microRNA analysis of *Taenia crassiceps* cysticerci under praziquantel treatment and genome-wide identification of *Taenia solium* miRNAs

Matías Gastón Pérez, Natalia Macchiaroli, Gabriel Lichtenstein, Gabriela Conti, Sebastián Asurmendi, Diego Humberto Milone, Georgina Stegmayer, Laura Kamenetzky, Marcela Cucher, Mara Cecilia Rosenzvit

PII: S0020-7519(17)30131-5
DOI: http://dx.doi.org/10.1016/j.ijpara.2017.04.002
Reference: PARA 3957

To appear in: *International Journal for Parasitology*

Received Date: 1 February 2017
Revised Date: 31 March 2017
Accepted Date: 3 April 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
microRNA analysis of *Taenia crassiceps* cysticerci under praziquantel treatment and genome-wide identification of *Taenia solium* miRNAs

Matías Gastón Péreza, Natalia Macchiarolia, Gabriel Lichtensteina, Gabriela Contib, Sebastián Asurmendib, Diego Humberto Milonec, Georgina Stegmayerc, Laura Kamenetzkya, Marcela Cuchera, Mara Cecilia Rosenzvita,*

a Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA). Paraguay 2155, Piso 13. Buenos Aires, Argentina

b Instituto de Biotecnología, CICVyA-INTA, Dr. N. Repetto y Los Reseros s/n, 1686 Hurlingham, Buenos Aires, Argentina

c Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, sinc(i), UNL-CONICET, Ciudad Universitaria UNL, 4to piso FICH, Santa Fe, Argentina.

*Corresponding author.

\textit{E-mail address: mrosenzvit@fmed.uba.ar} (Mara Cecilia Rosenzvit)
Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as important regulators of gene expression and perform critical functions in development and disease. In spite of the increased interest in miRNAs from helminth parasites, no information is available on miRNAs from *Taenia solium*, the causative agent of cysticercosis, a neglected disease affecting millions of people worldwide. Here we performed a comprehensive analysis of miRNAs from *Taenia crassiceps*, a laboratory model for *T. solium* studies, and identified miRNAs in the *T. solium* genome. Moreover, we analysed the effect of praziquantel, one of the two main drugs used for cysticercosis treatment, on the miRNA expression profile of *T. crassiceps* cysticerci. Using small RNA-seq and two independent algorithms for miRNA prediction, as well as northern blot validation, we found transcriptional evidence of 39 miRNA loci in *T. crassiceps*. Since miRNAs were mapped to the *T. solium* genome, these miRNAs are considered common to both parasites. The miRNA expression profile of *T. crassiceps* was biased to the same set of highly expressed miRNAs reported in other cestodes. We found a significant altered expression of miR-7b under praziquantel treatment. In addition, we searched for miRNAs predicted to target genes related to drug response. We performed a detailed target prediction for miR-7b and found genes related to drug action. We report an initial approach to study the effect of sub-lethal drug treatment on miRNA expression in a cestode parasite, which provides a platform for further studies of miRNA involvement in drug effects. The results of our work could be applied to drug development and provide basic knowledge of cysticercosis and other neglected helminth infections.
Keywords: microRNA; Praziquantel; Taenia solium; Taenia crassiceps; Cestodes; microRNA targets; Small RNA-seq
1. Introduction

Taenia crassiceps is a cestode parasite of wild and domestic animals. It is widely used as an experimental model for *Taenia solium*, the etiological agent of neurocysticercosis (NC), the most common helminthic disease of the nervous system in humans (Singh et al., 2013). This disease is one of the 18 Neglected Tropical Diseases prioritised by the World Health Organization (WHO) (http://www.who.int/neglected_diseases/diseases/en/) and accounts for approximately 50,000 deaths per year (Román et al., 2000).

Although humans rarely serve as intermediate hosts for *T. crassiceps*, there have been reported cases involving the muscles or subcutaneous tissue, associated with underlying immunosuppression (Chermette et al., 1995; Heldwein et al., 2006; Goesseringer et al., 2011). In contrast, intraocular infections and one reported case of cerebellar cysticercosis (Arocker-Mettinger et al., 1992; Ntoukas et al., 2013) have been reported in immunocompetent patients. The only two antiparasitic drugs commonly used for NC and *T. crassiceps* treatment are albendazole and praziquantel (PZQ) (Ntoukas et al., 2013). PZQ is also used for infections caused by trematodes and other cestodes, and resistance to the drug has been reported (Chai, 2013), highlighting the importance of understanding the mechanisms of drug action and searching for alternative therapeutic options.

MicroRNAs (miRNAs) are non-coding RNAs of 21-25 nucleotides (nt) in length, which down-regulate gene expression post-transcriptionally by binding with partial sequence complementarity, most commonly to the 3' untranslated region (UTR) of their target mRNAs (Ambros, 2004). Nucleotides 2-8 of the mature miRNAs, referred to as the seed sequence, are essential in determining
binding specificity in animals (Bartel, 2009). Detailed information on miRNAs expressed by parasitic helminths has been reported (Britton et al., 2012; Winter et al., 2015; Cai et al., 2016), being miRNA sequences available at the miRBase database (Kozomara and Griffiths-Jones, 2014). While some miRNAs are shared even among highly divergent species, suggesting conserved roles/functions throughout evolution, many species have unique miRNAs based on current data. Over the last 5 years, there has been an increasing interest in the identification and characterization of miRNAs from parasitic cestodes such as the zoonotic parasites *Echinococcus granulosus sensu stricto* (s. s.), *Echinococcus multilocularis* and *Echinococcus canadensis* (Cucher et al., 2011, 2015; Bai et al., 2014) and the laboratory model *Mesocestoides corti* (Basika et al., 2016). However, in the genus *Taenia*, the only information available about miRNAs was obtained from adult worms of *Taenia saginata* (Ai et al., 2012) and *Taenia multiceps* (Wu et al., 2013). At present there is no bioinformatic or experimental evidence of the miRNA repertoire in *T. solium* or *T. crassiceps*.

