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N. E. Sujovolsky and P. D. Mininni
Departamento de Fı́sica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA,

CONICET, Buenos Aires 1428, Argentina
(Received 13 June 2016; published 29 September 2016)

We study the transition in dimensionality of a three-dimensional magnetohydrodynamic
flow forced only mechanically when the strength of a magnetic guide field is gradually
increased. We use numerical simulations to consider cases in which the mechanical forcing
injects (or not) helicity in the flow. As the guide field is increased, the strength of the
magnetic field fluctuations decreases as a power law of the guide field intensity. We show that
for strong enough guide fields the helical magnetohydrodynamic flow can become almost
two-dimensional. In this case, the mechanical energy can undergo a process compatible
with an inverse cascade, being transferred preferentially towards scales larger than the
forcing scale. The presence of helicity changes the spectral scaling of the small magnetic
field fluctuations, and affects the statistics of the velocity field and of the velocity gradients.
Moreover, at small scales the dynamics of the flow becomes dominated by a direct cascade
of helicity, which can be used to derive scaling laws for the velocity field.
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I. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence is known to come in different flavors. Different
regimes and scaling laws were reported in MHD flows depending on initial conditions [1–5] or
on how the system is forced [6–10]. In recent years, the importance of anisotropy in these flows was
discussed by several authors, specially in the context of the solar wind, which at the largest scales
can be modeled as an MHD flow with a magnetic guide field [7]. In situ observations of the solar
wind near Earth orbit and in the heliosphere show that the turbulence is dominated by fluctuations
with wave vectors perpendicular to the guide field, i.e., that the flow has a strong two-dimensional
(2D) component [11,12]. Three-dimensional (3D) numerical simulations of MHD with a guide field
and stirred magnetically also show a tendency of the system towards an approximately 2D MHD
state [13,14]. A detailed numerical study using anisotropic forcing [15] showed that the fraction of
the energy in these 2D MHD modes increases as the amplitude of the guide field is augmented [15].
This variety of regimes observed in MHD turbulence explains the lack of a clear phenomenological
model for MHD flows at high Reynolds number, and whether a universal phenomenological theory
can be developed is still an open question [16].

Other regimes of MHD turbulence were also reported in the literature. When an MHD fluid with
a guide field has low conductivity (i.e., low magnetic Reynolds number), the system can suffer
different transitions towards 2D regimes. Such transitions can result in two-dimensionalization
and the suppression of turbulence [17], or when stirred only mechanically, in a transition towards
a 2D hydrodynamic (HD) regime [18]. In this limit, the flow rapidly suppresses magnetic field
fluctuations perpendicular to the guide field as a result of Ohmic dissipation, making magnetic
fluctuations negligible when compared to the external field. This is relevant particularly to liquid
metals. Laboratory experiments in the regime of low magnetic Reynolds number using gallium in
a von Kármán flow confirmed that only small magnetic fluctuations are produced as the result of
strongly anisotropic induction, and observed in some cases a power spectrum of magnetic fluctuations
compatible with a k−1 power law [19].

Recently, another regime of MHD turbulence displaying a transition towards a 2D HD state was
discovered. In numerical simulations at high magnetic Reynolds number of 2D MHD flows and of
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3D MHD flows with a guide field it was found that a transition towards a HD regime takes place when
the ratio of mechanical to magnetic forcing exceeds a certain threshold, with the threshold depending
on the scale at which the forcing is applied, on the anisotropy of the flow, and on the amplitude of
the guide field in the 3D case [20–22]. The transition to the HD regime was accompanied by the
development of an inverse cascade of energy, in which the system transfers a fraction of its energy
from the injection scale to the largest scale available in the system, resulting in the growth of eddies
with the size of the domain. For the 2D MHD case, the authors also showed that the transition to the
HD regime is equivalent to a phase transition with the system behaving near the threshold as in the
vicinity of a critical point, and that the behavior can be generic for other systems displaying inverse
cascades after a transition [21,22].

The development of strong anisotropies with a transition from 3D to a 2D or quasi-2D regime
is known to take place not only in MHD with a strong guide field [17,18,20,23,24] but in other
systems as well, such as, e.g., HD turbulence with strong rotation [24–27]. In all these cases an
external force imposes a preferred direction and is responsible for the departure of the flow from
isotropy. Moreover, in many of these cases the accumulation of energy in 2D modes also results in
the development of an inverse cascade of energy, as observed in Refs. [21,22]. Also, if the system
is dominated by the mechanical energy after the transition, in many cases the energy spectrum
associated with the inverse cascade follows a ∼k−5/3 power law, as observed for hydrodynamic
turbulence in 2D [28].

