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Abstract 

The purpose of this work was to evaluate γ-irradiation effects on native microbiota, some 

phytochemicals and sensory attributes of fresh spinach (Spinacia oleracea L.) throughout 15 days 

of storage (6 ± 1 °C). The proposed treatment (1.5 kGy) effectively reduced native microbiota 

extending shelf life under refrigeration to 14 days, and the evaluated phytochemicals (polyphenols, 

antioxidant capacity, chlorophyll, carotenoids) were preserved with the exception of ascorbic acid, 

which was reduced by more than 80% after treatment. Sensory acceptability, evaluated by a 

consumer panel, of samples irradiated either at 1.5 or 3.0 kGy was good till the last analysis date 

(day 14). The target dose had a great performance, presenting scores in some attributes significantly 

higher than those of control samples (overall liking and appearance on day 2). Overall, the 

performance of gamma rays was acceptable and significantly increased product acceptability; 

therefore it represents a feasible alternative for spinach disinfection. 

 

Practical Applications 

Gamma irradiation has attracted attention as a potential non-thermal decontamination strategy to 

ensure the safety of fresh fruits and vegetables. Several studies have demonstrated the high 

efficiency of this technology applied on different vegetables to control typical pathogens, but 

vegetables tolerance to radiation can vary, so process validation is required in each case. Hopefully 

the results presented herein could encourage large scale adoption of this technology by the fresh 

produce industry. 

 

Keywords: Non thermal technology; Leafy vegetables; Spinacia oleracea L.; Preservation. 

 

1. Introduction 

 

In the last years consumers are more prone to request high quality on food and are willing to 

pay a premium price for it (Parlato et al. 2014). Minimally processed vegetables (MPV) are 

demanded due to their wholesomeness and fast preparation (Sagong et al. 2011). Stress caused by 
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handling, washing, cutting, packaging and storage under a low O2 atmosphere due to respiration, in 

the so-called “modified atmosphere packaging” (MAP) affects their physiology and biochemistry, 

which impairs quality and shelf-life (Watada et al. 1996). These products are good substrates for the 

growth of microorganisms, either spoiling or pathogenic, during production, transport, processing, 

marketing and storage; consequently, the number of foodborne outbreaks associated with their 

consumption is increasing worldwide (Olaimat and Holley 2012). In 2006 one of the greatest 

foodborne outbreaks in USA took place due to an E. coli O157:H7 contamination in fresh spinach, 

which led to 206 reported illness cases (Hanning et al. 2009; Lynch et al. 2009). The latter should 

concern food scientists and governments not only because they affect people´s health, with fatal 

consequences in some cases, but also because of the tremendous economic losses inflicted to the 

health care systems (Roberts 2014). The food industry is also economically damaged due to recalls 

and distrust. 

Pre-harvest strategies, such as the application of Good Agricultural Practices (GAPs), together 

with proper disinfection procedures are critical steps to ensure MPV safety (Goodburn and Wallace 

2013). Unfortunately, current production and processing practices cannot be relied upon to ensure 

pathogen-free fresh produce (Doyle and Erickson 2008). The widespread disinfection with sodium 

hypochlorite solution only achieves microbial reductions between 1 and 2 log cycles, which is not 

enough for providing safe products (Warning and Datta 2013). Despite its popularity and 

convenience, the effects of chlorine on pathogens inoculated onto produce are considered 

inconsistent (Neal et al. 2012). Additionally, its use is criticized due to the possible formation of 

carcinogenic compounds (Gómez-López et al. 2014). Consequently, there is a growing interest in 

the development of alternative disinfection technologies to overcome this drawback (Ölmez and 

Kretzschmar 2009; Serna Villagomez et al. 2010). 

Among disinfection technologies, γ-irradiation has attracted attention as a potential non-

thermal decontamination strategy to ensure the safety of fresh fruits and vegetables (Farkas et al. 

