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A B S T R A C T

Over the last years, researchers have addressed the automatic classification of calling bird species. This is
important for achieving more exhaustive environmental monitoring and for managing natural resources.
Vocalisations help to identify new species, their natural history and macro-systematic relations, while com-
puter systems allow the bird recognition process to be sped up and improved. In this study, an approach
that uses state-of-the-art features designed for speech and speaker state recognition is presented. A method
for voice activity detection was employed previous to feature extraction. Our analysis includes several clas-
sification techniques (multilayer perceptrons, support vector machines and random forest) and compares
their performance using different configurations to define the best classification method. The experimental
results were validated in a cross-validation scheme, using 25 species of the family Furnariidae that inhabit
the Paranaense Littoral region of Argentina (South America). The results show that a high classification rate,
close to 90%, is obtained for this family in this Furnariidae group using the proposed features and classifiers.

© 2017 Published by Elsevier B.V.

1. Introduction

Vocalisations are often the most noticeable manifestations of the
presence of avian species in different habitats (Potamitis, 2015).
Birds have been widely used to indicate biodiversity since they
provide critical ecosystem services, respond quickly to changes, are
relatively easy to detect and may reflect changes at lower trophic
levels (e.g. insects, plants) (Burkart et al., 1999; Louette et al., 1995).
Technological tools (such as photographic cameras, video cameras,
microphones, and mass storage disks) are useful for collecting data
about several patterns of bird populations. However, there are a
number of problems associated with them, such as poor sample
representation in remote regions, observer bias (Laje and Mindlin,
2003), defective monitoring (Betts et al., 2007), and high costs of
sampling on large spatial and temporal scales, among others.

Bird vocalisations have become an important research field,
influencing ethology (Hesler et al., 2011; Seddon and Tobias, 2010),
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taxonomy (Bergmann and Schottler, 2001; Raposo and Höfling,
2003; Schottler) and evolutionary biology (Lynch and Baker, 1994;
Päckert et al., 2003). One of the main activities that benefits from
vocalisation identification is ecosystems monitoring, where the tech-
nological advances allow registering and processing the recordings,
and improving the data collection in the field (Towsey et al., 2014).
This makes it possible to gather data in large and disjoint areas,
which is essential for conducting reliable studies.

Although some works describe vocalisation changes in certain
Furnariidae species (Areta and Pearman, 2009, 2013; MacKenzie
et al., 2002; Potamitis et al., 2014; Zimmer and Whittaker, 2000),
none of them simultaneously evaluates several vocalisations of
Furnariidae species from South America. In this study, vocalisations
belonging to 25 Furnariidae species that are distributed in the
Paranaense Littoral region (see Fig. 1) are analysed. This region
comprises the Argentinean Mesopotamia (Misiones, Corrientes and
Entre Ríos provinces) along with the provinces of Chaco, Formosa
and Santa Fe, and it is lapped by great rivers of the Plata basin
(Arzamendia and Giraudo, 2009). Over the last years, this region has
become an interesting place for studying bird vocalisations (Areta
and Pearman, 2009, 2013; León et al., 2014; Leon et al., 2015). In
addition, the work of researchers from the National Institute of
Limnology (INALI) along with the availability of Furnariidae species
would allow us to record and analyse these species in real-life
conditions in future studies. Recently, some authors have researched

http://dx.doi.org/10.1016/j.ecoinf.2017.01.004
1574-9541/© 2017 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.ecoinf.2017.01.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ecolinf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecoinf.2017.01.004&domain=pdf
mailto: emalbornoz@sinc.unl.edu.ar
mailto: ldvignolo@sinc.unl.edu.ar
mailto: juansarquis@conicet.gov.ar
mailto: evelinaleon@conicet.gov.ar
http://sinc.unl.edu.ar/
http://dx.doi.org/10.1016/j.ecoinf.2017.01.004


40 E. Albornoz et al. / Ecological Informatics 38 (2017) 39–49

Fig. 1. Paranaense Littoral region (Argentina).

the vocalisations and the natural history of Zimmer and Whittaker
(2000) used morphometric analysis, behavioural data and vocalisa-
tions to analyse the Pseudoseisura cristata. The role of several habitats
as well as natural history, taxonomy, morphology, vocalisations and
evolution for the Upucerthia saturatior was studied in (Areta and
Pearman, 2009, 2013).