A number of recent studies have demonstrated that drug metabolising enzymes and transporters, as well as drug targets, can be post-transcriptionally regulated by miRNAs and, importantly, that changes in the expression levels of those miRNAs can be induced by drug treatment (Meng et al., 2006), suggesting a role for miRNAs in drug resistance. It was proposed that miRNAs also could play a role in drug resistance in parasitic helminths (Devaney et al., 2010). However, no further studies have addressed this issue in cestodes to date. Identifying the function of specific miRNAs in parasitic species by experimental approaches is not an easy task (Xia et al., 2009) since in vitro culture and RNA interference (RNAi) systems have been successfully
accomplished for only a few species (Mizukami et al., 2010; Bai et al., 2014; Wang et al., 2014; Guidi et al., 2015). As a first step to experimental validation, bioinformatic prediction of miRNA targets has been performed for a number of helminth parasites (Huang et al., 2009; Fu et al., 2013; Bai et al., 2014; Winter et al., 2015; Ma et al., 2016; Zhu et al., 2016). However, there is no information on miRNA targeted genes in the genus *Taenia*.

In this report, we aimed to identify the miRNA repertoires of *T. crassiceps* and *T. solium*, and analyse the expression profile of *T. crassiceps* cysticerci with and without PZQ treatment, as well as to predict miRNA-targeted genes.

2. Materials and methods

2.1. Source of parasite material

Three biological replicates of *T. crassiceps* cysticerci (HYG strain) were each obtained from the peritoneal cavity of experimentally infected female CF1 mice (6–8 weeks old). Mice were sacrificed by cervical dislocation. The cysticerci were removed from the peritoneal cavity and washed at room temperature with PBS (1X solution). For all experiments, we inspected the cysticerci under a stereoscopic microscope and classified those as stage I (translucent, non-budding), II (translucent, with budding) or III (whole opaque cyst, final stage), according to an adapted classification of Vinaud et al. (2007). Only vital cysticerci classified as stages I and II were used for the experiments. Mice were housed at the animal facilities of Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina, in a
temperature-controlled light cycle room with food and water ad libitum. Experiments involving the use of experimental animals were carried out according to protocols approved by the Comité Institucional para el Cuidado y Uso de Animales de Laboratorio (CICUAL), Facultad de Medicina, Universidad de Buenos Aires, Argentina (protocol number CD N° 1229/2015).

2.2. Experimental design and parasite culture

Thirty cysticerci from each of the three biological replicates were cultured either in the absence (control samples, CTR) or presence of PZQ samples. Six samples were analyzed in total. Culture conditions were as follows: DMEM high glucose with L-glutamine (Gibco, USA) supplemented with 20 µg/ml of levofloxacin and 50 µg/ml of gentamicin, at 37 ºC for 24 h under 5% CO2. PZQ was added at a sublethal dose as determined by previous titration assays. Briefly, groups of 30 cysticerci each (stage I and stage II) were maintained in DMEM culture at 37 ºC with 5% CO2 and exposed for 24 h to increasing PZQ concentrations (0.03, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 µg/ml). As controls, 30 cysticerci of the same stages were maintained in parallel in DMEM with the addition of DMSO at the same final concentration as in the PZQ samples (100 mM). After 24 h of exposure to the drug, vitality was determined. The sublethal dose was found to be 0.05 µg/ml, in accordance with a previous report (Vinaud et al., 2008). In Supplementary Fig. S1, cysticerci treated with the sublethal and lethal doses of PZQ diluted in DMSO (100 mM final concentration) are shown.

For determination of vitality, three groups of 10 cysticerci each (stages I and II) from the peritoneal cavity of the same mouse of each replicate were maintained in parallel in DMEM and in DMEM+DMSO (100 mM). The criteria to assess
parasite vitality were absence of loss of vesicular fluid, paralysis, collapse and staining with Trypan blue (0.05%). Only parasite samples with 100% vitality were used for small RNA isolation and library construction. All the experiments were performed with three biological replicates.

2.3. Small RNA isolation

RNA enriched in small RNAs (<200 nt) was purified from 30 cysticerci per replicate, using the mirVana miRNA Isolation Kit (Ambion, USA) according to the manufacturer’s instructions. RNA was then precipitated overnight at -20 °C with 0.1 volumes of 3 M sodium acetate (pH 5.2), 2.5 volumes of ethanol and glycogen. RNA was centrifuged at 14,000 g for 30 min at 4°C, washed in 75% ethanol, air dried at room temperature and resuspended in 20 µl of nuclease-free water. Samples were stored at -80 °C until library construction. RNA concentration was determined using a Qubit Fluorometer (Invitrogen, USA) and RNA integrity was assessed in an Agilent 2100 Bioanalyzer small RNA chip (Agilent Technologies, USA).

2.4. Library construction and small RNA-seq

For each sample type (CTR and PZQ), three libraries were constructed from three independent samples in order to obtained biological replicates, totaling six libraries. The small RNA library construction was performed with a TruSeq small RNA Library Prep Kit and sequenced on a HiSeq 2500 System. Library size selection was performed for all the samples in order to recover RNAs ranging from 18 nt to 40 nt in length. Small RNA libraries and sequencing experiments were performed at Macrogen, Korea.
2.5. Assembly and annotation of T. crassiceps small RNA

The *T. solium* genome (Tsai et al., 2013) was used for *T. crassiceps* miRNA identification since a *T. crassiceps* genome is not available. This also allowed the identification of *T. solium* miRNA precursors. Genomic data of *T. solium* is available at http://www.taeniasolium.unam.mx/taenia/ and the complete genome annotation is available at www.genedb.org. Additional flatworm rRNA sequences and DNA repetitive elements were downloaded from the National Center for Biotechnology Information (NCBI, USA). *Echinococcus* spp. miRNA and hairpin (pre-miRNAs) sequences, as well as metazoan mature miRNAs, were obtained from miRBase 21.0 and from previous studies for *Echinococcus* spp. (Cucher et al., 2015; Macchiaroli et al., 2015) and *M. corti* (Basika et al., 2016) as reported by our research group. All the annotated sequences, together with the novel miRNA precursor sequences identified in this study, were used to construct an in-house database for small RNA library data classification available at http://www.bmhid.org/downloads/.

