynamical quantity to study such a
behaviour was coined fidelity or Loschmidt echo (LE), which is defined as

Mψ (t) = |〈Ψ |U†
ξ+δξ (t)Uξ (t)|Ψ 〉|2, (1.1)

where Uξ (t) is an evolution operator and, Uξ+δξ (t) is a corresponding perturbed one, |ψ〉 an initial
state, and the parameter δξ characterizes the strength of the perturbation. Thus, equation (1.1) can
be interpreted in two different ways. On the one hand, it is the overlap between an initial state
|ψ〉 evolved forward up to time t with the evolution operator Uξ (t), and the same state evolved
backward in time with a perturbed evolution operator Uξ+δξ (t). On the other hand, it can also
be interpreted as the overlap at time t of the same state evolved forward in time with slightly
different Hamiltonians. While the first interpretation gives the idea of irreversibility, the second
is related to the sensitivity to perturbations of quantum evolutions.

The LE has been intensively studied in the first decade of this century [5–7], and several time
and perturbation regimes were clearly identified using different techniques like random matrix
theory, semi-classical and numerical simulations [7]. The progress in experimental techniques
has permitted to study the LE in various different settings like NMR [8,9], microwave billiards
[10,11], elastic waves [12] and cold atoms [13,14]. The most relevant result in connection with
chaos and irreversibility is that the LE has a regime where the decay becomes independent of
the perturbation strength and it is given by the Lyapunov exponent [15], a classical measure
of the divergence of neighbouring trajectories [3]. The Lyapunov regime has been observed in
several systems [16–23]. In these works, a crucial feature is that the initial states need to be
coherent (Gaussian) wave functions [24]. Besides, an average on initial condition or perturbations
is required.

The dependence of the LE with the type of initial state can be removed by considering an
average over initial states according to the Haar measure for finite dimensional systems [25]

∫
d|Ψ 〉Mψ (t) = 1

d(d + 1)

[
d + |〈Uξ (t), Uξ+δξ (t)〉HS|2

]
, (1.2)

where 〈Uξ (t), Uξ+δξ (t)〉HS ≡ tr[U†
ξ (t)Uξ+δξ (t)] is the Hilbert–Schmidt product between the

operators, and d is the dimension of the Hilbert space. Thus, the average fidelity amplitude

| f (t)| = |tr[U†
ξ (t)Uξ+δξ (t)]|, (1.3)

which is directly related to the LE and is a state-independent quantity. This quantity was
studied in detail for quantum maps [26]. Analytical results were obtained using a semi-classical
theory known as dephasing representation (DR) [27–29]. It is shown that | f (t)| has two clear
decay regimes. For short times, the decay rate depends on the perturbation and it is predicted
considering random dynamics. This corresponds to the limit of infinite Lyapunov exponent. If
the strength of the perturbation is small enough, this regime lasts up to the saturation point. The
other regime, was obtained considering that the perturbation is completely random. That is, after
each step of the map, the perturbation contributes with a random phase to each trajectory. In
that case, using the DR and transfer matrix theory it is shown that the asymptotic decay rate of
| f (t)| is controlled by the largest classical Lyapunov exponent λ. Numerical tests of the analytical
predictions were given for the quantum baker and a family of perturbed cat maps (see §2 below).
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In this work, we go one step further by studying | f (t)| in a realistic system. We consider a
particle inside a stadium billiard that is perturbed by a smooth potential consisting of a number
of Gaussians randomly distributed inside the cavity. A two-dimensional billiard has an infinite-
dimensional Hilbert space. For this reason, instead of computing equation (1.3) for a complete
set, we consider an initial state defined as an incoherent sum of all the energy projectors from
the ground state up to a given high energy level. We have numerically computed this quantity
that we call | fΩ (t)| for the quantum stadium billiard and show that it has similar behaviour to that
observed for quantum maps. For short times, | fΩ (t)| has a decay that depends on the perturbation
strength. But, after a crossover and for sufficiently large perturbation strength, we can clearly
see that | fΩ (t)| decays exponentially with a decay rate given by the Lyapunov exponent of the
classical billiard. In order to confirm these results, we have also computed | fΩ (t)| using the DR.
We also show that the DR describes very well the quantum behaviour and that the Lyapunov
regime is also clearly observed in this approximation.