Recognition of species in passeriformes is a challenging task
because to they produce complex songs and can adapt their content
over time. It is interesting to note that the song content can be
changed depending on the audience, for example, when the receiver
is male or female (Byers, 1996), or in order to match it with that
of their neighbours (Payne, 1996). Furthermore, they can take pos-
session of new songs or syllables during their lifetime (Marler,
1997). The family Furnariidae produces several songs and some
species manifest these as duets. It represents a synchronisation of
physiological rhythms in a natural behaviour, which adds more
complexity to the analysis. In addition, some species of the same
family show similar structures in their songs. These similarities are
manifested in introductory syllables or in the trill format, while
the complexity of duets within the family makes the analysis and
classification of vocalisations more difficult. Previous studies demon-
strated that there are differences in tone and note intervals between
males and females (Areta and Pearman, 2009, 2013; Pacheco and
Gonzaga, 2013; Zimmer and Whittaker, 2000). For this family, the
complexity of vocalisations was proved by means of playback exper-
iments. These showed that the different taxa express dissimilar
responses to similar patterns.

It should be noted that environmental conditions (humidity,
wind, temperature, etc.) may alter the recording process, modifying
the features that are present in the structure of songs and in
the calls (e.g. frequency, duration, and amplitude) (Harris, 1963,
1966; Zollinger and Brumm, 2015). Since these conditions may lead

to errors and distort subsequent analyses and results, researchers
usually use recordings from known databases. Even though these
registrations can be also affected by environmental issues, their
attributes and labels are validated by the scientific community and
consequently, they are more reliable than “homemade” records.

As mentioned in Spampinato et al. (2014) , new frontiers have
been opened in ecology (besides the analysis performed by expert
ecologists) due to the propagation of projects like Xeno-canto1 and
EcoGrid.2 The access to multimedia data has promoted an interdis-
ciplinary and collaborative science for analysing the environment.
Although human experts (who are sufficiently trained) can recog-
nise bioacoustic events with a high performance, this is a laborious
and expensive process that would be more efficient if they had the
technical support of a semi-automatic tool (Truskinger et al., 2015).
Finally, the goal pursued is the development of an automatic clas-
sifier that provide a high accuracy and involve the expert only for
evaluating the results. Automatic tools allow simultaneous studies
to be conducted and diverse bird communities to be monitored in
several areas at the same time, in order to identify when and how
the species vocalise. In addition, said tools could be used to create
complete inventories of bird communities in unknown or restricted
areas, which are essential for conservation or management plans.

In particular, the bird call identification task can be used in two
ways (Dong et al., 2015): call retrieval (detection) and call classi-
fication. In the call retrieval task, the objective is to identify one
or more calls in an audio recording, which can contain multiple
calls of different species overlapped or at different times. In the
classification task, a set of call classes must be defined and the clas-
sifier will be trained to recognise this fixed set. In this way, every
input audio (expected to contain only one call) will be classified
to one of those classes. A classification scheme can be defined as
a pipeline of three modules: preprocessing, feature extraction and
classification. The first one depends strongly on the recording pro-
cess and involves filtering, segmentation and enhancement of audio
signals. Furthermore, automatic methods for voice activity detection
(VAD) have been recently incorporated (Ptacek et al., 2015). Regard-
ing feature extraction, time- and frequency-based information was
employed (Cramer, 2013; Keen et al., 2014; Potamitis, 2015; Trusk-
inger et al., 2015). In addition, characteristics that were originally
developed for speech analysis are used in the context of bird call
recognition. Some of the features present in the literature are mel
frequency cepstral coefficients (MFCCs) (Molau et al., 2001), linear
frequency cepstral coefficients (LFCCs) (Zhou et al., 2011), and stan-
dard functionals (mean, standard deviation, kurtosis, etc.) computed
over these (Briggs et al., 2012; Dufour et al., 2014; Ptacek et al.,
2015). Various techniques have been applied to bird call classifica-
tion: Gaussian mixture model (GMM) (Roch et al., 2007), Gaussian
mixture model-universal background model (GMM-UBM) (Xiong et
al., 2006), support vector machines (SVM) (Hearst et al., 1998), ran-
dom forest (RF) (Breiman, 2001), among others. In Ptacek et al.
(2015), LFCC features were used along with GMM-UBM to identify
some subjects from the same bird species.

A similar approach was proposed in Ganchev et al. (2015) for
recognising a single bird species using MFCCs. An interesting strategy
based on the pairwise similarity measurements, computed on bird-
call spectrograms, was evaluated in Keen et al. (2014), where the
authors used different classifiers to recognise four species. In Dufour
et al. (2014), thirty-five species were classified using a SVM classi-
fier and six functionals were obtained from each MFCC. A different
approach was proposed in Ventura et al. (2015), where a classifier
based on hidden Markov models (HMMs) was used to recognise bird
calls through their temporal dynamics. Previous works developing

1 http://www.xeno-canto.org/.
2 http://www.aiai.ed.ac.uk/project/ecogrid/.
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full-automatic methods for vocalisation recognition can be exam-
ined in Giannoulis et al., ICML, Stowell and Plumbley (2013a,b), and
the current relevance of this topic is shown in some recent works
(Ganchev et al., 2015; Ptacek et al., 2015). However, none of these
works has addressed the vocalisation recognition of species belong-
ing to the Furnariidae family, which present similar parameters in
their vocalisations. Moreover, only a small part of the state-of-the-
art speech features have been employed in bird classification tasks.
In Schuller et al. (2014), a large set of state-of-the-art speech features
is described, comprising more than 6000 features, and many of these
are considered within this task for the first time in this work.