The aim of the present work is to study 3D MHD turbulent flows with a strong guide field,
forced only mechanically, and with large magnetic Reynolds number. In particular, we are interested
in the transition of the system towards a 2D HD regime for sufficiently large values of the guide
field. As the system is only stirred mechanically, magnetic fluctuations arise as the result of an
induction process: for sufficiently large magnetic Reynolds number, the motion of the fluid elements
can deform the guide field, exciting small scale magnetic field fluctuations and MHD turbulence.
However, as the amplitude of the guide field is increased, the magnetic field becomes more rigid and
harder to deform, and magnetic field fluctuations decrease. As reported in Ref. [20], for large guide
fields this results in a regime in which only velocity field fluctuations are present, perpendicular to
the guide field, and mostly 2D. Here, we extend the study in Ref. [20] to consider the case in which
the mechanical forcing injects helicity in the flow.

The mechanical (or kinetic) helicity is a pseudoscalar defined as

H =
∫

v · ω dV, (1)

where v is the fluid velocity field and ω = ∇ × v is the vorticity. In ideal barotropic hydrodynamic
flows, H is conserved (but it is not conserved in MHD). In general, H measures the number of links
in the vortex lines and the departure of the flow from mirror symmetry [29]. Although mechanical
helicity is not conserved in ideal MHD, it still plays an important role in this case [30,31]: it is known
that helical flows favor the dynamo mechanism, a process by which kinetic energy is converted into
magnetic energy to sustain the MHD flow.

We therefore use numerical simulations to explore the transition from a 3D MHD flow to a 2D
HD regime in an MHD system with guide field and with helical mechanical forcing, and compare
the transition with the nonhelical case. We show that the helical MHD flow still goes through the
transition for large enough guide fields, and also behaves in a way reminiscent of the inverse cascade
of mechanical energy observed in 2D HD turbulence. However, the presence of helicity changes the
spectral scaling of the small magnetic field fluctuations, and affects the statistics of the velocity field
at small scales as well as of the velocity gradients. Moreover, recent studies in HD flows indicate
that when the energy suffers an inverse cascade, kinetic helicity can go through a direct cascade in
which it dominates the direct flux and the scaling laws observed in the spectra at small scales; this
was observed in rotating flows [25,32] and in truncated versions of the Navier-Stokes equation [33].
We show that the same behavior is observed in our system, with the direct flux of helicity dominating
over the direct flux of energy.
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TABLE I. Parameters for all runs: αh controls the kinetic helicity injection in the fluid (π/4 corresponds to
the maximum possible injection rate), |B0| is the guide magnetic field amplitude, 〈|v|2〉1/2

t and 〈|b|2〉1/2
t are the

averaged in time r.m.s. field fluctuations in the turbulent steady state of each run, Re and Rm are respectively
the kinetic and magnetic Reynolds numbers, and kν is the Kolmogorov dissipation wave number.

Run αh |B0| 〈|v|2〉1/2
t 〈|b|2〉1/2

t Re = Rm kν

A0 0 0 1.2 0 1050 170
A2 0 2 1.3 0.30 1090 130
A4 0 4 2.2 0.14 1800 110
A8 0 8 2.5 0.02 2080 90

B2 π/4 2 1.4 0.31 1200 130
B4 π/4 4 1.8 0.16 1500 110
B8 π/4 8 2.9 0.03 2380 100

II. NUMERICAL SIMULATIONS

We solve numerically the MHD equations for an incompressible conducting fluid interacting with
a magnetic field:

∂v
∂t

+ v · ∇v = −∇(p + pm) + B · ∇b + ν∇2v + f, (2)

∂b
∂t

+ v · ∇b = B · ∇v + η∇2b, (3)

∇ · v = 0, (4)

∇ · b = 0, (5)

where B = B0 + b with B0 an externally imposed guide field and b the magnetic field fluctuations,
v is the velocity field, pm = B2/2 is the magnetic pressure (with uniform mass density ρ = 1), ν is
the kinematic viscosity, η is the magnetic diffusivity, and f is a mechanical forcing. Both fields are
solenoidal, as follows from Eqs. (4) and (5). The magnetic field is written in Alfvénic units, and all
quantities in the equations are dimensionless. Equations (2) and (3) then have two control parameters:
the Reynolds number Re = UL/ν and the magnetic Reynolds number Rm = UL/η, where U and
L are the characteristic velocity and length of the flow. Another dimensionless number of interest is
the magnetic Prandtl number, Pm = ν/η, which measures the ratio of viscous to magnetic diffusion.
In all the cases we will consider, Pm = 1 and Re = Rm ≈ 103.