The rest of the paper is organized as follows. In §2, we summarize the results obtained in [26] in
quantum maps. We show that the DR works very nicely to describe the quantum behaviour and
we show the different decay regimes of | f (t)|. In §3, we show the | fΩ (t)| for the stadium billiard.
Final remarks and outlook are given in §4.

2. Quantummaps
For this work to be self-contained, in this section, we briefly review the results previously
obtained in [26] for quantum maps on a two-dimensional phase space with periodic boundary
conditions (2-torus). These maps have the essential ingredients of chaotic systems and are
simple to treat numerically and sometimes even analytically. The torus geometry implies that,
upon quantization, position q and momentum p are discrete and related by the discrete Fourier
transform. The Hilbert space then has finite dimension N, and the semi-classical limit is given by
N → ∞. An efficient Planck constant can be thus defined as h̄ = 1/(2πN).

As a tool we use the DR [27–29] which avoids some of the drawbacks of other semi-classical
methods. The fidelity in the DR can be written as

fDR(t) =
∫

dq dpWρ (q, p) exp
(

− i
Sδξ (q, p, t)
h̄

)
, (2.1)

where W(q, p) is the Wigner function of the initial state ρ, and


Sδξ (q, p, t) = −δξ
∫ t

0
dτV(q(τ ), p(τ )) (2.2)

is the action difference evaluated along the unperturbed classical trajectory. If ρ is a maximally
mixed state then equation (2.1) is an average over a complete set (and becomes basis
independent),

fDR(t) = 1
V

∫
dq dp exp

(
− i
Sδξ (q, p, t)

h̄

)
, (2.3)

this quantity is the semi-classical expression for the fidelity given in equation (1.3). Here, for
simplicity, we write phase space variables q and p, and their differentials, as one dimensional.
But equation (2.3) holds for arbitrary dimensions. For maps time is discrete so, for the reminder
of this section, we define t := n, with n integer.

We use the DR to study the decay of the fidelity in the chaotic regime as follows. First,
we suppose that the system is very strongly chaotic, λ→ ∞. This is essentially equivalent to
assuming that the evolution is random without any correlation. In order to compute f (n), we
partition the phase space into Nc cells and consider that the probability of jumping from one cell
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to the other is uniform. It can then be shown that

fDR(n) = 1
Nn

∑
j1

. . .
∑

jn

exp
[
− i(
Sδξ ,j1 + · · · +
Sδξ ,jn )

h̄

]

=
⎡
⎣ 1

Nn

∑
j

exp
(

− i
Sδξ ,j

h̄

)⎤⎦
n

, (2.4)

where 
Sδξ ,jk is the action difference on the cell j at time k. Taking the limit Nc → ∞, we get

fDR(n) =
[∫

dq dp exp(−i
Sδξ (q, p))h̄
]n

. (2.5)

The absolute value of fDR(n) can then be written as

| fDR(n)| = exp(−Γ n), (2.6)

where

Γ = − log
∣∣∣∣
∫

exp
[
− i
Sδξ (q, p)

h̄

]
dq dp

∣∣∣∣ . (2.7)

Then, if the dynamics is completely random, which is approximately the case for strongly chaotic
systems, then the fidelity decays exponentially with a rate Γ . As we shall see, this decay also
explains the short time behaviour regardless of λ because for short times the dynamics can always
be supposed to be uncorrelated.