This study proposes the development of a bird call recognition
model for dealing with the family Furnariidae from the Paranaense
Littoral region of Argentina, which is the first approach for these
species. Our model is designed to use state-of-the-art classifiers
with speech-related parameterisations, and some feature selection
techniques are used to reduce dimensionality while maximising
accuracy. As a first step, a method for performing the VAD is
included. The model is tested in a cross-validation scheme in all
cases. Furthermore, the best results are discussed, and the confu-
sion matrix is analysed to introduce the misclassification and how
some similarities among some species could be addressed in order to
improve the performance.

The following section introduces the proposed features and clas-
sifiers. Section 3 deals with the experimental setup, presents the
implementation details and describes the validation scheme. The
results are presented and discussed in Section 4. In addition, the
implementation of a web-demo and an android application for test-
ing the model is explained. Finally, conclusions are summarised and
future work is commented in the last section.

2. Proposed features and classifiers

This section introduces the feature extraction process, two differ-
ent feature selection techniques and the classifier models.

2.1. Feature extraction

As mentioned above, the use of speech-based features is known
in bird call analysis, identification and classification. For these tasks,
the LFCCs and MFCCs sets (standards in speech recognition) showed
good performances (Dufour et al., 2014; Ptacek et al., 2015). An
extended state-of-the-art set of features related to human speech is
introduced below.

2.1.1. Speech inspired features
In the speech processing area, researchers have made a great

effort to find the best set of features for speech recognition,
speaker recognition, emotion recognition, illness state detection,
etc. (Schuller et al., 2009, 2011, 2013). In the INTERSPEECH 2013
ComParE Challenge (Schuller et al., 2013), a set of 6373 features
was presented which is considered the state-of-the-art in speech
processing. The feature set is built from 65 low-level descrip-
tors (LLDs) such as energy, spectral, cepstral (MFCC), voicing-
related characteristics (F0, shimmer, jitter, etc.), zero crossing rate,
logarithmic harmonic-to-noise ratio (HNR), spectral harmonicity,
psychoacoustic spectral sharpness, and their deltas (i.e. their first
temporal derivatives). These features are computed on a time frame
basis, using a 60-ms window with 10-ms step for F0 (pitch) and
zero crossing rate. The remaining features are computed using a
window size of 20 ms and the time contour of each attribute is
smoothed by a moving average filter. Specific functionals are then
computed for each LLD set. These include the arithmetic mean, max-
imum, minimum, standard deviation, skewness, kurtosis, mean of
peak distances, among others. Tables 1 and 2 provide an exhaustive
enumeration of all the LLDs and functionals used to constitute the

Table 1
Low-level descriptors (LLDs) (Schuller et al., 2011) . +D means that the first derivative
is computed and appended, to the feature vector computed for each analysis frame.

Low-level descriptors

Sum of auditory spectrum (loudness) + D

Sum of RASTA-style filtered auditory spectrum + D

RMS energy + D

harmonic-to-noise ratio (HNR) + D

Zero-crossing rate + D

RASTA-style filtering. Bands 1–26 (0–8 kHz) + D

MFCC 1-14 + D

Spectral energy 25–650 Hz, 1 k–4 kHz + D

Spectral roll off point 0.25, 0.50, 0.75, 0.90 + D

Spectral flux, entropy, variance + D

Skewness, kurtosis, slope + D

F0, probability of voicing + D

Jitter (local, delta) + D

Shimmer (local) + D

complete feature vector. In addition to the complete feature set
obtained by combining all LLDs and functionals (Full-Set), this work
also proposes a subset consisting of the complete set of function-
als computed only from the MFCCs, which results in a set of 531
attributes (MFCC + Fun).

To the best of our knowledge, no suitable baseline models are
available for comparing the performance of our proposal. In order to
create the baseline, previous works (Dufour et al., 2014; Fagerlund,
2007) were considered to define the classifiers and feature sets for
the bird song identification task. The first 17 MFCCs, their deltas and
acceleration coefficients were computed using overlapped frames.
Then, the mean and variance for each feature (over the entire song)
were calculated, which resulted in a 102-dimensional vector for each
recording.

2.1.2. Feature selection
Feature selection techniques were defined in order to reduce the

dimensionality of data while keeping the most relevant information.
This allows less complex models to be generated, which reduces the
number of parameters to estimate in the model and the computing
cost, and provides a similar or even improved performance. Feature
or attribute selection is commonly carried out by searching the space
of feature subsets, and each candidate subset is evaluated according
to some criteria (Hall, 1998).