2.6. Bioinformatics analysis of T. crassiceps small RNAs

Illumina raw sequence reads produced by deep sequencing were pre-processed and collapsed as described previously (Cucher et al., 2015; Macchiaroli et al., 2015). To classify all small RNA library sequences, the processed reads were first mapped to the *T. solium* genome with Bowtie (version 1.1.0) with the option –v 2 that reports read mapping with up to two mismatches. All mapped reads were then analysed using BLASTN (e-value 0.01) against an in-house database available at
http://www.bmhid.org/downloads/, which included all miRNAs identified in this study, and were classified into miRNAs (see Section 2.7), rRNA, tRNA, CDS (protein coding sequence) and others. Lastly, a length distribution analysis of the total mapped DNA reads and the total miRNA reads was performed.

2.7. miRNA identification

To identify previously reported and novel miRNAs from the small RNA libraries, the mirDeep2 software package was used as previously reported (Cucher et al., 2015; Macchiaroli et al., 2015), but using *T. solium* as the reference genome instead, since *T. solium* is phylogenetically closer to *T. crassiceps* than either *E. multilocularis* or *E. granulosus*. All metazoan mature miRNAs and hairpins including previously reported *Echinococcus* spp. sequences (Cucher et al., 2015; Macchiaroli et al., 2015) were used as input. The initial miRDeep2 output list of candidate miRNAs of each library was manually curated to generate a final high confidence set of miRNAs retaining only candidate novel precursors with i) miRDeep2 score ≥ 4, ii) significant randfold *P* value < 0.05, iii) mature reads in all the libraries (PZQ-treated and CTR) and iv) presence of star strand. The secondary structures of putative precursors, with minimum free energy less than -17 kcal/mol and with a mature miRNA located in the stem, were predicted using the RNAfold software (Gruber et al., 2008). The candidate novel precursor sequences were then analyzed using BLASTN (e-value 0.01) against sets of rRNAs, tRNAs, CDS, long non-coding RNAs (IncRNAs) and repeats from the in-house database. Predictions that overlapped with these categories were removed. The final set of candidate *T. crassiceps* hairpins was searched against the *T. solium* genome using
BLAST to obtain the corresponding hairpin precursors. Additionally, we used an independent approach based on a deep architecture of self-organizing maps (SOMs), called miRNA-SOM (Kamenetzky et al., 2016), in order to confirm miRNA predictions and identify further miRNAs. Sequences with a minimum free energy threshold of -20 kcal/mol and single-loop folded sequences were selected according to the miRNA biogenesis model (Bartel, 2004) and then the best candidates were sequentially filtered in the SOM layers (Kamenetzky et al., 2016; Stegmayer et al., 2016).

2.8. miRNA abundance analysis

For analysis of miRNA abundance, read counts of each individual miRNA were normalised to the total number of mature miRNA read counts in each sample. Differential expression analysis of miRNAs between PZQ-treated and untreated cysticerci was performed with DESeq software (Anders et al., 2010). This approach has been used in other miRNA studies (Dhahbi et al., 2011; Tonge et al., 2013). miRNAs expressed under both conditions that showed $-1 \geq \log_2$ fold change ≥ 1 and adjusted P value < 0.05 were considered differentially expressed.

2.9. Experimental validation by northern blot

Experimental validation of selected sequences was performed by northern blot as described previously (Cucher et al., 2011) except that 6 µg, 4 µg and 2 µg of small RNAs from CTR *T. crassiceps* cysticerci were used. The DNA probes (bantam: 5´-TCA GCT GTA ATC GCG ATC TCA-3´; let-7: 5´-AGA CAT TCG AAA CAC TAC CTC A-3´; miR-10: 5´CAA ACT CGG GTC TAC AGG
GTG-3’; miR-71: 5’-TCT CAC TAC CAT CGT CTT TCA-3’; miR-4989: 5’-CTC AGA TAG TTG GTG CAT TT-3’; miR-277a: 5’CGG GCC AGA AAA TGC ATT TA-3’) were complementary to the putative T. crassiceps miRNAs and 5’ end-labelled with γ32P ATP (Perkin Elmer, NEN, USA). The probes were purified from the unincorporated label with Illustra microspin G-25 columns (GE Healthcare, USA). Before use, the membrane was rinsed in 5x SSC (0.75 M NaCl, 75 mM sodium citrate), prehybridised for at least 90 min at 37 ºC in Ultrahyb-Oligo Hybridisation Buffer (Ambion) and incubated with the probe in the same buffer at 37 ºC overnight. After hybridisation, the membranes were washed twice in 2x SSC, 0.5% SDS at 32 ºC for 10 min and once at room temperature. Hybridisation bands were detected using a Typhoon Trio (Amersham Biosciences, UK).

2.10. In silico prediction of miRNA targets

The miRanda algorithm (v3.3a) (Enright et al., 2003) was used to perform an independent prediction of miRNA target sites in T. solium. The parameters used were: i) strict seed pairing, ii) score threshold: 140, iii) energy threshold: -17 kcal/mol, iv) gap open penalty: -9; v) gap extend penalty: -4; vi) scaling parameter: 4. Three hundred nt were extracted downstream from the stop codon of T. solium genes using custom scripts. These sequences together with mature miRNAs identified in this study were used as input for miRNA prediction.

3. Results

3.1. miRNAs are abundantly expressed by T. crassiceps cysticerci
We obtained between 27 and 38 million raw reads per sample and observed 47.5 -71.5% mapping to the \textit{T. solium} genome (Supplementary Table S1).