To unveil the intermediate time regime, we consider the limit of random perturbation. In [26],
using the DR it is shown that, for the baker map with a random perturbation, the fidelity can be
written as a sum of products of transfer matrices

fDR(n) = 1
2n/2+L−1

∑
k0,...,kn

Mk0,k1 . . .Mkn−1,kn , (2.8)

where
ki = 2(L−1) × ·μi . . . μL+i−2, (2.9)

the digits μi = 0, 1 define position and momentum

q =
∞∑

j=0

μj

2j + 1
def= ·μ0μ1 . . . (2.10)

and

p =
∞∑

j=0

μ−j

2j + 1
def= ·μ−1μ−2 . . . (2.11)

in symbolic dynamics (see e.g. [30]). A point in phase space is then (q, p) = . . . μ−2μ−1 · μ0μ1 . . . ,
and one step of the map consists in shifting the point to the right. The letter L in the previous
equations indicates a truncation size of the symbolic dynamics expansion. Defining the unit norm
vector |1〉 = 2−(L−1)/2(1, 1, . . . , 1), equation (2.8) can be written in compact form as

fDR(n) = 2−n/2〈1|Mn|1〉. (2.12)

The properties of the fidelity are then determined by the spectrum of the finite matrix M. In
particular, the asymptotic decay is ruled by the largest eigenvalue (in modulus) of M. Considering
the special structure of the transfer matrices for the bakers map, it was shown that

| fDR(n)|2 ≈ 2n = eλBn, (2.13)

where λB = ln 2 is the largest Lyapunov exponent of the baker map. This analytical result was
further extended to more general types of maps [26].
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Figure 1. Fidelity as a function of discrete time n using straight quantum calculation (points) and DR (black solid line) for the
perturbed cat map, with a= 1 (circles), corresponding to λ≈ 0.962 and a= 2 (squares) corresponding to λ≈ 1.76. Here
N = 104 and ξ = 0.025 and δξ/h̄= 2. The dashed (grey) lines correspond to the Lyapunov regime, |f (n)| ∼ exp(−λn/2). Q2

The dotted (red) line marks the short time decay, |f (n)| ∼ exp(−Γ n), withΓ obtained from equation (2.7). (Online version
in colour.)

We show numerically these two regimes for a family of perturbed cat maps [31]

p̄ = p − a q + ξ f (q)

and q̄ = q − bp̄ + ξ̃h(p̄)

}
(mod 1). (2.14)

For simplicity, let ξ̃ = ξ . For a, b integer, these maps are uniformly hyperbolic and for small enough
K, the Lyapunov exponent is approximately given by

λ≈ log
1 + ab +√

ab(4 + ab)
2

. (2.15)

For simplicity from now on we take a = b. These maps can be written in the general form

p̄ = p − dVξ (q)
dq

and q̄ = q + dTξ (p̄)
dp̄

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(mod 1) (2.16)

and can be simply quantized as a product of two operators

Uξ = e−i2πNTξ (p̂) e−i2πNVξ (q̂). (2.17)

Many well-known quantizations of classical maps can be expressed in this way, e.g. the kicked
Harper map [32] and the Chirikov standard map [33]. For the numerical examples, we consider

f (q) = 2π [cos(2πq) − cos(4πq)] (2.18)

and
h(p̄) = 0 (2.19)

as the perturbing ‘forces’ of equation (2.14).
In figure 1, we show two things. On the one hand, the almost prefect agreement of the DR Q2

calculation of | f (t)| against the straightforward quantum result. On the other hand, it is shown
that the two different exponential regimes can be distinguished. For the sake of clarity, we show
results for a = 1 and 2 which correspond to λ≈ 0.962 and 1.72, respectively.

In figure 2, we show a detailed example illustrating how different the two regimes can be.
There, five examples of | f (t)| for different values of δK are displayed. It can be clearly observed
that the initial decay rate is given by Γ . In the inset, we show Γ as a function of the perturbation
and the points mark the decay rate value indicated by the dashed (red lines) in the main panel.
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Figure 2. Quantum calculation of the fidelity for the perturbed cat map with a= 1 and different values of the perturbation,
δξ/h̄= 1 (diamonds), 1.5 (inverted triangles), 2 (triangles), 2.2 (circles) and 2.4 (squares). The dashed red lines show theQ2

small-timebehaviour |f (t)| ∼ exp(−Γ n). The values ofΓ obtained fromequation (2.7) are shown in the inset. (Online version
in colour.)