In this study, the performance of two well-known attribute selec-
tion methods is compared: best first (BF) (Xu et al., 1988) and
linear forward selection (LFS) (Gütlein et al., 2009). The BF method
performs a greedy hill climbing using backtracking, which means
that it can search forward through a specified number of non-
improving nodes before the algorithm goes back. This algorithm
has proven to guarantee the best global subset without exhaustive
enumeration, given that the criterion used satisfies monotonicity.
The LFS algorithm is an extension of BF, which aims to reduce the
number of evaluations performed during the search process. The
number of attribute expansions is limited in each forward selec-
tion step, which drastically improves the runtime performance of
the algorithm (Gütlein et al., 2009). Both feature selection methods
need a criterion to evaluate each considered subset; therefore,
the correlation-based feature subset evaluation (CFS) method (Hall,
1998) was applied. This method assesses the predictive ability of
each attribute in the subset, and also considers the redundancy
among them. Finally, the method picks up the subsets whose
attributes are highly correlated within the class and have low inter-
correlation among classes. Both feature selection methods were
implemented using WEKA library3 (Hall et al., 2009).

3 Software available at http://www.cs.waikato.ac.nz/ml/weka/.
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Table 2
Functionals applied to LLDs (Schuller et al., 2011) .

Base functionals

Quartiles 1–3
3 inter-quartile ranges
1 % percentile (≈min), 99 % percentile (≈max)
Percentile range 1 %–99 %
Arithmetic mean, standard deviation
Skewness, kurtosis
Mean of peak distances
Standard deviation of peak distances
Mean value of peaks
Mean value of peaks−arithmetic mean
Linear regression slope and quadratic error
Quadratic regression a and b and quadratic error
Simple moving average
Contour centroid
Duration signal is below 25 % range
Duration signal is above 90 % range
Duration signal is rising/falling
Gain of linear prediction (LP)
Linear prediction coefficients 1–5
F0 functionals
Percentage of non-zero frames
Mean, max, min, std. dev. of segment length
Input duration in seconds

2.2. Classifiers

Several techniques from machine learning and computational
intelligence have been used in bird call identification (Ptacek et
al., 2015). Based on previous studies, the analysis in this work
was focused on some of the most commonly used classification
algorithms. The following subsections briefly introduce three
techniques: multilayer perceptron, random forest and support vec-
tor machines. WEKA and Scikit-Neuralnetwork4 libraries were
employed to apply these classifiers.

2.2.1. Multilayer perceptron
A multilayer perceptron (MLP) is a class of artificial neural net-

work that consists of a set of process units (simple perceptrons
or neurons) arranged in layers. In the MLP, the nodes are fully
connected between layers without connections between units in the
same layer (Fig. 2). The input of the MLP is the feature vector (x),
which feeds each of the neurons of the first layer, the outputs of this
layer feed into each of the second layer neurons, and so on (Haykin,
1998). The output of a neuron is the weighted sum of its inputs plus
the bias term, and its activation is a function (linear or nonlinear) as

y = F
(

n∑
i=1

yixi + h

)
. (1)

The output of the MLP (i.e. the output of the neurons in the
last layer) is decoded to provide the predicted label for a given
input example. The backpropagation method (Haykin, 1998) is com-
monly used to obtain the synaptic weights for the connections in
the network (yi). This method computes the gradient of a loss func-
tion, with respect to all network weights. The weights are then
updated according to the gradient, with the aim of minimising the
loss function (usually the mean square error). Since the method
requires a desired output for each training input in order to calculate
the error, it is considered as a supervised learning technique.

4 Software available at http://scikit-neuralnetwork.readthedocs.org.

Fig. 2. Example of a MLP network model.

In this work, three architectures were considered: one hidden
layer with the number of neurons set as (Num.of inputs +
Num.of outputs)/2 (MLP1), one hidden layer with the number of neu-
rons set to the number of inputs (MLP2), and two hidden layers set
as in MLP2 and MLP1, respectively (MLP3).

2.2.2. Random forest
Classification and regression tree (CART) models, the so-called

decision trees, are widely known in machine learning and data
mining (Murphy, 2012). Some relevant properties include their
robustness to different feature transformations, such as scaling, and
their ability to discriminate irrelevant information while producing
easily analysable models. These models are constructed by recur-
sive partitioning the input space and region-specific models are then
defined for the resulting scheme (Breiman, 2001). This can be repre-
sented with a tree, where the nodes indicate the decision functions
and each leaf stands for a region (Fig. 3).