1997; Horak et al. 2006). Furthermore, USA regulations have allowed the use of ionizing radiation 

for pathogen control and shelf life extension of fresh iceberg lettuce and spinach up to 4.0 kGy 

(Food and Drug Administration, 2008). Several studies have demonstrated the high efficiency of γ-

irradiation applied on different MPV to control typical pathogens associated with these products 

(Fan et al. 2012; Fan and Sokorai 2011a, 2008; Niemira 2007, 2003; Niemira et al. 2005; Niemira et 

al. 2003; among others), even on microorganisms internalized into vegetal tissues, which is a very 

particular capacity as compared with other preservation technologies (Doyle and Erickson 2008; 

Gomes et al. 2009; Niemira 2007). However, the effectiveness of this treatment is highly dependent 

on the microorganism under consideration, processing and storing conditions, packaging material, 

and food matrix. Hence, vegetables tolerance to radiation can vary and process validation is 

required in each case (Fan et al. 2008; Gupta et al. 2012; Niemira 2008). 

Considering that fresh spinach leaves have been highly demanded by consumers which 

doubled their production in the last ten years, reaching roughly 23 Mt p.a. (FAOSTAT, 2015), and 

that recent cases of foodborne outbreaks were associated with spinach consumption, the purpose of 

this work was to evaluate γ-irradiation effects on native microbiota, some phytochemicals and 

sensory attributes of fresh spinach (Spinacia oleracea L.) throughout refrigerated storage. 

 

2. Materials and methods 

 

2.1 Raw material and sample preparation 

Spinach leaves (Spinacia oleracea L.) were directly obtained from greenhouses in Buenos 

Aires province, Argentina. The leaves were harvested during November and transported under 

refrigeration to the laboratory within the first hour after harvest. Plants were cut to discard roots and 

the lower portions of stems. Only whole leaves, uniform in size and color, without visually evident 
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defects were selected, then dipped in tap water 1:20 (w:v) for 5 min,  centrifuged for 30 s in a sterile 

domestic salad spinner, and packed in 20 g units (experimental unit) using polyolefin PD960 

(Cryovac®, Duncan, USA). 

 

2.2 Irradiation treatments 

They were carried out at the semi-industrial 60Co facility (Ezeiza Atomic Centre-National 

Atomic Energy Commission, Buenos Aires province, Argentina), with an activity of roughly 600 

kCi. Spinach bags were arranged in styrofoam refrigerated boxes during transportation to the 

irradiation facility and treatment. Samples were irradiated at 0 (control), 1.5 and 3.0 kGy while 

being maintained at 4 ± 1 °C. The minimum employed radiation dose was chosen considering D10 

value of Listeria innocua ATCC 33090, employed as surrogate of Listeria monocytogenes in a 

previous experience, which turned out to be 0.25 kGy (Rubinstein et al. 2013). Listeria as a gender 

is considered one of the most radioresistant non-spore-forming bacteria (Niemira et al. 2003). The 

maximum employed radiation dose was tested in order to consider possible dose dispersions at a 

potential industrial scale treatment (Horak et al. 2006). Measurements of absorbed radiation doses 

were performed using silver dichromate dosimeters (ISO, 2003). After treatment, samples were 

brought to the laboratory and stored under refrigerated conditions (6 ± 1 °C) for 15 days. 

 

2.3 Microbiological analysis 

Mesophilic bacteria (MB), psychrotrophic bacteria (PB) and yeasts and molds (Y&M) counts 

were determined as the average of four independent replicates according to ICMSF (1983). A 

criterion was adopted in order to determine the microbiological acceptability of spinach leaves. For 

mesophilic bacteria, a maximum count of 7.7 log CFU.g-1, taken from French regulations, was 

established as an acceptable level in ready-to-eat vegetables (Corbo et al. 2006; Corbo et al. 2004); 

for yeasts and molds, Fleet (1992) suggested a maximum level of 5 log CFU.g-1.  