After this short-time decay there is a revival and then the fidelity again decays exponentially with
a rate given by λ, except in the case where Γ 	 λ.

From the evidence of figures 1 and 2, a behaviour like

| f (t)| ∼ exp(−Γ t) + A exp
(

−λt
2

)
(2.20)

can be hinted. The decay given by the rate Γ is explained by an initial lack of correlations. If the
dynamics is strongly chaotic, then this is the decay that dominates throughout the evolution. This
can be simulated by random evolution. In other cases, there is a crossover from to the perturbation
independent Lyapunov regime. In [26], a random perturbation model was used to demonstrate
this crossover, and also the crossover time could be inferred.

3. Stadium billiard
In the previous sections, we show that | f (t)| is a suitable quantity to characterize quantum
irreversibility in d-dimensional systems. It does not depend on the initial conditions because it
is the trace of the echo operator U†

ξ+δξ (t)Uξ (t). Moreover, in the case of abstract maps, the DR can
be used to show analytically that there is a Lyapunov regime that does not depend on the type of
initial states, contrary to what happens in the case of the LE. Now we will study the behaviour of
a similar quantity in a realistic system, a particle inside a billiard. In this system, the Hilbert space
is infinite-dimensional and it is not possible to compute the trace of the echo operator. For this
reason, we consider

| fΩ (t)| = |tr[U†
ξ+δξ (t)Uξ (t)ρΩ ]|, (3.1)

where the initial density function ρΩ (m) = m−1 ∑m
i=0 |Ei(ξ )〉〈Ei(ξ )|, a microcanonical state located

in an energy window that start in the ground state up to the mth excited state. We note that | fΩ (t)|
is related to a well-known quantity in non-equilibrium statistical mechanics: the probability of
doing work W. This can be seen by considering a system with Hamiltonian H(ξ ) that is in an
initial equilibrium state ρ. At t = 0, the energy is measured and a quench H(ξ ) → H(ξ + δξ ) is
done. Then, the system evolves a time t and another energy measurement is done. If Ei(ξ ) and
Ej(ξ + δξ ) are the results of the measurements, the work done on the system is W = Ej(ξ + δξ ) −
Ei(ξ ). Then, it is easy to show that the probability of work P(W) is the Fourier transform of

fβ (t) = tr[U†
ξ+δξ (t)Uξ (t)ρ], (3.2)

here we consider the absolute value of this quantity equation (3.1).
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Figure 3. Fidelity for the stadiumbilliardwith initial stateρΩ (m= 500) and a basis of 3134 states, as a function of the rescaled
time v̄t. δξ = 10, 30, 50, 70, 80, 90. In the inset, we show the position of the four Gaussians and diameter of the circles isσ = Q2

0.1 (blue indicate positive Gaussian and red negative). The dashed grey line is exp(−λ1t). (Online version in colour.)

We have studied | fΩ (t)| for a particle in the desymmetrized stadium billiard with radius r = 1
and straight line of length l = 1 (see inset of figure 3). The perturbation is a smooth potential
consisting in a series of four Gaussians, Q3

V(x, y, δξ ) = δξ

4∑
i=1

signi exp

(
− [(x − xi)2 − (y − yi)2]

(2σ 2)

]
(3.3)

with δξ the perturbation strength, σ = 0.1 their widths (x1, y1) = (0.2, 0.4), (x2, y2) = (0.67, 0.5),
(x3, y3) = (0.5, 0.15) and (x4, y4) = (0.3, 0.75), the positions of the centres and sign1 = sign3 = 1,
sign2 = sign4 = −1. The eigenstates of the unperturbed stadium (ξ = 0) are obtained using the
scaling method [34]. The states of the perturbed system are obtained by diagonalizing the
perturbed Hamiltonian in the basis of the stadium billiard. We have used several number of
unperturbed states to check the convergence of the results. We point out that the perturbations
considered in this work and in [26] affect the whole phase space. There has been some theoretical
[35–38] and experimental efforts to study the effect of local perturbations. In theses works, they
either find a crossover from a Fermi golden rule regime to an exponential regime with rate
given by the so-called escape rate (given by a representative size of the perturbation) [35,38],
or an algebraic decay regime [37]. But, even though they also consider the average fidelity
amplitude, they do not find a Lyapunov regime. Therefore, in this work we only consider global
perturbations.