We found that the most abundant category for all the samples was miRNAs, accounting for 83% of mapped reads in both CTR and PZQ-treated cysticerci (Fig. 1, A,B). Length distribution analysis revealed one peak at 21 nt, compatible with miRNA length. No peak compatible with Piwi-interacting RNAs (piRNAs; ~ 30 nt) was observed in any sample, which suggests that piRNAs are not expressed in the cysticercus stage of \textit{T. crassiceps}.

3.2. \textit{Taenia crassiceps} and \textit{T. solium} miRNA repertoire

We provided experimental evidence of \textit{T. crassiceps} miRNA expression and identified miRNA precursors in the \textit{T. solium} genome, this being the first known time that a comprehensive repertoire of these small regulatory RNAs is described in \textit{T. crassiceps}. This is also the first known report of a genome-wide identification of \textit{T. solium} miRNAs. We obtained a final high confidence set of 41 miRNAs (Table 1), all of those conserved with other organisms (Macchiaroli et al., 2015). The identified miRNAs were grouped into 30 families according to their seed sequence. By using miRNA-SOM (Kamenetzky et al., 2016), we identified three additional miRNA precursors: pre-mir-7b, pre-mir-96 and pre-mir-3479b, conserved in \textit{E. canadensis} (Cucher et al., 2015; Macchiaroli et al., 2015), that were not detected by miRDeep2. In addition, miRNA-SOM allowed us to confirm two miRNA precursors, pre-mir-new-1a and pre-mir-new-1b, that were only described before in the \textit{E. granulosus} s. s. G1 genotype (Bai et al., 2014). Since a dominant mature miRNA can be processed either from the 5’ or
3’ arm of the corresponding pre-miRNA, we considered that both arms of the same hairpin produced two mature miRNAs when the number of read counts of the minor product represented ≥ 30% of the read counts from the major product originating from the opposite arm (Cucher et al., 2015; Basika et al., 2016). By doing this, we observed that pre-mir-31 and pre-mir-new-1a showed expression from both arms under both conditions (Supplementary Tables S2 and S3). The sequences of mature and star miRNAs, as well as the corresponding precursors, are shown in Supplementary Table S4. It can be observed that the total number of *T. crassiceps* precursors is 39. However, since two of the precursors showed expression from both arms, the number of mature miRNAs is 41 (Table 1). Since all *T. crassiceps* identified miRNAs were mapped to the *T. solium* genome, this study provides the first known report of miRNA precursor sequences for this zoonotic parasite.

3.3. Conserved and novel miRNA clusters are present in the *T. solium* genome

We found one protostomian-conserved miRNA cluster (miR-71/2c/2b, Fig. 2A), one cestode conserved cluster (miR-277/4989, Fig. 2B) (Basika et al., 2016), one family Taeniidae-specific cluster (miR-new-1a/new-1b, Fig. 2C), one possible metazoan conserved miRNA cluster (miR-1/133) and one miRNA cluster that was not reported before, which would be specific to *T. solium* formed by miR-7b and miR-3479a separated by a 5674 nt region (Supplementary Table S5). Cluster miR-new-1a/new-1b comprises a 249 nt region and was only reported previously for *E. granulosus* s. s. G1 (Bai et al., 2014). According to previous reports, platyhelminth miRNA clusters size up to 500 bp (Wang et al., 2010; Sasidharan et al., 2013; Cucher et al., 2015).
Hence, for cluster miR-7b/3479a as well as for miR-1/133, which is separated by 11,618 nt, further assays should be performed to determine their co-transcription as a polycistronic unit. We analysed the small RNA-seq expression profile of members of the miR-71/2b/2c cluster and found, in CTR as well as in PZQ-treated cysticerci, that miR-71 from cluster miR-71/2b/2c shows greater than 10-fold higher expression compared with miR-2b (t-test, \(P < 0.05 \)), suggesting that post-transcriptional regulation takes place. For the cluster miR-new-1a/new-1b, miR-new-1a showed two-fold higher expression than miR-new-1b, while for the cluster miR-277/4989 a similar expression level was found between both members of the same cluster. However, in PZQ-treated cysticerci miR-4989 expression is 1.5 fold higher than miR-277 (Table 1).

3.4. Taenia crassiceps miRNA expression is biased to the same set of miRNAs as in other cestodes

We have previously shown that RNA-seq is highly accurate for quantifying expression levels in cestode parasites (Macchiaroli et al., 2015). Hence, here we used RNA-seq data to analyse miRNA expression profiles (Table 1). The top five most abundant miRNAs expressed in T. crassiceps cysticerci, that together account for 90 or 91% of total miRNA expression, were miR-10-5p, let-7-5p, miR-71-5p, bantam-3p and either miR-61-3p (CTR cysticerci) or miR-4989-3p (PZQ-treated cysticerci) (Fig. 3). Interestingly, miR-10-5p was the most abundantly expressed miRNA in both sample types, accounting for approximately 60% of the total miRNA expression in each sample.
In order to perform a comparative miRNA expression analysis in cestode parasites, we compared the average normalized proportion of *T. crassiceps* miRNAs with that previously reported in other cestodes, i.e. *E. multilocularis* and *E. canadensis* (Cucher et al., 2015), and *M. corti* (Basika et al., 2016) (Fig. 4). We found that a set of miRNAs comprised by miR-10-5p, let-7-5p, bantam-3p, miR-71-5p, miR-4989-3p, miR-61-3p and miR-9-5p is abundantly expressed in the larval stages of the four cestodes analysed, with miR-10-5p being most abundantly expressed. We also observed that miR-36, a miRNA with low expression in both species of *Echinococcus* and in *M. corti*, showed high expression in *T. crassiceps*. It is important to consider that some of the highly expressed miRNAs in cestodes are absent in the host or highly divergent in sequences with host orthologs (Macchiaroli et al., 2015), highlighting their potential as drug and/or diagnosis targets.