 

2.4 Phytochemicals analysis 

2.4.1 Ascorbic acid  

Ascorbic acid content was determined according to AOAC 967.21(AOAC International, 

1995) by titration with 2,6-dichloroindophenol; results were expressed as mg of ascorbic acid.100 g-

1 fresh tissue (FT). Values reported are the mean of four independent determinations. 

 

2.4.2 Antioxidant capacity and total phenolic content 

The extraction was carried out following the methodology proposed by Viacava et al. (2015). 

Antioxidant capacity was evaluated by the DPPH radical scavenging assay according to Viacava et 

al. (2015), results were expressed as mg ascorbic acid.100 g-1 FT. Total phenolic content was 

determined by the Folin-Ciocalteu method (Singleton et al. 1999), being results expressed as mg 

gallic acid.100 g-1 FT. Measurements were done in triplicate. 

 

2.4.3 Determination of chlorophylls and carotenoids 

AOAC methodology 942.04 (AOAC International, 1995) was employed to obtain chlorophyll 

and carotenoids extracts. Chlorophyll, expressed as mg.100 g-1 FT, and carotenoid, expressed as 

mg.100 g-1 FT,  were determined according to the equations proposed by AOAC International 

(1995) and Scott (2001), respectively. Measurements were done in triplicate. 

 

2.5 Sensory evaluation 

Sensory analysis were carried out by a consumer panel composed of 30 – 35 members aged 

between 20 and 60,  with basic to no knowledge about food irradiation, who evaluated  appearance, 

odor, taste, texture and overall liking of control and irradiated samples along storage using a 9-point 

hedonic scale (ASTM, 1996). Samples consisted of spinach leaves (3-4), randomly taken from a 
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pool of 10 – 12 experimental units, which were placed into codified polypropylene disposable trays 

covered with PVC-film. Samples were analyzed at days 2 and 6, while at day 14 only irradiated 

samples were tested. 

 

2.6 Statistical analysis 

Data were analyzed using R 3.2.2 version (R Core Team, 2015). For all experiments, General 

Linear Model procedure was used for analysis of variance (ANOVA). For all cases, differences 

between levels of factors under analysis were assessed by Dunnett’s test (adjusted p-values by 

Bonferroni’s methodology). The fulfillment of the ANOVA requirements, the normal distribution 

of the data and the homoscedasticity, were tested by means of the Shapiro-Wilk’s and the Bartlett’s 

tests, respectively. Additionally, linear models were checked by analyzing distribution of residuals 

and residuals vs. fitted values. Two-sample t-test and Welch two-sample t-test, the latter when 

variances were not equal by means of the F test, were performed when required. The significance 

level for all the statistical procedures was 5%. 

 

3. Results and discussion 

 

3.1 Effect of irradiation treatments on native microbiota 

Figure 1 shows the evolution of native microbiota:  mesophilic bacteria (MB), psychrotrophic 

bacteria (PB), and yeasts and molds (Y&M) in control and irradiated samples during refrigerated 

storage. For MB and PB populations, the statistical analysis demonstrated significant main effects 

of the treatment and time factors, and their interactions. However, for Y&M only the main effects 

of factors were significant. Gamma irradiation at 1.5 kGy achieved initial reductions of 4.1, equal or 

greater than 4.1 (below detection limit), and 1.4 log CFU.g-1 with respect to control samples on day 

1 for MB, PB and Y&M; meanwhile at 3.0 kGy reductions of 4.7, equal or greater than 4.1 and 

equal or greater than 1.9 log CFU.g-1 were detected for MB, PB and Y&M, respectively. These 

results clearly demonstrate that the proposed irradiation achieved greater initial bactericidal and 

fungicidal power than those typically registered with sodium hypochlorite disinfection. In fact, in a 

previous work with the same raw material (Finten et al. 2015), this traditional disinfection treatment 

(200 ppm, pH 6.5) gave reductions of 1.9, 1.9, and 1.2 log CFU.g-1 for MB, PB, and Y&M, 

respectively. Furthermore, it has been demonstrated that the efficacy of γ-irradiation is not limited 

to the surface (Niemira 2007); it can reduce microorganisms that are protected in crevices and 

creases (Prakash et al. 2000a). 