The MHD equations were solved numerically inside a periodic cubic box of volume (2π )3 using a
dealiased pseudospectral method and a second-order Runge-Kutta scheme to evolve in time [34,35].
All runs have a spatial resolution of 5123 regularly spaced grid points, unless otherwise stated. The
flow was mechanically forced at kf = 10, using a randomly generated isotropic forcing, and with no
electromotive force applied. The fluid was started from rest, and integrated for ten large-scale turnover
times in all cases. We performed two sets of runs. Runs in set A correspond to runs with no helicity
injection, while runs in set B correspond to runs with maximal helicity injection (see Table I). The
viscosity, magnetic diffusivity, and amplitude of the forcing are kept the same in all the simulations.
Therefore, in each set the only parameter changed from run to run is the amplitude of the guide field
B0 = |B0|. To control the rate of helicity injection in the two sets we used the method described in
Ref. [36]. Namely, we generate two independent and solenoidal random vector fields c and d, which
are normally distributed, and centered around k = kf in Fourier space. Then, the mechanical forcing
in Fourier space is given by f̂k = ĉk cos αh + d̂k sin αh + ik × (ĉk sin αh + d̂k cos αh)/k, where the
hat denotes Fourier transform, and αh is a parameter. It is easy to verify that the helicity of the
mechanical forcing f is then proportional to sin(2αh). Thus, simulations in set A correspond to
αh = 0, while simulations with maximal helicity injection in set B correspond to αh = π/4.
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FIG. 1. Top: Kinetic energy as a function of time for simulations in set A, without helicity. The peak of
kinetic energy increases with the strength of the guide field, with simulation A0 (dotted) having B0 = 0 and
simulation A8 (solid) having B0 = 8. Bottom: Kinetic energy as a function of time for runs A2 (without helicity
and with B0 = 2) and B2 (with helicity, same B0).

In the following we will need a way to quantify the anisotropy of the flow. This can be done
by computing the energy spectrum in Fourier space, and energy fluxes. Considering the symmetry
of the flows with the guide field, spectra can be computed isotropically, or in terms of parallel and
perpendicular wave vectors (with respect to the direction of the guide field). As an example, for the
isotropic kinetic energy spectrum, we have

Ev(k) = 1

2

∫
|v̂(k′)|2dSk, (6)

where Sk is the surface on k′ of the sphere of radius k (in practice, in a discrete Fourier space the
integral is replaced by a sum over all Fourier modes with k � |k′| < k + 1). To define anisotropic
spectra we can replace the surface of integration by a surface more appropriate to describe the flow
anisotropy. Thus, the perpendicular kinetic energy spectrum E(k⊥) will be given by the sum over
all Fourier modes with k⊥ � |k′

⊥| < k⊥ + 1 (i.e., over cylindrical shells in Fourier space), where
k⊥ is the projection of k′ perpendicular to B0. In a similar way we can define the isotropic and
perpendicular magnetic energy spectra Eb(k) and Eb(k⊥), the helicity spectra H (k) and H (k⊥), and
perpendicular energy fluxes as described in more detail below.

III. RESULTS

A. Kinetic and magnetic energy

We start by discussing the general evolution of all simulations. Figure 1 shows the time evolution
of the kinetic energy for all simulations with non-helical mechanical forcing, and also compares
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FIG. 2. Dimensionless ratio of r.m.s. magnetic field fluctuations to the amplitude of the guide field,
(2Eb)1/2/B0, as a function of B0, for the simulations in Table I with 5123 grid points, and for several simulations
with the same configuration but with spatial resolution of 1283 grid points. A power law resulting from a best
fit to the data is shown as a reference.

the evolution of runs B2 and A2 (respectively with and without kinetic helicity injection). In all
cases the kinetic energy grows monotonically until reaching a peak, which increases as the guide
field is increased. Note that as the fluid is started from rest, the flow must undergo an instability to
generate turbulence. At early times, the kinetic energy increases as the result of the energy injected
by the forcing, and dissipation remains slow (thus energy keeps accumulating in the system) until
turbulence develops and the dissipation rate increases. The external magnetic field introduces a
privileged axis and has a stabilizing effect in the flow, thus the system must reach larger values
of the kinetic energy before becoming unstable. After this time (which also increases with B0),
the dissipation rate reaches a turbulent steady value, and the kinetic energy drops to also reach its
saturation value. Interestingly, as B0 increases, so does the kinetic energy in the turbulent regime.

The simulations with mechanical helicity behave similarly, but the maximum of energy (and the
time to reach the maximum) also increases (see Fig. 1). This is the effect of helicity, which also
stabilizes the flow and slows down the instabilities. From Eq. (1), a helical flow tends to have the
velocity field parallel to the vorticity. The nonlinear term in the momentum equation can be rewritten
as v × ω − ∇(p + v2/2). Therefore, in a helical flow the term v × ω tends to be smaller, and larger
velocities (or Reynolds numbers) are needed to destabilize the flow and transfer energy to scales
different than the forced scale. After this happens, the flow rapidly evolves to a turbulent steady state.