3.5. *Taenia crassiceps* miRNAs and precursors can be detected by northern blot

We analysed the expression of six miRNAs: miR-10, let-7, miR-71, bantam, miR-4989 and miR-277a by northern blot. A hybridization signal characteristic of mature miRNAs (∼22 nt) was observed for these six miRNAs (Fig. 5) and an additional band of ∼70 nt was present for the three with higher numbers of reads: miR-10, miR-71 and let-7 (Fig. 5A-C). The expected sizes of precursor bands are 77 nt (pre-mir-10), 61 nt (pre-mir-71) and 57 nt (pre-mir-let-7), this being, to our knowledge, the first time that a pre-miRNA was detected in a cestode parasite. It is interesting to note that miR-10 showed two bands corresponding to mature miRNAs (Fig. 5A). This is in accordance with the fact
that similar sequences with slight length differences were present as isomiRs in the RNA-seq data (Supplementary Table S6).

3.6. *Taenia crassiceps* miRNA expression under PZQ treatment

We performed a correlation analysis between three independent biological replicates from each sample type, which indicated high reproducibility (correlation coefficient > 0.92) (Supplementary Fig. S2), thus allowing differential expression analysis. We found that miR-7b-5p was ~six-fold up-regulated in PZQ-treated versus CTR cysticerci (*P* < 0.01). Additionally, miR-7a-5p, miR-4989-3p, miR-31-3p also showed altered expression in treated parasites, although without statistical significance. The expression of the remaining miRNAs underwent no change with the PZQ dose and time of exposure used in this study (Supplementary Table S7, Supplementary Fig. 3).

3.7. Prediction of miRNA functional roles in *Taenia*

In order to analyse the possible roles of miRNAs in *Taenia*, we conducted a bioinformatic target prediction in the *T. solium* genome for *T. crassiceps* mature miRNAs. The results of the genome-wide target prediction of all the *T. solium/T. crassiceps* identified miRNAs are shown in Supplementary Table S8. It was found that 2471 protein coding genes were predicted targets of miRNAs, representing 22% of total coding genes. The miRNA that showed the highest number of targets was miR-71. Since we found that miR-10 was highly expressed in *T. crassiceps*, representing more than half of all miRNAs expressed (Fig. 3), a common feature of other cestodes (Fig. 4), we performed a detailed target analysis for this miRNA. Among miR-10 targets in *T. solium* we
found two hox genes (Supplementary Table S9), both belonging to the ANTP class, one of them from the Meis family and the other from the Hox9-13 family (Tsai et al., 2013). Since miR-10 was shown to be located in hox gene clusters in vertebrates and Drosophila (Mansfield and McGlinn, 2012), we searched for adjacent genes to the mir-10 locus in the T. solium genome. Interestingly, we found two homeobox-containing genes from the ANTP class upstream of the mir-10 locus: TsM_000864600 (Homeobox protein mab-5) and TsM_000522200 from Hox4 family (Tsai et al., 2013). Apart from the two homeobox-containing genes predicted to be targeted by miR-10, several genes related to regulation of transcription were found among the potential targets of this miRNA. Interestingly, a gene coding for a high mobility group protein showed two target sites for miR-10. Besides control of gene transcription, other biological processes potentially regulated by miR-10 are carbohydrate metabolism, proteolysis, microtubule-based movement and calcium ion transport. We also made a detailed search for targets of miR-7b, the miRNA that showed increased expression upon drug treatment (Supplementary Table S10). Targets of miR-7b are involved in several pathways such as amino acid and nucleotide metabolism, vesicular transport, signaling pathways, cell adhesion, cell growth, cell death and interaction with neuroactive ligands. Also, a gene coding for calponin, a calcium binding protein that inhibits myosin related to muscle activity, was found among the potential targets of this miRNA.

Other miRNAs showed differences in expression levels, although without statistical significance. In particular, we focused on miR-31, which showed a decreased expression level in PZQ-treated parasites. The predicted targets of this miRNA include ABC transporters (drug efflux transporters), thioredoxins
(involved in drug metabolism) and voltage-dependent L-type calcium channel subunit alpha-1D, which is a probable target of PZQ (Greenberg, 2005). In addition, we found targets related to drug efflux, metabolism and action (Table 2). It would be interesting to experimentally validate target prediction results in order to confirm these bioinformatic predictions.

4. Discussion

In this study we report for the first known time a high confidence miRNA repertoire from *T. crassiceps* and *T. solium* zoonotic parasites and show that miRNAs account for most small RNA expression in *T. crassiceps* cysticerci. Since our miRNA identification strategy required the matching of *T. crassiceps* small RNA sequences to the *T. solium* genome, the identified miRNAs are considered common to both species, as was previously considered for other helminthic parasites (Cucher et al., 2011; Winter et al., 2012). Hence, in this study, by combining experimental data from the model parasite *T. crassiceps* with genomic information from *T. solium*, we were able to identify miRNAs and their precursors in the genome of the aetiological agent of NC, a neglected disease that affects millions of people worldwide (Asnis et al., 2009). The percentage of miRNAs in *T. crassiceps* cysticerci reaches 83% of the total small RNA expression, suggesting important functions of this type of RNA in the biology of taenias. With respect to other small regulatory RNAs, piRNAs were not detected. This result is in agreement with the absence of piRNAs in other platyhelminths (Skinner et al., 2014; Macchiaroli et al., 2015) and the absence of PIWI protein in the *Echinococcus* and *T. solium* genomes (Tsai et al., 2013; Zheng et al., 2013).
Here, we identified and validated miRNAs by northern blot experiments. This validation is especially important in the case that genomic data from other species is used, as in this case (Rosenzvit et al., 2013). Additionally, we experimentally detected pre-miRNAs for the first time in cestodes. From the six analysed miRNAs, it was possible to detect a pre-miRNA band for the most abundant mature miRNAs (see Fig. 5), adding confidence to the miRNA identification procedure performed in this work.