Control samples presented a fast increase in MB counts since the first storage days, exceeding 

the established criterion by day 8 (Fig. 1A). On the contrary, MB counts of 1.5 and 3.0 kGy 

samples maintained the low values achieved after irradiation for several days and remained below 

the acceptability criterion throughout storage time. Differences in MB counts between control and 

irradiated samples were significant for the whole period. Even though microbial counts in irradiated 

samples were below the established criteria by day 15, further sampling was cancelled due to 

unacceptable visual quality noticed on the following days. A similar behavior was reported by 

Gupta et al. (2012), Prakash et al. (2000a), and Prakash et al. (2000b) who studied the effect of 

irradiation on native microbiota of other vegetables. Slightly different results were found by Kamat 

et al. (2003): they reported initial reductions in total bacteria of roughly 2, 4 and 5 log cycles, 

respectively for coriander leaves irradiated at 1, 2 and 3 kGy.  

Regarding PB, changes in their counts during storage were similar to those registered for MB 

(Fig. 1B). Initially, PB counts in irradiated samples were reduced under the detection limit and 

remained stable during the first 2 and 3 days, respectively for samples subjected to 1.5 and 3.0 kGy. 

Since day 3, PB growth in irradiated samples was reassumed but their counts were still significantly 

lower than in control samples, between 3 and 4 log cycles for 1.5 and 3.0 kGy samples, 

respectively. Even though psychrotrophic microorganisms are expected to be the dominant 
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microbiota under refrigerated storage (Ragaert et al. 2007), they are not regularly assessed by other 

researchers and there is no information available for comparison with other studies. 

 As expected according to scientific knowledge, yeasts and molds were the least sensitive of 

the tested microbial populations to γ-irradiation (Josephson and Peterson 1983), being their growth 

slope during storage time smaller than those of MB and PB (Fig. 1C). At the 8th storage day, control 

samples reached the adopted acceptability limit while irradiated samples had Y&M counts between 

1 and 2 log cycles lower, according to dose. Irradiated samples reached the criterion towards the 

end of the storage period (15 days), without significant differences with control sample. Neal et al. 

(2010), who irradiated spinach leaves with electron beam up to a maximum dose of 1.4 kGy, and 

Kamat et al. (2003) found similar microbial growth patterns. 

A strict maintenance of low temperatures, less than 5 ºC, is recommended in order to control 

the potential growth of Clostridium botulinum on fresh-cut vegetables packaged in a modified 

atmosphere (Austin et al. 1998). This is doubtfully achievable in practice throughout the 

commercialization period, particularly in developing countries. So the packaging material of 

irradiated fresh spinach should have enough oxygen permeability to avoid this risk, considering that 

as shelf life is extended by the irradiation treatment, carbon dioxide concentration due to leaves 

respiration increases into the package favoring anaerobic bacterial growth. Besides, irradiation at 

these low doses causes a microbiota selection, eliminating more radio-sensitive bacteria than C. 

botulinum. Attempts to extend shelf life by inhibiting the normal spoilage microorganisms should 

be balanced against the possibility of favoring C. botulinum growth and toxin production (Lilly et 

al. 1996). Nevertheless, C. botulinum is not likely to be a risk in the product proposed in the present 

research; mainly due to the high oxygen permeability of the packaging material and to the lower 

respiration rate that fresh whole leaves have as compared to fresh-cut leaves, which in this case 

resulted in oxygen levels into the package of 16% at the 15th refrigerated storage day (data not 

shown). 