In figure 3, we show | fΩ (t)| for the stadium billiard. The unperturbed evolution is given
by the free dynamics inside the cavity (ξ = 0) and the perturbed one is with the potential of
equation (3.3). Results for several perturbation strengths δξ are shown. The initial microcanonical
state corresponds to the first 500 eigenstates of the unperturbed system. The calculations were
done using the first 3135 eigenstates of the stadium billiard. The convergence of the results were
tested using a bigger basis of up to 5600 states. For a smaller basis of 1300 states, the results are
also well behaved.

Let us first analyse the small-time behaviour. For small δξ � 25, | fΩ (t)| decays exponentially
∼ exp(Γ t). In figure 4 (top), we show Γ as a function of δξ . As expected, we can clearly see that
γ ∼ δξ2. Such behaviour is referred to as the Fermi golden rule regime [16]. For δξ � 25, the short-
time decay | fΩ (t)| is approximately a Gaussian function ∼ exp[−t2/(τ 2)] (figure 3). In figure 4
(bottom), we show 1/τ as a function of δξ . We can see that after a transient, there is a region
where 1/τ does not depend on the perturbation strength δξ .

The behaviour of the fidelity | fΩ (t)| can be related to the spread of the initial state in the
perturbed basis. The natural quantity to study this type of localization properties is the inverse
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Figure 4. (a) Decay rateΓ for the short-time decay in the perturbative regime, |fΩ (t)| ∼ exp[−Γ t]. As expected from the
Fremi golden ruleΓ has approximately quadratic dependencewithδχ (the dashed red line is a fitwhereΓ ∝ δχ 1.969±0.034).
(b) Characteristic time 1/τ for the Gaussian decay |fΩ (t)| ∼ exp[−(t/τ )2], for small t. The slope of the linear fit is 0.93 ±Q2

0.013, so 1/τ ≈ δχ until saturation. Initial state isρΩ (n= 800) and the basis used has 3134 states, thewidth of the Gaussian
perturbation isσ = 0.1. (Online version in colour.)
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Figure 5. Inverse of the average IPR for the first 800 perturbed states as a function of δξ . Inset: ||Ej〉i|2 =
|〈Ej(ξ + δξ )|Ei(ξ )〉|2, for the state j = 600 for δξ = 80. (Online version in colour.)

participation ratio (IPR) [39–45]. The IPR of a perturbed eigenstate |j(ξ + δξ )〉 in the unperturbed
basis |Ei(ξ )〉 is

IPR(|Ei〉) =
(∑

m
|〈Em(ξ )|Ei(ξ + δξ )〉|4

)
(3.4)

(throughout this section ξ = 0). The inverse of this quantity—also called the participation
number—gives an estimation of the number of unperturbed states contributing to a given
perturbed state. In figure 5, we show the inverse of the IPR averaged over the first 800 states,
as a function of δξ . We can see that it has an approximately quadratic growth up to δξ = 20.
After that the inverse of the IPR grows linearly in the interval 20 � δξ � 60. Finally the growth
rate tends to a saturation at value which is much smaller than the basis size. This shows that
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Figure6. | fΩ (t)| for the stadiumbilliardwith perturbation strengthδξ = 70 andwidthσ = 0.1. The (red) circles correspond
to the quantumevolution,with initial stateρΩ (m= 500) and a basis of 3134 states. The solid line corresponds to DR calculation Q2

using 189 991 initial conditions with energies chosen in the range corresponding to the first 500 quantum energies. The dashed
grey line corresponds to the Lyapunov decay. (Online version in colour.)

the perturbed states remain localized in energy. As an example, in the inset of figure 5, we show
|ψi|2 = 〈i(ξ + δξ )|i(ξ )〉|2 for the state corresponding to the level 600 for δξ = 80 (marked by a red
dot on the main panel). The exponential decay of the tails is a manifestation of its localization.
This localization is responsible for the plateau of 1/τ shown in figure 4 (bottom). We remark that
the three perturbation regimes of the short-time decay of fΩ (t) (figures 3 and 4) are manifested in
the IPR behaviour (figure 5).