Random forest (RF) is an ensemble learning method whose deci-
sion is based on the average of multiple CARTs, which are trained on
different parts of the same training set, with the aim of reducing the
variance of CART overfitting. The computation can be expressed in
terms of the bagging technique (Murphy, 2012) as

f (x) =
1
K

K∑
k=1

tk(x) (2)

Fig. 3. Example of CART using feature vector ∈R3.

http://scikit-neuralnetwork.readthedocs.org
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where tk is the k-th tree. Here, the RF was implemented following
(Breiman, 2001), considering 10 and 100 trees with unlimited depth.

2.2.3. Support vector machine
A support vector machine (SVM) is a supervised learning method

that is widely used for pattern classification and is supposed to have
good generalisation capabilities (Vapnik and Cortes, 1995). Its aim
is to find a hyperplane that can separate input patterns in a suffi-
ciently high dimensional space. The distances from the hyperplane
to the patterns that are closest to it, on each side, is called a margin.
This margin needs to be maximised to reach the best generalisation.
In the binary case, this is done finding the w and w0 parameters by
means of a standard quadratic optimisation (Alpaydin, 2010; Vapnik
and Cortes, 1995):

min
1
2

‖w‖2

subject to (3)

rt
(

wT xt + w0

)
≥ +1, ∀t

where {xt, rt} is a pattern with rt = −1 if xt is class #1, or rt = +1 in
the other case.

It is known that a nonlinear problem could be solved as a linear
problem in a new space by making a nonlinear transformation
(Alpaydin, 2010). The new dimensions are then computed using
the basis functions by inner product. The kernel trick is a method
that solves this problem without mapping the features in the new
space; therefore, the kernel function is applied to the original space
(Alpaydin, 2010). Some of the more popular kernels used in SVMs are
the polynomial of degree q:

K
(
xt , x

)
=

(
xT xt + 1

)q
(4)

and radial-basis functions:

K(xt , x) = exp
[
−D(xt , x)

2s2

]
(5)

where xt is the centre, s is the radius and D(xt , x) is a distance func-
tion. In our experiments, the SVMs were trained using the sequential
minimal optimisation algorithm and considering the polynomial
kernel.

3. Experiments

This section describes the experimental framework used in this
study. First, a discussion on why and how the bird species were
selected from the known databases. Then, the implementation
details of the feature extraction and classifiers are presented. Finally,
the validation scheme used to evaluate the models is explained. A
general scheme of the whole process for the experiments is shown
in Fig. 4.

3.1. Study area and target species

The study area is located between 22◦25′ S62◦12′ W and 38◦0′
S57◦26′ W(Fig. 1), and comprises several ecoregions along the Paraná
River. These regions are Dry Chaco, Espinal, Pampa, Iberá Wetlands,
and Delta and Islands of the Paraná River (Burkart et al., 1999). The
family Furnariidae presents diverse vocalisations and some species
can even sing male-female duets. In spite of that, the experts are
usually able to identify them, reaching a good performance. The
vocalisations obtained from species of this family might be similar
and thus difficult to classify. In addition, the vocalisations from one
species can change depending on its geographical location.

The family Furnariidae includes 68 genera composed of 302
species (Clements et al., 2015). Being distributed in South America
and in a region of Central America (Noriega, 1991), it is one of
the most impressive examples of continental adaptive radiation.
This family has probably the highest morpho-ecological diversity in
birds, living in diverse habitats such as desert or arid regions, rocky
coasts, ravines, swamps, grasslands and forests (Irestedt et al., 2009;
Vuilleumier and Vaurie, 1980). The characteristics described above
plus the large number of studies about its taxonomy, the biological
and natural history (Areta and Pearman, 2013; Fjeldså et al., 2005;
Garcıá-Moreno et al., 1999; Irestedt et al., 2009; Olson et al., 2005;
Vuilleumier and Vaurie, 1980) and our own experience at INALI
make the family Furnariidae an interesting and open challenge to
study. Fig. 5 shows the tree structure of the 25 studied Furnariidae
species/genera.

3.2. Bird call corpus

To obtain a suitable number of vocalisations for training the
classifiers and evaluating the performance, records from two well-
known databases were selected, obtaining a total of 206 recordings.
From these, 90 recordings were selected from the Xeno-canto5

database (Joly et al., 2014; Planqué and Vellinga; Potamitis, 2015)
and 116 recordings were taken from the Birds of Argentina & Uruguay:
A Field Guide Total Edition corpus (Contreras et al., 2014; Leon et
al., 2015; Narosky and Yzurieta, 2010). This combination of different
data sources involves an additional complexity that the model
should be able to handle.6

3.3. Feature extraction

As mentioned earlier, the step prior to feature extraction is usu-
ally the preprocessing and it is carried out to standardise the audio
signals. A Wiener-based noise filter (Plapous et al., 2006) was applied
to the audio signals to reduce noise in the recordings. As all of the
utterances have an initial silence, the noise could be modelled.