 

3.2 Effect of irradiation treatments on phytochemicals 

As the nutritive value of spinach leaves has been reported not to be impaired by ionizing 

radiation treatments, particularly as far as folic acid is concerned (Müller and Diehl 1996), 

phytochemicals were chosen to be analyzed in the present work. They are non-nutritive plant 

substances that have health-promoting effects. Consumption of natural, fresh plant produce rich in 

phytochemicals has been reported to overcome some of the degenerative diseases that affect 

humans. However, improper processing, handling, and long-term storage of produce might result in 

minimal availability of these health-promoting compounds (Alothman et al. 2009). Figure 2 shows 

the effect of γ-irradiation on ascorbic acid (A), total polyphenols (B), and antioxidant capacity (C) 

of spinach samples along storage. 

Fan and Sokorai (2011b) reported that spinach was more tolerant to ionizing radiation than 

other leafy vegetables such as lettuce (Zhang et al. 2006), probably due to its higher ascorbic acid 

content, and so, higher antioxidant capacity. Ascorbic acid is the primary water soluble antioxidant 

in plant tissues, interacting with reactive species produced by water radiolysis, thus protecting cell 

constituents from oxidative damage (Cocetta et al. 2014). Ascorbic acid in the present study was 

significantly affected by factors time and treatment, their contents in irradiated samples were 

reduced since the first days of storage (Fig. 2A). Control samples presented higher contents but they 

were reduced by more than half on day 13. Similarly, reported losses in ascorbic acid at the 14th 

storage day were 33, 73, 84, 90 and 94% for 0, 1, 2, 3 and 4 kGy fresh-cut spinach leaves, 

respectively (Fan and Sokorai 2011b). Similar reductions were also found in baby spinach leaves 

treated with electron beam radiation up to 1 kGy (Gomes et al. 2008). Furthermore, Lester et al. 

(2010) who treated baby spinach leaves at doses up to 2 kGy, found that ascorbic acid was 

significantly reduced at 2 kGy, and affected at lower doses, depending on cultivar. On the other 
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hand, ascorbic acid in carrot and kale juice was stable when irradiated at 3 kGy and stored (10 ºC) 

for 3 days (Song et al. 2006). However, in spite of their high ascorbic acid content, generally 

spinach leaves are not considered a source of this vitamin by populations with a varied dietary 

intake in which citric fruits are consumed. 

Phenolics are a large class of natural phytochemicals that can be found in many edible plant 

products exhibiting powerful antioxidant activities. In such a capacity they are able to scavenge 

reactive oxygen species (ROS) generated endogenously and by chemical carcinogens. It has been 

reported that irradiation treatments can generate free radicals, thus leading to an induction of stress 

responses in plant foods, which in turn may lead to an increase in the antioxidant synthesis (Oms-

Oliu et al. 2012). Consistently with this, Song et al. (2006) observed that total phenolic content of 

carrot and kale juices substantially increased by applying an irradiation treatment.  

Irradiation can influence phytochemicals content and also the capacity of a specific plant to 

produce them. Under certain favorable conditions such as exposure to radiation sources, wounding, 

storage at low temperatures, and/or exposure to extreme temperatures, the concentration of plant 

phytochemicals might be enhanced (An et al. 2004; Antonio et al. 2011). Usually low and medium 

radiation doses have insignificant effects on antioxidants, depending on their radiosensitivity and 

the effect of irradiation itself on other food constituents that might be responsible for the production 

and/or the accumulation of phytochemicals in the plant (Alothman et al. 2009).  

Polyphenols content did not show a clear pattern but values among samples were very alike in 

each analysis date (Fig. 2B). Similar results were found by Fan (2005), on lettuce and endive 

irradiated up to 2 kGy; Arjeh et al. (2015), who treated sour cherry juice with γ-radiation doses up 

to 6.0 kGy; Banerjee et al. (2015), irradiating shredded cabbage at doses up to 2.0 kGy; and 

Brandstetter et al. (2009) studying the effect of 10 kGy of gamma irradiation on sage, thyme and 

marjoram. Ahn et al. (2005), found slightly increased antioxidant activity and phenolic contents on 

minimally processed Chinese cabbage irradiated at 0.5 kGy, though lower polyphenols values over 

1 kGy. An et al. (2004), irradiated green tea leaves at 40 kGy and found that antioxidant capacity 

was preserved, and anti-microbial activity was enhanced. 