In this study, miRNA identification from RNA-seq data was based on two different miRNA prediction programs: miRNA-SOM (Kamenetzky et al., 2016) and miRDeep2 (Friedlander et al., 2012). The machine learning-based algorithm miRNA-SOM, which uses only genomic data, confirmed five miRNAs, including miRNAs specific for the family Taeniidae and miRNAs with a particularly long hairpin, in the draft genome of *T. solium*.

The *T. solium* and *T. crassiceps* miRNA catalog includes 41 conserved miRNAs grouped into 30 families. The number of conserved miRNA families is similar to that of *E. canadensis* (Macchiaroli et al., 2015) and *M. corti* (Basika et al., 2016) (28 conserved miRNA families), providing further evidence for the loss of conserved miRNA families in cestodes as proposed by Fromm et al. (2013). The miRNA catalog includes miR-10293-3p, a miRNA reported for the first time in *Echinococcus* (Cucher et al., 2015) and later in *M. corti* (Basika et al., 2016), thus confirming the presence of this novel miRNA in other cestodes. In addition, we also report two miRNA precursors (pre-mir-new-1a and pre-mir-new-1b) arranged in a cluster that were only reported before for the *E. granulosus* s. s. G1 genotype (Bai et al., 2014). The first of these precursors shows expression from both arms in *T. crassiceps*, unlike the *E. granulosus* s.
s. G1 genotype that only expressed the 3p arm. This mature miRNA was named egr-new-22 in that report (Bai et al., 2014). The novel potential cluster found in this work is formed by the conserved miRNAs miR-7b and miR-3479a. Although both miRNAs are present in *Echinococcus* or *M. corti*, they are not clustered, highlighting differences in the genome organization of miRNA precursors among cestodes. To date, the importance of these differences in genomic arrangement is unknown but could potentially influence the expression of the corresponding mature miRNAs. With respect to cluster miR-71/2c/2b, it was found only once in the genome of *T. solium*, as observed in other cestodes analysed to date (Cucher et al., 2015; Macchiaroli et al., 2015, Basika et al., 2016). This differs from other flatworms such as the monogean *Gyrodactylus salaris* and the trematode *Schistosoma mansoni* for which at least two miR-71/2 clusters were found (Fromm et al., 2013). The presence of only one miR-71/miR-2 cluster seems to be a common feature of cestode genomes. The uneven expression found among miRNAs of this cluster was also observed in *Echinococcus* spp. (Cucher et al., 2015; Macchiaroli et al., 2015) and *M. corti* (Basika et al., 2016). With respect to the novel miRNA cluster miR-new1a/new1b and the miR-277/4989 cluster, a similar expression level was found between members of the same cluster, suggesting that the main control of mature miRNA expression is, in these cases, at the transcriptional level, unlike what was observed in the *Echinococcus* miR-277/4989 cluster. These findings highlight differences in miRNA expression regulation among parasites. However, in PZQ-treated *T. crassiceps* cysticerci miR-4989 expression is 1.5 fold higher than miR-277 (t-test, *P* >0.05), suggesting that PZQ treatment induces post-transcriptional regulation of miRNA expression.
We also analysed the expression profile of CTR *T. crassiceps* cysticerci and found that miRNA expression is highly biased to a few miRNAs: miR-10, let-7, miR-71, bantam and miR-61. These five miRNAs account for ~90% of miRNA expression. Coincidentally, in other reports of small RNAs from cestodes that used the same methodology for miRNA discovery, miR-10, let-7, miR-71 and bantam were the most highly expressed, suggesting important functions in cestode biology (Cucher et al., 2015; Macchiaroli et al., 2015; Basika et al., 2016). Among these miRNAs, miR-10 is the most expressed. This miRNA is highly conserved across metazoan organisms and is implicated in *Hox* gene regulation, embryonic development, and cancer (Cai et al., 2011; Zhi et al., 2015; Giusti et al., 2016). It is interesting to note that among predicted miR-10 targets in *T. solium* we found two homeobox genes (Supplementary Table S7), both belonging to the ANTP class, and pre-mir-10 located adjacent to other two hox genes. This result was expected since miR-10 *Hox* gene targeting and genomic localization in a hox cluster is a common feature of many bilaterians (Mansfield and McGlinn, 2012). It would be interesting to analyze the miR-10 expression profile in different developmental stages in order to obtain insights on the molecular basis of development of these parasites.

Here we investigated the miRNA expression profile of *T. crassiceps* cysticerci incubated for 24 h with sublethal doses of PZQ, one of the main antiparasitic agents used for cysticercosis and taeniasis treatments, being the first time that the effect of a drug on miRNA expression was analysed in cestodes. Our results showed that, under the conditions assayed here, the overall miRNA profile remained unchanged under PZQ treatment, except for miR-7b that showed a six-fold enhanced expression. One of the predicted miR-
7b targets was calponin, a calcium binding protein that inhibits myosin. This may be related to the expected alteration of intracellular calcium concentration produced by PZQ, a drug binding and inhibiting voltage-gated calcium channels, a key molecule for the regulation of calcium level inside the cell. Also, we found that other targets of miR-7b were involved in several pathways such as amino acid and nucleotide metabolism, vesicular transport, signaling pathways, cell adhesion, cell growth, cell death and interaction with neuroactive ligands, suggesting the importance of this miRNA in parasite biology.

Other incubation conditions such as exposure to the drug for longer periods should be assayed in order to determine whether this miRNA shows a significant altered expression profile in PZQ-exposed cysticerci. Although more studies will be necessary to understand the response of miRNAs to drug treatment and the influence that these regulators may have on drug action and/or drug resistance, the results obtained here pave the way for such analyses.