The energy of magnetic fluctuations has a different fate. As the system is only forced mechanically,
magnetic fluctuations grow as the result of the deformation of the guide field lines: for infinite Rm,
the magnetic field lines are frozen to the flow. With finite (but still large) Rm, magnetic field lines are
advected by the flow, and also diffuse by Ohmic dissipation. The advection of B0 by the turbulent
flow creates small scale magnetic field fluctuations, which first grow in time, and then saturate to
a steady r.m.s. value in the turbulent regime. However, as B0 increases, the guide field becomes
more rigid, and energy in the magnetic field fluctuations decreases. Figure 2 shows the square root
of the energy of magnetic fluctuations normalized by the amplitude of the guide field, (2Eb)1/2/B0,
averaged at late times in the simulations, and as a function of B0 for all runs. Besides the simulations
with 5123 grid points, we also show the results for a large number of similar simulations using 1283

grid points. Overall, the data is compatible with a dependence 〈b2〉1/2 ∼ B−2.2
0 independently of the

helicity content of the flow, and where the exponent −2.2 was obtained from a best fit to the data.
Note that for large values of B0 energy in magnetic field fluctuations is negligible when compared to
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FIG. 3. Top: Kinetic energy spectrum for simulations in set A (without helicity). Bottom: Kinetic energy
spectrum (solid) and helicity spectrum normalized by kf (dotted) for simulations in set B (with helicity). The
spectra have been shifted vertically for better visualization, and the slopes indicate several power laws as
references (see text for details). The isotropic spectrum Ev(k) is shown for runs A0, A2, and B2; in all other
cases we show E(k⊥).

the kinetic energy. As in previous studies [20–22], the system seems to undergo a transition towards
a HD regime as B0 is increased, with |B0| acting as the order parameter of the transition. Below we
consider energy spectra and fluxes to show that for large B0 the flow also approaches a quasi-2D state.

B. Kinetic energy spectrum

For late times in all simulations we computed the (temporal averaged) kinetic energy spectrum as
a function of k (for run A0 which is isotropic, and for runs with B0 = 2 which are weakly anisotropic)
and as a function of k⊥ (for runs with B0 = 4 and 8, which are anisotropic). All spectra are shown
in Fig. 3. The simulation without a guide field (A0) results in just a hydrodynamic turbulent flow, as
there are no sources of magnetic field fluctuations. In this run, a direct cascade of energy is observed,
with a short inertial range compatible with a Kolmogorov power law ∼k−5/3 for wave numbers
k > kf = 10 where energy is injected by the forcing (note that the scale separation used between the
forcing scale and the box size, to allow for an inverse cascade if needed, reduces the range of scales
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available for a direct cascade inertial range). For k � 10 there are no significant energy excitations,
nor a clear scaling in the spectrum.

As the magnetic field is increased in Fig. 3 we observe two changes in the spectrum: On the one
hand, we observe the appearance of an inverse transfer of kinetic energy, with the energy spectrum
peaking at small values of k⊥. This is particularly evident for runs A4 and A8 (respectively, with
B0 = 4 and 8). As a reference, we show in Fig. 3 for k⊥ < 10 a k

−5/3
⊥ power law, which corresponds

to the slope of the energy spectrum in the inverse cascade range of 2D HD turbulence (note that in
these runs, magnetic field fluctuations are negligible and the system is almost in a hydrodynamic
regime; see Fig. 2). On the other hand, we observe the appearance of a much steeper spectrum in a
broad range of wave numbers with k⊥ > 10. All simulations with nonhelical forcing (runs A) and
large guide field show a spectrum compatible with a power law ∼k−3

⊥ , which is the spectrum of
energy in the direct cascade range of 2D HD turbulence [37].

The simulations with kinetic helicity injection (see Fig. 3) also show a change in the kinetic
energy spectrum for large B0, but with certain differences with respect to the simulations in set A.
A pile up of energy at small wave numbers is still observed (the k

−5/3
⊥ power law is also shown

as a reference), and the spectrum at large wave numbers also becomes steeper than in the case of
isotropic MHD (and HD) turbulence. However, the slope of the kinetic energy spectrum for k⊥ > 10
seems to be less steep than in the simulations without helicity. In Fig. 3 we show a power law ∼k

−5/2
⊥

only as a reference, we will come back to the slope of this spectrum later.
For the simulations in set B we are also interested in the spectrum of kinetic helicity, which is also

shown in Fig. 3. All helicity spectra show a transfer of helicity towards wave numbers larger than kf ,
and as B0 increases this range of the helicity spectrum becomes shallower than the energy spectrum
(note the separation of the two spectra for k > kf in run B8). As a reference, we show a power
law ∼k

−3/2
⊥ for this range, which is also discussed in detail below. Interestingly, there are also clear

differences between the spectra H (k) and Ev(k) for wave numbers smaller than the forcing wave
number. The spectrum of helicity does not peak at k = 1 or k⊥ = 1 even for large B0, indicating
there is no significant transfer of helicity towards small wave numbers. This is compatible with the
fact that helicity cannot be transferred towards large scales in any flow with finite energy, as from
Eq. (1) and from the Schwarz inequality, H (k) � kE(k), which gives H (k) → 0 for k → 0 if the
energy in the flow is finite.