Regarding antioxidant capacity, it was significantly affected by storage time. Lower values 

were found on irradiated samples at days 2 and 7, though in both cases, without significant 

differences (Fig. 2C). The latter could be partially explained by the loss of antioxidant activity due 

to the reduction observed in ascorbic acid content (Fig. 2A). 

In Figure 3 chlorophyll and carotenoids contents are shown; neither treatment nor storage 

time had significant effects. However, in irradiated samples their contents were barely reduced over 

time. Gomes et al. (2008) found resembling chlorophyll and carotenoids results when using electron 

beam irradiation up to 1 kGy. Lester et al. (2010), with doses of γ-rays up to 2 kGy, reported 

slightly lower values in carotenoids content at the end of storage. Furthermore, Nunes et al. (2013) 

did not find significant changes when irradiating arugula up to 2 kGy. Chlorophylls and carotenoids 

are highly unsaturated compounds with an extensive conjugated double-bonds system susceptible to 

oxidation, isomerization and other chemical changes during processing and storage (Oms-Oliu et 

al.2012). However, in the present study they could have been protected by the radical scavenging 

capacity of ascorbic acid. 

 

3.3Sensory analysis 

Figure 4 shows results corresponding to the sensory evaluation of control and irradiated 

spinach leaves by the consumer panel along storage time. On day 2 aspect and overall liking were 

significantly improved by the irradiation treatments and it could be associated with the slight 

increase in chlorophyll and carotenoids contents averages on day 2 (Fig. 3) possibly due to an 

increased bioavailability after irradiation treatments. On the other hand, odor, taste and texture were 

evaluated as alike in every sample. On day 6 there were no significant differences in any of the 
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evaluated attributes; nevertheless, 3.0 kGy samples were afforded the lowest scores of the three but 

still above 5: neither like nor dislike. 

At the end of storage, day 14, control samples could not be analyzed due to their high 

microbial load (Fig. 1). Samples irradiated at 1.5 were significantly better graded in every attribute, 

with the exception of odor, than those irradiated at 3.0 kGy, being all of them above score 5. Some 

panelists noticed differences in odor, texture and aspect according to radiation dose; “loss of turgor 

and sogginess” was sometimes mentioned after tasting 3.0 kGy samples. Texture softening has been 

associated with changes in pectic substances, hydrolysis of polygalactouronides and cellulose; as a 

consequence, turgor loss due to cellular damage (Prakash et al. 2000a). 

It is clear that the higher the radiation dose the greater its negative impact on sensory quality. 

However, this study indicates that spinach leaves irradiated and stored for 14 days can tolerate at 

least up to 3 kGy of γ-radiation even though the minimum target dose was smaller (1.5 kGy). Lower 

scores in every attribute evaluated at the end of the storage period were probably due to leaves 

senescence as it was previously observed by Piagentini et al. (2002). As a consequence of 

senescence, water loss is induced resulting in spinach wilting and shriveling which associated with 

microbial growth leads to product spoilage (Neal et al. 2010). 

Many authors have reported sensory quality data of irradiated leafy vegetables: Prakash et al. 

(2000a) (lettuce), Kamat et al. (2003) (coriander), Zhang et al. (2006) (lettuce), Fan and Sokorai 

(2008) (lettuce, cilantro, parsley, red cabbage, and spinach among other vegetables), Gomes et al. 