After the Gaussian decay shown in figure 3, we can see a second exponential decay with a rate
given by the classical Lyapunov exponent of the stadium billiard. The Lyapunov exponent is λ=
λ1v, where λ1 = 0.43 corresponds to l = r = 1 [46,47]. Here v̄ = 2k̄ is the average velocity computed
from the eigenenergies Ei = k2

i (ki being the wavenumber of the eigenstate |Ei〉) in the energy
window Ω considered. Evidently, the fidelity computed using an initial state ρΩ and the fidelity
obtained from the Haar measure for the quantum maps share the same decay behaviour. A short-
time decay which depends on the characteristics and strength of the perturbation, followed by a
Lyapunov regime depending on a classical feature.

We also compute | fΩ (t)| using the semi-classical DR. This is a simple task due to the fact that
unperturbed trajectories are geometrically obtained in the billiard and the perturbation only gives
a phase as dictated by equation (2.1). To take into account the initial ρΩ (m) state, we compute the
semi-classical | fΩ (t)| using that the initial conditions are uniformly random inside the billiard,
the same was assumed for the direction of the initial momentum. The modulus squared of the
momenta are distributed as the eigenenergies of the unperturbed system. In figure 6, we show
| fΩ (t)| computed using the DR and the quantum results. We can see that the semi-classical
approximation provides an accurate fitting of the quantum results. Moreover, the Lyapunov
decay is clearly observed in the DR approximation.

4. Conclusion
From the outset, the LE emerged as a viable quantity to characterize instability and irreversibility
in quantum systems. A large amount of work was dedicated to describe the different regimes
depending on the perturbation strength, but it received a real important boost when the Lyapunov
regime was first described linking classical an quantum chaotic behaviour. However, although it
was shown to exist in many different systems, all the semi-classical and numerical calculations
showed that the Lyapunov regime could only be observed if the initial states considered were
‘classically meaningful’ [6] (typically coherent states). We found a solution to this problem
considering the average fidelity amplitude, a basis independent quantity, which is closely related
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to the LE if one considers an average over the Haar measure (equations (1.2) and (1.3)). Indeed,
a recent work [26], briefly reviewed in §2, shows analytically and numerically that for quantum
maps on the torus the average fidelity amplitude decays as a double exponential, where the first
decay rate depends on the strength and type of perturbation, whereas the second decay rate is
given by the classical Lyapunov regime.

But, although quantum maps have some generic properties of quantum chaos, they are not
very generic systems themselves. So the challenge in this work was to take the analysis one
step further and study the average fidelity amplitude in a more realistic system, paradigmatic
of quantum chaos, like the stadium billiard. To overcome the problem of the infinite-dimensional
Hilbert space, where averaging over the Haar measure is unfeasible, we introduced an energy
cut-off and considered the system to be initially in a state that has an equiprobable distribution
over some energy window, in the same spirit of a microcanonical ensemble. In this way, we were
able to recover the same behaviour of the fidelity amplitude as the one shown for quantum maps,
in particular, we could clearly observe the Lyapunov regime. Therefore, we have made a step
forward towards the settlement of this longstanding problem: we showed an example of a realistic
system where the Lyapunov regime is observed, independent of the type of initial state, if the
appropriate quantity—the fidelity amplitude—is considered.

Additionally, we have shown that these regimes were also manifested in the behaviour of the
IPR, which is a very relevant quantity in the study of localization and quantum chaos at the level
of the structure of eigenstates. Finally, for completeness, we studied the dynamics of the fidelity
amplitude using the semi-classical DR approximation and showed a good agreement with the
quantum results. This suggests that as fidelity is also related to the Fourier transform of the work
probability distribution after a quench [48], further insight into this issue can be obtained by
considering tools such as the semi-classical DR approximation.
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