C. Energy and helicity fluxes

The results suggest that for large B0 the system becomes almost hydrodynamic: it develops an
inverse transfer of kinetic energy independently of the helicity content of the flow and a direct
transfer and cascade towards smaller scales that depends on whether the system has kinetic helicity
or not. Confirmation of these results requires studying the flux of energy across scales. From Eq. (2)
the kinetic energy “flux” is obtained as

�v(k) = −
k∑

k′=0

∫
[vk′ · (̂v · ∇v)k′ − vk′ · ( ̂B · ∇b)k′]dSk′ , (7)

where the hat (̂ ) denotes the Fourier transform as before. From Eq. (3) a “flux” of magnetic energy
is obtained as

�b(k) = −
k∑

k′=0

∫
[bk′ · (̂v · ∇b)k′ − bk′ · ( ̂B · ∇v)k′]dSk′ . (8)

Finally, we define the “flux” of kinetic helicity as usual using the hydrodynamic expression

�h(k) = −
k∑

k′=0

∫
[ωk′ · (̂v · ∇v)k′ + vk′ · ∇ × (̂v · ∇v)k′]dSk′ . (9)
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FIG. 4. Diagram showing a typical flux (either of kinetic energy, magnetic energy, or kinetic helicity) as a
function of k for simulations with B0 
= 0. In the diagram we show several characteristic values used for the
analysis: the scale injection kf in which the flux changes sign, the maximum value of positive flux �+ (i.e., of
flux towards small scales), the minimum value of negative flux −�− (i.e., of inverse flux), and the value of the
flux when k → kmax, 	�.

Strictly speaking these are not fluxes, as the kinetic energy, the kinetic helicity, and the magnetic
energy are not conserved quantities in the ideal MHD limit. The flux of total energy �(k) =
�v(k) + �b(k) is a flux, as the total (kinetic plus magnetic) energy is an ideal invariant of the MHD
equations. As a result, �(k) → 0 for k → ∞, and in the numerical simulations �(kmax) = 0 with
kmax the maximum resolved wave number [38]. However, we still can consider the separate fluxes
�v(k) and �b(k), and interpret them respectively as the fluxes of the kinetic and magnetic energy,
plus the exchange of energy (i.e., work) done between the two fields [39]. The same happens with
the flux of kinetic helicity, which neglects all magnetic terms in the momentum equation, but which
can represent a flux if magnetic fluctuations become negligible. Moreover, just as with the spectra,
we can integrate any of these quantities over spheres to get isotropic fluxes �(k), or over cylinders
in Fourier space to get perpendicular fluxes �(k⊥).

In Fig. 4 we show a diagram of how a typical flux (of kinetic energy, magnetic energy, or
kinetic helicity) looks in a simulation with moderate B0. We define �+ as the maximum value of
direct flux, �− as the maximum value of inverse flux (i.e., the absolute value of the minimum of
negative flux), and 	� as the value of the flux at k = kmax. As mentioned above, for an invariant
quantity undergoing a cascade 	� should be zero. Indeed, 	�v + 	�b = 0 in all simulations,
as the total energy is an ideal invariant which has a direct cascade in MHD turbulence. It follows
that 	�v = −	�b, which expresses the fact that the second terms on the right-hand side (r.h.s.) of
Eqs. (7) and (8) are associated with the exchange of energy between the magnetic and the velocity
fields, which conserve the total energy when both energy components are added together. However,
in the simulations magnetic field fluctuations b become negligible as B0 is increased (see Fig. 2).
In this case, the second term on the r.h.s. of Eq. (7) and both terms on the r.h.s. of Eq. (8) become
negligible, and 	�v can approach zero. If this happens, then the kinetic energy can be interpreted
as a quantity conserved by nonlinear interactions in the inertial ranges (i.e., as a quantity that can
have a cascade); the same argument applies to the kinetic helicity.

The time-averaged kinetic energy fluxes for runs in sets A and B are shown in Fig. 5. Indeed,
	�v is almost negligible in the simulations with B0 = 4 and 8 (runs A4, A8, B4, and B8). This
indicates that the system approaches a hydrodynamic regime for large B0, independently of the
helicity content of the flow. In this limit, the function �v is indeed a flux. Moreover, in both sets
of runs it is observed that �+

v decreases and �−
v increases with B0. In other words, increasing the

intensity of the field results in a suppression of the direct transfer of kinetic energy (compatible with
the steeper energy spectrum observed in Fig. 3) and in the development and increase of an inverse
transfer (compatible with the growth of energy at small k⊥ in Fig. 3).

The kinetic helicity fluxes in runs in set B behave in a similar way, but with two notable differences.
As in the case of the kinetic energy, 	�h becomes negligible for large B0. However, �−

h does not
increase with B0 and instead it fluctuates around zero (as expected for a system without an inverse
transfer of helicity), and as a result �+

h does not decrease as abruptly with B0 as does �+
v . Figure 6
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FIG. 5. Top: Flux of kinetic energy for runs in set A (without helicity), for different values of B0, and
time-averaged for long times on the inverse cascade scales. Bottom: Same for runs in set B (with helicity). The
flux is shown as a function of k for run A0 and as a function of k⊥ for all other runs. In both cases, �+ decreases
as B0 is increased, negative values of the flux are observed for k < kf for large values of B0, and 	� decreases
towards zero.

shows the ratio of the direct helicity flux �+
h to the direct energy flux �+

v , as a function of B0 for
all the runs with helicity. To have a dimensionless ratio, and considering the Schwarz inequality, the
direct helicity flux �+

h is normalized by the helicity (and energy) injection wave number kf , such

FIG. 6. Ratio of maximum direct helicity flux �+
h to the maximum of direct kinetic energy flux �+

v

normalized by kf , as a function of B0.
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that the ratio �+
h /(kf �+

v ) is unity when the kinetic energy and kinetic helicity fluxes are balanced.
As B0 increases, so does �+

h /(kf �+
v ). In other words, for large B0 and with mechanical helical

forcing, the direct cascade of helicity dominates over the direct transfer of kinetic energy to small
scales.