In conclusion, the present study represents, to our knowledge, the first characterization of the *T. solium* and *T. crassiceps* miRNA repertoires. For the first known time, the effect of drug (PZQ) treatment on miRNA expression was studied in a cestode parasite, providing the first step in this type of analysis, which may be crucial to understand the drug response in these parasites. In addition, we identified highly expressed miRNAs among cestodes and predicted their target mRNAs, finding important roles in parasite development and survival in the host. Given the importance of miRNAs in cellular processes such as development and proliferation, the information provided here constitutes a
platform for miRNA functional studies and potential applications to the control of cestode parasites that are the cause of complex and neglected diseases.

Acknowledgements

All bioinformatic analyses were performed in a local server at Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Argentina, which is part of Sistema Nacional de Computación de Alto Desempeño (SNCAD) ID 924 of Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCyT), Argentina. This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina, projects PICT 2013-2121. M.P. was a recipient of a Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina, doctoral fellowship.
References

Goesseringer, N., Lindenblatt, N., Mihic-Probst, D., Grimm, F., Giovanoli, P.,

doi:10.1093/nar/gkt1181

Tonge, D.P., Tugwood, J.D., Kelsall, J., Gant, T.W., 2013. The role of microRNAs in the pathogenesis of MMPi-induced skin fibrodysplasia. BMC

microRNAs as potential noninvasive biomarkers of human astrocytoma.

Jin, Y., Davis, R.E., Cheng, G., 2016. MicroRNAs Are Involved in the
Regulation of Ovary Development in the Pathogenic Blood Fluke
Schistosoma japonicum. PLOS Pathog. 12, e1005423.
doi:10.1371/journal.ppat.1005423
Figure legends

Fig. 1. Small RNA library composition and length profile of *Taenia crassiceps* cysticerci sequencing data. Classification of the RNA species (coding sequence (CDS), tRNA, rRNA, micro RNA (miRNA)) obtained in the datasets from control (A) and praziquantel (PZQ)-treated *T. crassiceps* cysticerci (B). Reads mapping to long non-coding RNAs and repeats, and reads with no formal annotation are not represented due to their low relative abundance (<0.0001%). Results are shown as average percentages (±S.D).

Fig. 2. Three clusters of *Taenia solium* micro RNAs (miRNAs). The secondary structure of *T. solium* clusters containing miR-71, miR-2b and miR-2c (A); miR-277 and miR-4989 (B) and miR-new-1a and miR-new-1b (C) were predicted by mfold.

Fig. 3. Top five most abundant microRNAs (miRNAs) in *Taenia crassiceps* cysticerci. The average proportion of the top five most abundant miRNA reads normalized to the total number of mature miRNAs in each library is shown for control (A) and praziquantel-treated (B) cysticerci.

Fig. 4. Comparative expression profile of the full microRNA (miRNA) repertoire of cestodes. Expression data corresponds to *Echinococcus multilocularis* (Em) and *Echinococcus canadensis* G7 (Ec) metacestodes (Cucher et al., 2015), control *Taenia crassiceps* cysticerci (Tc) (this work) and *Mesocestoides corti* tetratyridia (Mc) (Basika et al., 2016). The heatmap of log2-transformed
normalized miRNA reads is organized by their transcriptional abundance. miRNA expression is displayed using a color key where blue (light grey) corresponds to low and red (black) to high numbers of miRNA normalized reads.

Fig. 5. Validation of microRNA (miRNA) expression by northern blot. Small RNA (<200 nucleotides) from a mixture of control *Taenia crassiceps* cysticerci were resolved by 15% denaturating PAGE and transferred to nylon membranes. Ethidium bromide staining of the gels shows that equivalent amounts of RNA were loaded. The membranes were probed with 32P–labelled oligonucleotides for detection of miR-10 (A), let-7 (B), miR-71 (C), bantam (D), miR-4989 (E) and miR-277 (F). rpm: average reads per million for each miRNA.

Supplementary Figure legends

Supplementary Fig. S1. Effect of different doses of praziquantel in *Taenia crassiceps* cysticerci stained with Trypan blue (0.05%). Cysticerci were treated with 0.05 µg/ml (sublethal dose) (A) and 0.20 µg/ml of praziquantel (B) for 24 h, incubated in Trypan blue (0.05%) and washed with 1 x PBS.

Supplementary Fig. S2. Correlation analysis between independent biological replicates from control (Tc) and praziquantel-treated (TcPZQ) *Taenia*
crassiceps cysticerci samples. Each data point represents one microRNA (miRNA). Pearson’s correlation coefficient is shown in each plot.

Supplementary Fig. S3. Comparative expression profile of control (Tc) and praziquantel-treated (TcPZQ) *Taenia crassiceps* cysticerci. The heatmap of log2-transformed normalized microRNA (miRNA) reads is organized by their transcriptional abundance. miRNA expression is displayed using a color key where blue corresponds to low and red to high numbers of miRNA normalized reads.
Table 1. Catalog of mature microRNAs (miRNAs) and their expression profiling in control and praziquantel-treated *Taenia crassiceps* cysticerci.