The acoustic activity detection (where the information is con-
tained) is an active area of research (de Oliveira et al., 2015). In
this work, the endpoints of acoustic activity were computed using a
voice activity detector (VAD) based on Rabiner and Schafer’s method
(Giannakopoulos and Pikrakis, 2014).

The openSMILE toolkit (Eyben et al., 2013) was used to extract the
state-of-the-art features (Schuller et al., 2013) mentioned in the pre-
vious section. This is a feature extraction tool that allows a large set
of audio features to be extracted, and it is distributed free of charge
for research and personal use.7

3.4. Validation

Coefficients in vectors were normalised using the maximum and
minimum values (for each dimension) in the training set as follows:

Cnorm
i,j =

(Ci,j − Cmin,j)
(Cmax,j − Cmin,j)

, (6)

where Cnorm
i,j is the normalised coefficient j from recording i, Ci,j

represents the original value, while Cmin,j and Cmax,j represent the
minimum and maximum values of coefficient j from all the training
recordings.

5 http://www.xeno-canto.org/.
6 The list of audio files used in this work was included as Supplementary material.
7 Software available athttp://www.audeering.com/research/opensmile/.
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Fig. 4. Conceptual flowchart of the general whole process for the experiments.

The recognition rate estimation may be biased if only one training
partition and one test partition are used. To avoid these estimation
biases, a cross-validation was performed with the k-fold method
(Michie et al., 1994). For each experiment the classification results
by 10-fold stratified cross-validation (SCV) were computed, where
each fold was composed of 90% of data for training and the remain-
ing 10% was used for testing. Finally, the results were computed and
averaged over the 10 test sets.

Several classification measures were computed for accurately
visualising the performance of the models. The weighted average
recall or accuracy (ACC) is the number of correctly classified instances
divided by the total number of instances. Although this measure is
widely used, it can be biased when the classes are not balanced. If the
classes (species) are unbalanced, the unweighted average recall (UAR)

Fig. 5. Tree structure of the 25 studied Furnariidae species.

gives a more accurate estimation of the performance (Rosenberg,
2012). The UAR was computed as the average of all class accuracies
as:

UAR =
1
K

K∑
i=1

Aii
K∑

j=1
Aij

, (7)

where K is the number of classes and Aij is the number of instances
belonging to class i that are classified as j.

4. Results and discussion

The baseline feature set and the proposed feature sets were eval-
uated using all the classifiers described in Section 2.2, considering
the normalised attributes explained in Section 3.4. Also, LFS and BF
feature selection methods were used to reduce the size of the Full-
Set (6373 features), maximising accuracy while keeping the most
relevant information. Tables 3 and 4 present the results obtained
in terms of accuracy and UAR, respectively.6Table 3 shows that the
baseline set (102 features) provides high accuracy rates while the
proposed sets improve these results, and the best results are close
to 90%. However, the performance is lower when the Full-Set is used
because the models cannot be properly trained. This means that the
complexity of the classifiers is increased due to the high number of
inputs (especially in the case of MLP), and the small amount of data
available is not enough for appropriately training them, which causes
poor performance.

In order to assess how the imbalance of classes affects the results,
the UAR values should be analysed, taking into account the hit rates
for each class (Table 4). This table presents similar results, where

Table 3
Weighted average recall (accuracy) [%].

Feature vector MLP1 MLP2 MLP3 RF10 RF100 SVM

Baseline 85.92 86.89 78.64 68.45 80.10 84.95
MFCC + Fun 89.32 88.83 79.61 69.42 83.01 85.92

Full-Set 74.27 65.05 08.25 68.93 80.10 83.50
Full-Set + LFS 89.32 86.89 80.58 76.70 86.41 87.38
Full-Set + BF 89.32 89.32 80.58 76.70 86.41 87.38

Table 4
Unweighted average recall (UAR) [%].

Feature vector MLP1 MLP2 MLP3 RF10 RF100 SVM

Baseline 77.24 79.21 72.06 58.25 67.00 74.07
MFCC + Fun 79.96 80.85 69.16 58.08 70.43 75.18
Full-Set 61.90 53.55 05.06 55.74 65.24 72.46
Full-Set + LFS 82.21 78.74 68.65 64.20 73.65 77.82
Full-Set + BF 82.10 80.25 70.42 64.20 73.35 77.82
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the proposed feature sets improve the baseline performance. The
MFCC + Fun set (531 features) performs better than the baseline
for almost all classifiers, whereas both feature selection methods
applied over the Full-Set achieve the best performances. It is inter-
esting to note that MLPs and SVMs produce better results than RF for
all the feature sets. Finally, one can be conclude that the best per-
formance is obtained using the multilayer perceptron (MLP1) and
applying the LFS method over the Full-Set.