D. Scaling of helicity at small scales

The results above indicate that in runs with injection of kinetic helicity and with a strong guide
field, the inverse transfer of kinetic energy results in a diminished transfer of kinetic energy towards
small scales. As a result, kinetic helicity, which can only be transferred towards smaller scales and
which suffers a cascade in the HD limit, dominates the direct cascade. This is more clear in run B8,
in which the normalized direct kinetic helicity flux is twice larger than the direct energy flux. This
allows us to derive scaling laws for the kinetic energy and helicity spectra.

Let us assume that, for large enough B0, the direct flux of kinetic helicity is large enough that
the direct flux of energy can be neglected. Moreover, as magnetic fluctuations are very small and
the system is almost in a hydrodynamic regime, we can then assume that at the direct inertial range
(i.e., for wave numbers larger than kf ) the helicity flux is approximately constant,

�+
h ∼ σ ∼ δh�

τ�

τa

τ�

, (10)

where σ is the helicity injection rate (equal to the helicity dissipation rate in the turbulent steady state),
δh� is the helicity at scale �, u� is the characteristic velocity of eddies of size �, τ� ∼ u�/�⊥ is the eddy
turnover time (�⊥ is the eddy size in the direction perpendicular to B0, as the eddies are almost 2D),
and τa ∼ �‖/B0 ∼ L/B0 is the Alfvén time (for large B0, the characteristic length in the direction
parallel to the guide field is the box size, i.e., �‖ ∼ L). In isotropic and homogeneous turbulence, the
helicity cascade rate (and the flux) would be estimated following Kolmogorov phenomenology as
σ ∼ δh�/τ� (see, e.g., [40]). However, in the presence of Alfvén waves, the waves are expected to
slow down the transfer linearly as the ratio of the two relevant time scales in the system (the Alfvén
time and the turnover time) [24,41]. Thus, the cascade rate for helicity in Eq. (10) must include the
factor τa/τ�. Considering E(k⊥) ∼ u2

�/k⊥ and H (k⊥) ∼ δh�/k⊥, from Eq. (10) we obtain

E(k⊥)H (k⊥) ∼ 1

k4
⊥

σB0

L
. (11)

Assuming H (k⊥) ∼ k−h
⊥ and E(k⊥) ∼ k−e

⊥ we obtain

e + h = 4, h � e − 1, (12)

where the first expression comes from Eq. (11) and the second comes from the Schwartz inequality
for E and H . The equality holds for a flow with maximal helicity, in which case e = 5/2 and h = 3/2
(see the slopes shown as references in Fig. 3). Note that in practice a turbulent system with maximal
helicity cannot be obtained even with maximal helical forcing, as the development of instabilities
and the growth of nonlinearities in the flow require the system to depart from the state of maximal
helicity (which makes the nonlinear terms exactly zero in the HD case) [42].

It is interesting to note that similar scalings were predicted and observed in other systems that
develop an inverse cascade of energy, and in which the helicity could then dominate the direct cascade
range. Examples include the case of helical rotating turbulence [25,32] and truncated versions of
the Navier-Stokes equation [33]. To see if the relation given by Eq. (12) is compatible with the data,
we show in Fig. 7 the product of the kinetic energy and helicity spectra compensated by k−4

⊥ for
run B8. We also show in this figure the kinetic helicity spectrum H (k⊥), compensated by k

−3/2
⊥ for

the same run. If the spectra follow the predicted power laws, when compensated they should be flat
in the inertial range. Indeed, both spectra show a reasonable agreement with the phenomenological
argument and with Eq. (12).
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FIG. 7. Top: Compensated spectrum H (k⊥)E(k⊥)/k−4
⊥ for run B8 (with mechanical helical forcing, and

B0 = 8). Bottom: Spectrum of helicity H (k⊥) in the same run, compensated by k
−3/2
⊥ .

From Eq. (12) it also follows that the relative helicity should remain constant in the inertial range.
The relative helicity is defined as

h(k) = H (k)

kEv(k)
, (13)

where k can be replaced everywhere by k⊥ in the anisotropic case. From Schwarz inequality, h(k)
and h(k⊥) can take values between −1 and 1, with zero corresponding to the nonhelical (i.e., mirror
symmetric) case. In helical isotropic and homogeneous 3D HD turbulence, h(k) ∼ k−1 [40]. From
Eq. (12), in the anisotropic case h(k⊥) should decrease slower than k−1

⊥ if the direct cascade of
kinetic helicity is dominant for wave numbers smaller than kf . In fact, h(k⊥) should be independent
of k⊥ if the system is maximally helical.