(2008) (spinach), Nunes et al. (2008) (arugula), Neal et al. (2010) (spinach), Fan and Sokorai 

(2011a) (lettuce), Fan and Sokorai (2011b) (spinach), and Fan et al. (2012) (lettuce and spinach), 

employing different methodologies, radiation doses, packaging, atmosphere  and storage conditions 

which led to some different results. Nevertheless, those authors who evaluated spinach leaves 

agreed that irradiation up to 1 kGy did not impair sensory quality (Fan et al. 2008). Contrary to the 

present results, Neal et al. (2010) found that spinach treated at 1.4 kGy showed significantly lower 

hardness scores as assessed by a trained panel. Fan et al. (2012) did not find significant differences, 

as compared with control, on overall appearance and sogginess of refrigerated spinach leaves even 

when irradiated at 3 and 4 kGy, and stored for 14 days; but they reported a significantly lower 

purchase intention. 

Low-dose gamma irradiation as a disinfection treatment for spinach leaves at low doses 

resulted in acceptable sensory quality even after 14 days of refrigerated storage. The target dose, 1.5 

kGy, had a great performance presenting scores in some attributes higher than those in control 

samples. Undesirable effects mainly on texture arose at day 14 in samples treated with 3.0 kGy, but 

this drawback could be tackled employing a different product loading configuration which allows 

lowering dose uniformity ratio (Dmax/Dmin) (ISO, 2011). Combination of ionizing radiation with 

other preservation technologies as hurdles should be studied in order to minimize doses and so 

optimize spinach leaves tolerance (Gomes et al. 2011; Goularte et al. 2004; Gupta et al. 2012; 

Moosekian et al. 2014; Neal et al. 2008). 

 

4. Conclusion 

 

Gamma irradiation at 1.5 kGy could constitute a feasible alternative for the disinfection of 

fresh spinach leaves. In the present work the adequacy of the proposed treatment was proved as 

native microbiota was effectively reduced which extended shelf life under refrigeration to 14 days, 

the evaluated phytochemicals were preserved with the exception of ascorbic acid, and the sensory 

acceptability was good. Product quality was still good even at the maximum absorbed dose of 3.0 

kGy, which fulfils the requisite Dmax/Dmin  2 established in some national regulations such as the 

Argentine. Hopefully these results could encourage large scale adoption of this technology by the 

fresh produce industry. 
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FIGURE 1. Evolution of native microbiota in control and irradiated spinach samples during refrigerated 

storage.  

A: mesophilic bacteria; B: psychrotrophic bacteria; C: yeasts and molds. Continuous dotted lines 

indicate the detection limit of the microbiological method (2 log CFU.g-1) and the semi-continuous 

dotted line (upper region) indicate the maximum acceptable level set for mesophilic bacteria and 

yeasts and molds. Data are presented as the means ± standard errors expressed as vertical bars (n= 4).  

Letter “S” at each day indicates significant differences with control (Dunnett’s test, p<0.05). Letters “a” 

and “b” indicate significant differences assessed by a two-sample t test (p<0.05). 

 

* Microbial counts were lower than 2 log CFU.g-1.  
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FIGURE 2. Evolution of ascorbic acid (A), total polyphenols content (B), and antioxidant capacity (C) during 

refrigerated storage for control, and irradiated spinach samples.  

Data are presented as the means ± standard errors expressed as vertical segments (n=4 for A, and n=3 for B 

and C).  Letter “S” at each day indicates significant differences with control (Dunnett’s test, p<0.05). 
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FIGURE 3. Evolution of total chlorophyll content (A), and carotenoids content (B) during refrigerated 

storage for control, and irradiated spinach samples.  

Data are presented as the means ± standard errors expressed as vertical segments (n=3). No significant 

differences between control and irradiated samples were found (Dunnett’s test, p<0.05). 
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FIGURE 4. Sensory analysis carried out on control and irradiated spinach samples during refrigerated 

storage on days 2 (A), 6 (B), and 14 (C). 

Data are presented as the means ± standard errors expressed as vertical segments (n= 26-33).  Letter “S” at 

each day indicates significant differences with control (Dunnett’s test, p<0.05). Letters “a” and “b” indicate 

significant differences assessed by Welch two-sample t test (p<0.05). 
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