The dimension of the best feature set is 153, thus the system
has kept a very low dimensionality in addition to achieving the
best rates. The retained features include mostly spectral and cepstral
coefficients as described next. Thirty-six features were computed
based on the MFCC coefficients and some functionals (quartiles,
percentiles and mean, among others). Eleven features obtained from
the first derivative of MFCC (delta MFCC) (Zheng et al., 2001) and
the same functionals. Twenty-four spectral features were selected,
including roll-off (percentile of the power spectral distribution),
slope (which describes how rapidly the amplitudes of successive
component change), harmonicity (which evaluates the total strength
of harmonic structure) and flux (a measure that indicates how
quickly the power spectrum of a signal is changing) (Eyben et al.,
2013). Twelve features computed as functionals from frequency
band energies, particularly in bands of 250–650 Hz and 1000–
4000 Hz. Forty-four features obtained by applying functionals to
26 spectral bands filtered with RASTA (RASTA uses bandpass filter-
ing in the log spectral domain to remove slow channel variations)
(Hermansky and Morgan, 1994). Eleven features computed from
the auditory spectrum, which is inspired by psychoacoustic studies
on human primary auditory cortex and produces a time-frequency
representation. Five features computed as functionals from the
auditory spectrum filtered with RASTA (Hermansky and Morgan,
1994). Twelve features computed from the root mean square energy,
voicing, harmonic-to-voice ratio, jitter and zero crossing rate.

As the performance obtained is highly satisfactory (close to 90%)
and the amount of data is limited, a test of statistical significance like
the paired T-test (Demšar, 2006) is not relevant. However, our results
suggest that 5 samples per species are required for properly training
the model (see Table 5). Evidently, patterns from the same species
present some differences, therefore analyses where only one sample
is used to represent the species (as in Dufour et al., 2014 ) could be
not very reliable. Furthermore, confusions may be explained by cer-
tain similarities in vocalisations, such as waveform shapes, harmonic
content, placement and separation of syllables, among others. These
should be deeply explored in future analyses and modelled in order
to improve the results.

Since the limited amount of data might make the result obtained
through 10-fold cross-validation unstable, the performance using
leave-one-out cross-validation(LOOCV) was also evaluated. LOOCV
was performed for the alternative with the best performance (Full-
Set + LFS features with MLP1 classifier) and the baseline with best
performance (baseline features with MLP2 classifier). As a result,
UARs of 85.09% and 80.18% were obtained for the proposed features
and the baseline, respectively. The accuracy achieved was 91.75%
and 88.35% for the proposed features and the baseline, respec-
tively. Therefore, the results obtained with LOOCV show an even
better improvement (almost 5% for UAR) of the proposed approach
over the baseline. Moreover, the performances for both alterna-
tives were improved comparing the results obtained with LOOCV
and 10-fold cross-validation. Given the small amount of data avail-
able, it is reasonable that the higher number of training examples
used in each LOOCV iteration8 helps the classifier to provide a better

8 It is compared to the number of training examples in each fold for 10-fold cross-
validation.

performance. These results suggest that the overall performance
could be further improved if more data was available for training the
classifiers.

The results can be further analysed by using confusion matrices.
Confusion matrices give a good representation of the results per each
class, which allows making a detailed analysis of performance and
finding the main classification errors. The confusion matrix (adding
all partitions) of our best model (MLP1 and Full-Set + LFS) is
shown in Table 5. The rows correspond to the actual class labels,
the columns show the predicted labels of bird species, and the main
diagonal indicates the species that are correctly recognised. In this
matrix, there are no-major errors and the unbalance between the
number of examples per species can be noticed. Some confusions
(underlined numbers) might be due to the small amount of available
patterns for these species when the model is trained (see FuR, GeC,
PhS and PhSt in Table 5). The remaining confusions may be explained
by the acoustic likeness between species. By contrast, species of the
same genus are not confused. Nevertheless, a deeper acoustic anal-
ysis would be very useful to define these “similarities”. The acoustic
similarities could be exploited to define groups of species without
taking into account information from the traditional taxonomy of
the bird family. Therefore, a hierarchical classification scheme could
be defined (Albornoz et al., 2011; Lee et al., 2009), which allows the
mistakes to be addressed more efficiently, classifying these groups
at a first stage and then, the more confusing species within the
groups.

Fig. 6 shows spectrograms of vocalisation segments from species
Limnoctites rectirostris (LiR), Phleocryptes melanops (PhM), Upucerthia
dumetaria (UpD), and Phacellodomus sibilatrix (PhS). Examples from
these species were selected because they are highly confused by
the model, as presented in Table 5. The spectral characteristics of
all the four vocalisations are very similar. For example, they show
successive high energy peaks, which are regular in time and cen-
tred around 5000 Hz. Similarly, all the spectrograms present some
weaker energy peaks around 10 kHz, which are also regular in time.
Since most of the features we considered are based on the spec-
trum, the auditory spectrum and the spectrogram, it is reasonable
that these species be misclassified. Therefore, in order to obtain high
a performance for these four species, it would probably be appro-
priate to include some features based on temporal dynamics of the
vocalisations, or to consider a dynamics models for the classification,
like hidden Markov models (Ephraim, 2013).