Figure 8 shows the relative helicity spectrum h(k⊥) for runs B4 and B8. Only in the dissipative
range (i.e., for large perpendicular wave numbers) does the relative helicity follow a ∼k−1

⊥ decay, with
a slower decrease for run B8. At intermediate wave numbers h(k⊥) varies slowly near k = kf = 10
(specially for run B8), and decreases slower than ∼k−1

⊥ in the inertial range, in reasonable agreement
with the phenomenological argument presented above.

E. Energy dissipation rate

The change in the fluxes and in the scaling laws followed by the kinetic energy at small scales
when helicity is present should also have an impact in the energy dissipation rate of the system. Note
that as magnetic field fluctuations are negligible for large B0, most of the energy must dissipate as
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FIG. 8. Relative helicity spectrum h(k⊥) for runs B4 and B8 (both with kinetic helicity, and respectively
with B0 = 4 and 8). A slope k−1

⊥ is shown as a reference. Note the relative helicity spectrum is shallower than
k−1

⊥ everywhere except in the dissipative range.

mechanical energy, whose rate of dissipation is given by 2ν�, where

� = 1

2

∫
ω2 dV (14)

is the enstrophy. Figure 9 shows the mechanical energy dissipation rate as a function of B0 for runs
in sets A and B (i.e., respectively without and with helical mechanical forcing). For runs without
helicity the energy dissipation rate decreases with increasing B0, which is to be expected as the
kinetic energy spectrum goes from a Kolmogorov spectrum (for B0 = 0) to a steeper spectrum
compatible with ∼k−3

⊥ , resulting in less excitation of fluctuations at small scales. However, for the
simulations with helical forcing, the energy dissipation rate either fluctuates or increases slowly with
B0. This is consistent with a shallower spectrum for the energy (Ev ∼ k

−5/2
⊥ if helicity is maximal),

and also indicates that a larger fraction of the energy is transferred to small scales in this case.
The inset in Fig. 9 also shows the kinetic energy dissipation rate normalized by the mechanical

energy injection rate. This ratio is also important as the mechanical energy injection rate ε also
depends on B0. The ratio 2ν�/ε varies only slowly with B0, and increases as B0 increases (i.e., ε

behaves similarly as 2ν� does as B0 is varied). As expected, the ratio goes towards a value close to
unity for large values of B0. This is to be expected as for strong guide fields the system is almost

FIG. 9. Kinetic energy dissipation rate (2ν�) as a function of B0, for simulations with and without helical
forcing. The inset shows the kinetic energy dissipation rate normalized by the energy injection rate (ε) as a
function of B0. As expected for the case with negligible magnetic fluctuations, for large B0 this ratio approaches
unity, as energy can only be dissipated by velocity fluctuations.
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FIG. 10. Top: Power spectrum of magnetic field fluctuations for simulations with zero helicity (runs in set
A). Bottom: Same for the two simulations with strongest guide field, runs A8 (B0 = 8, αh = 0) and B8 (B0 = 8,
αh = π/4). A slope k−1

⊥ is shown as a reference.

hydrodynamic (i.e., magnetic field fluctuations are negligible), and thus the energy injected in the
system can only be dissipated through velocity field fluctuations. In other words, for the HD regime
we expect the Ohmic dissipation to go to zero and ε ≈ 2ν� in the steady state (with the small
difference ε − 2ν� = dEv/dt being responsible for the slow growth of energy associated with the
inverse cascade).

F. Scaling of magnetic energy fluctuations

From Table I, we observe that the r.m.s. magnetic fluctuations 〈|b|2〉1/2
t decrease as B0 increases,

being an order of magnitude less than the r.m.s. velocity field fluctuations for B0 = 4, and two orders
of magnitude smaller for B0 = 8 (see also Fig. 2). Although magnetic field fluctuations are small for
large B0, it is still interesting to see how magnetic energy is distributed in different scales. Figure 10
shows the energy spectrum of magnetic field fluctuations. As already mentioned, these fluctuations
are created by the deformation of the guide field by the turbulent velocity field. This process of
induction has already been observed in some experiments of MHD flows with a guide field using
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FIG. 11. Top: Probability density functions (PDFs) of the parallel spatial derivative (i.e., the spatial
derivative in the direction of the guide field) of a component of the velocity perpendicular to the guide field
(∂‖v⊥), for all runs. Bottom: PDFs of the component of the velocity parallel to the guide field (v‖) for all runs.

gallium [19]. In this case, from dimensional analysis we can expect [19]

EB(k⊥) ∼ f B2
0k−1

⊥ , (15)

where f = f (U/B0,Re,Rm) is a dimensionless factor. This power law is indicated in Fig. 10 as a
reference. All spectra are in good agreement with the power law except for the runs with mechanical
helicity injection, which depart from this law as B0 increases. In Fig. 10 we show the behavior of the
spectrum in run B8 (with helicity, and with B0 = 8), which shows the most dramatic departure with
an almost flat spectrum EB(k⊥). This indicates that small scale fluctuations of the velocity must be
different in the helical and nonhelical runs, as they are responsible for the deformation of the guide
field and for the induction mechanism (see below).