5. Conclusions and future work

The identification of bird species is of increasing importance for
ecologists in order to monitor the terrestrial environment, as it
reflects important ecosystem processes and human activities. This
study explores the bird call classification using speech-related fea-
tures, and compares the performance using different classification
techniques and configurations. Species from the family Furnariidae
in the Paranaense Littoral region were analysed, which are well-
known in the community but were never studied considering a big
group. In addition, our work was motivated by the hypothesis that
an extended state-of-the-art feature set, defined for speech-related
tasks, would obtain a better performance than the feature set used at
present.

The research demonstrated that the baseline results can be
improved using additional LLDs, keeping low-dimensional data. The
results were poorer when the Full-Set was used, which is expectable
due to the high dimensionality of data and the number of sam-
ples used to train the multi-class models. This means that the large
number of inputs makes the model more complex, and the scarce
number of examples available is not enough for appropriately train-
ing it. Finally, the best performances (ACC and UAR) were obtained,
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Table 5
Confusion matrix for the MLP1 and Full-Set+LFS. References for the classes are included in the Supplementary material.

Species CeC CoA CrP CrS FuR GeC LiC LiR PhM SpM TaC UpD AnA AsB AsH LeP PhR PhS PhSt PsL ScP SyA SyF SyR SyS #

CeC 11 11
CoA 13 13
CrP 4 1 5
CrS 6 6
FuR 1 0 1 2
GeC 2 1 3
LiC 4 1 1 1 7
LiR 9 1 10
PhM 1 3 1 1 6
SpM 5 5
TaC 11 1 12
UpD 8 8
AnA 1 14 15
AsB 1 7 8
AsH 7 7
LeP 1 7 8
PhR 9 1 10
PhS 1 1 1 1 4
PhSt 1 2 3
PsL 4 4
ScP 9 9
SyA 1 18 19
SyF 15 15
SyR 1 3 4
SyS 12 12
# 206
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Fig. 6. Spectrograms of vocalisation segments from species Limnoctites rectirostris (LiR), Phleocryptes melanops (PhM), Upucerthia dumetaria (UpD) and Phacellodomus sibilatrix
(PhS).

keeping a low dimensionality, when feature selection techniques
were used. This indicates that said techniques are appropriate for
extracting the more discriminative information from the full set
of features, and exhibit a good behaviour with unbalanced data.
Particularly, the best result is reached using a MLP classifier and
the LFS technique. From an ecological monitoring and manage-
ment point of view, our approach would be useful for developing
autonomous tools that allow ornithologists to know which species
are present in particular areas. Specifically, it could reduce the effort
of manually reviewing recordings of Furnariidae species for labelling.
Moreover, it would enable ornithologists to perform remote and
simultaneous monitoring in different areas.

In future research, the model will be improved to detect more
than one species in each audio file, performing a dynamic analysis
of the vocalisations, i.e. frame by frame instead of using static
(averaged) features. This could be achieved by matching every frame
with short “templates” (Wachter et al., 2007) that should be first
obtained for the species. Said matching could be done in terms
of cross correlation (Tsai and Lin, 2003) or dynamic time warping
(Müller, 2007). Then, a “dictionary” should be built including sev-
eral templates that capture the characteristics of each species. In
addition, it would be interesting to extend this research to perform
the classification considering a large number of families with all
the genus and species included. A hierarchical classification scheme
could also be used, in which the first step would classify bird
families, the second step would classify genus and the last step would
determine the species. This means that the first classifier would focus
on families only. The second step would consist of a set of different
classifiers, each of which would be trained to recognise the genus
of a particular family, which would be determined in the previous
step. Finally, the last step would consist of a classifier for each of
the genus under study, which would determine the species given the
genus predicted in the previous step. The possibility of developing a
semi-automatic tool to provide a list of the most probable species

could be also considered. Ornithologists could then select the correct
species from the list provided, based on their expertise.

6. Web-demo for reproducible research

A web interface was implemented using the web-demo tool
(Stegmayer et al., 2016) in order to obtain further details and test
our proposal with some experimental setups. This web interface is
available at http://fich.unl.edu.ar/sinc/blog/web-demo/furnariidae/.
Also, an android application with the same functionalities was devel-
oped, which can be downloaded from the mentioned web page. The
system can be tested using an example register or uploading a regis-
ter. The preprocessing can be set to use or not to use Wiener-based
filter and acoustic activity detector. Then, after the feature extraction
process, the sample is classified by the best model trained using all
the reported data. Moreover, the graphical results of the audio file
preprocessing, the features file (arff format), the trained model and
the recognised species are freely available for download.
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