G. Velocity statistics and vertical gradients

Finally, confirmation that the flows approach a 2D regime for large values of B0 can be also
obtained from field visualizations in real space, or from studying the statistical properties of the
fields and of the field gradients in real space. In Fig. 11 we show the probability density function
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(PDF) of the velocity field gradient in the direction parallel to B0, of a component of the velocity
field perpendicular to the guide field, i.e., ∂‖v⊥ = B0/B0 · ∇v⊥. The PDF is very wide for run A0
(no guide field) and becomes narrower as B0 is increased, indicating vertical gradients decrease
with B0 and confirming the transition of the flow towards a 2D regime for large B0. However, the
simulations with helical forcing (runs in set B) always show slightly stronger tails in the PDF than
the simulations with non-helical forcing (runs in set A); compare, e.g., the PDFs of ∂‖v⊥ for runs
A8 and B8 in Fig. 11.

Figure 11 also shows the PDF of the component of the velocity field parallel to the guide field,
v‖ = v · B0/B0. Interestingly, the runs with helicity present a greater dispersion. This results from
the combination of the direct transfer of kinetic helicity and the presence of the guide field which
makes the flow quasi-2D. As the flow has to be helical at small scales, and as the vorticity is mostly
aligned parallel to the guide field (resulting from the bidimensionalization of the flow), the flows in
set B must keep larger values of the parallel velocity field (and correlated with the perpendicular
velocity) to maintain the small scale helicity.

IV. CONCLUSIONS

We studied the transition of a three-dimensional magnetohydrodynamic flow forced only
mechanically as the strength of the guide field was increased. Two cases, one with nonhelical
mechanical forcing, the other with maximally helical mechanical forcing, were compared. The
first case is similar to systems studied before by other authors [20], in which a transition to a
two-dimensional hydrodynamic regime was found, with properties reminiscent of those found in a
phase transition [21,22], and with the strength of the guide field acting as the order parameter. The
second case was not considered before, and although it shares similarities with the nonhelical case,
it also presents important differences.

In all cases the behavior of the system for large guide fields B0 was found to be consistent with
a transition towards a two-dimensional hydrodynamic regime. Magnetic field fluctuations become
negligible (with r.m.s. magnetic fluctuations decreasing as b ∼ B−2.2

0 ), velocity field fluctuations
become anisotropic and dominate the total energy, and the kinetic energy spectrum grows at scales
larger than the forcing scale. The development of an inverse transfer of kinetic energy was confirmed
by the growth of a peak of the kinetic energy spectrum at the smallest available wave numbers in
the domain, and by inspection of the kinetic energy flux which becomes negative at small wave
numbers. In agreement with this behavior, simulations with nonhelical forcing and large guide field
show a small scale spectrum compatible with a power law ∼k−3

⊥ , which is the spectrum of energy in
the direct cascade range of 2D HD turbulence, as already reported in Ref. [20].

In the presence of mechanical helicity, the spectra at small scales (i.e., at wave numbers larger
than the forcing wave number) change. For strong guide fields, the kinetic energy spectrum becomes
shallower, and an even shallower spectrum of kinetic helicity develops. This is accompanied by a
large transfer of helicity towards small scales, which dominates over the direct transfer of kinetic
energy. In this case, the system seems to still evolve towards a quasi-two-dimensional regime, but
in which the three components of the velocity must be correlated (and non-negligible) to satisfy the
constraint given by the amount of kinetic helicity in the flow. Thus, velocities along the direction of
the guide field are larger than in the nonhelical case, parallel velocity gradients (albeit still small) are
also larger than in the former case, and the dissipation rate changes with the helical flows dissipating
more kinetic energy than the nonhelical ones.

Based on these results we presented a phenomenological argument that predicts a scaling for the
kinetic energy and helicity spectra, respectively E(k⊥) ∼ k−e

⊥ and E(k⊥) ∼ k−h
⊥ with e + h = 4 and

h � e − 1 (with the equality holding in the maximally helical case), and which is in good agreement
with the data. This scaling corresponds to a system in which the dynamics of the small scales are
dominated by a direct cascade of kinetic helicity. Finally, while the small magnetic field fluctuations
excited by induction follow a power law ∼k−1

⊥ in the nonhelical flow, in the helical case the changes
in the small-scale velocity changes this scaling significantly.
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There are several examples of different regimes of magnetohydrodynamic turbulence in the
literature, and it is thus unclear whether a universal regime exists for which a unifying theory can be
developed. The results presented here show another regime so far unexplored, in which the system
behaves as a strongly anisotropic flow, energy self-organizes at large scales, and mechanical helicity
is transferred towards small scales. Exploration of these different regimes can shed new light on
the properties of turbulence in conducting fluids, relevant for space physics, industrial flows, and
laboratory experiments.
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