<table>
<thead>
<tr>
<th>Mature miRNA</th>
<th>Sequence</th>
<th>Length (nucleotides)</th>
<th>Normalized reads per million</th>
<th>Percentage of normalized reads per million</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tcr</td>
<td>TcrPZQ</td>
</tr>
<tr>
<td>tcr-let-7-5p</td>
<td>UGAGGUAGUGUUCAGAGUGCU</td>
<td>22</td>
<td>120,549,257</td>
<td>94,335,669</td>
</tr>
<tr>
<td>tcr-miR-1-3p</td>
<td>UGGAUGUGUUGGAUGUA</td>
<td>21</td>
<td>321,384</td>
<td>307,953</td>
</tr>
<tr>
<td>tcr-miR-2a-3p</td>
<td>AAUCACAGCCCCGCUUGGGA</td>
<td>22</td>
<td>7,819,931</td>
<td>8,255,689</td>
</tr>
<tr>
<td>tcr-miR-2b-3p</td>
<td>UAUCACAGCCCCGCUUGGGA</td>
<td>21</td>
<td>8,932,281</td>
<td>5,590,159</td>
</tr>
<tr>
<td>tcr-miR-2c-3p</td>
<td>UCACAGCCAUUGUAUGGAAC</td>
<td>21</td>
<td>15,242,778</td>
<td>10,389,230</td>
</tr>
<tr>
<td>tcr-miR-7a-5p</td>
<td>UGGAAGACUGGUGAUAUGUUGU</td>
<td>22</td>
<td>27,621,87</td>
<td>24,443</td>
</tr>
<tr>
<td>tcr-miR-7b-5p</td>
<td>UGGAAGACUGGUGAUAUGUU</td>
<td>25</td>
<td>4,866</td>
<td>21,577</td>
</tr>
<tr>
<td>tcr-miR-9-5p</td>
<td>UCUUUGGUUAUCGCUUGUAGA</td>
<td>23</td>
<td>20,986,353</td>
<td>16,776,216</td>
</tr>
<tr>
<td>tcr-miR-10-5p</td>
<td>CACCCUAGACCGAGGUGUGA</td>
<td>22</td>
<td>554,431,826</td>
<td>646,188,852</td>
</tr>
<tr>
<td>tcr-miR-31-3p</td>
<td>AGCUUUGCUUGCUUGCUUGCUA</td>
<td>22</td>
<td>25,688</td>
<td>13,427</td>
</tr>
<tr>
<td>tcr-miR-31-5p</td>
<td>UGCAAGAUACUGGUAGCGAGCUGA</td>
<td>23</td>
<td>21,982</td>
<td>23,772</td>
</tr>
<tr>
<td>tcr-miR-36a-3p</td>
<td>UCACGGGUAGCACUUCCUUCG</td>
<td>22</td>
<td>831,311</td>
<td>605,194</td>
</tr>
<tr>
<td>tcr-miR-36b-3p</td>
<td>UCACGGGUAGGAUAGACACGU</td>
<td>22</td>
<td>2,840,957</td>
<td>1,871,777</td>
</tr>
<tr>
<td>tcr-miR-61-3p</td>
<td>UGACUAGAAAGAGCATUCACCAUC</td>
<td>23</td>
<td>21,770,853</td>
<td>15,082,348</td>
</tr>
<tr>
<td>tcr-miR-71-5p</td>
<td>UGAAAGACGAUGGUAGUGAGAUA</td>
<td>22</td>
<td>101,389,488</td>
<td>78,551,230</td>
</tr>
<tr>
<td>tcr-miR-87-5p</td>
<td>GUGAGCAAGUUCAGGUGUGUC</td>
<td>22</td>
<td>2,854,018</td>
<td>2,467,371</td>
</tr>
<tr>
<td>tcr-miR-96-5p</td>
<td>AUUGGACUULUUUGGAAUGUUGUACC</td>
<td>24</td>
<td>69,739</td>
<td>62,368</td>
</tr>
<tr>
<td>tcr-miR-124a-3p</td>
<td>UAAGGCACGCGUGAUGACC</td>
<td>20</td>
<td>38,323</td>
<td>24,865</td>
</tr>
<tr>
<td>miRNA</td>
<td>Sequence</td>
<td>Base</td>
<td>Maturity Score</td>
<td>Maturity Score</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>tcr-miR-124b-3p</td>
<td>UAAGGCACGCGGUGAAUACC</td>
<td>20</td>
<td>66.050</td>
<td>69.947</td>
</tr>
<tr>
<td>tcr-miR-125-5p</td>
<td>UCCUGGAGACCUAGUGUGUC</td>
<td>22</td>
<td>603.436</td>
<td>604.563</td>
</tr>
<tr>
<td>tcr-miR-133-3p</td>
<td>UUGUCCCAUAUACGGCCGC</td>
<td>23</td>
<td>50.823</td>
<td>33.035</td>
</tr>
<tr>
<td>tcr-miR-153-3p</td>
<td>UUGCAUAGUCUCAUAGUGCC</td>
<td>21</td>
<td>9.530</td>
<td>9.243</td>
</tr>
<tr>
<td>tcr-miR-184-3p</td>
<td>GGGACGGAAGUCGAAAAGGUU</td>
<td>22</td>
<td>975.271</td>
<td>999.522</td>
</tr>
<tr>
<td>tcr-miR-190-5p</td>
<td>AGAUAGUGUUUGUGUACUGUGG</td>
<td>23</td>
<td>2,662.631</td>
<td>3,024.556</td>
</tr>
<tr>
<td>tcr-miR-210a-3p</td>
<td>UUGUCCGUGUUCUGAACGACU</td>
<td>25</td>
<td>2,113.322</td>
<td>1,481.185</td>
</tr>
<tr>
<td>tcr-miR-219-5p</td>
<td>UGUGACGCAUUCGCAUUUCUU</td>
<td>23</td>
<td>1,711.684</td>
<td>1,348.363</td>
</tr>
<tr>
<td>tcr-miR-277a-3p</td>
<td>UAGAUAGUACUUGGCGGACAA</td>
<td>22</td>
<td>10,973.755</td>
<td>11,350.559</td>
</tr>
<tr>
<td>tcr-miR-277b-3p</td>
<td>UAAUUGCAUUACUCUGAUGA</td>
<td>23</td>
<td>1,870.682</td>
<td>1,486.530</td>
</tr>
<tr>
<td>tcr-miR-281-3p</td>
<td>UGUCAGGAAGUGUACUCU</td>
<td>19</td>
<td>1,062.426</td>
<td>764.902</td>
</tr>
<tr>
<td>tcr-miR-745-3p</td>
<td>UCUGACUGUAACGUGACUGA</td>
<td>22</td>
<td>4,045.020</td>
<td>2,777.536</td>
</tr>
<tr>
<td>tcr-miR-1992-5p</td>
<td>UCAGACUGUACUAGACUUAA</td>
<td>22</td>
<td>2,250.70</td>
<td>16.658</td>
</tr>
<tr>
<td>tcr-miR-2162-3p</td>
<td>UAUAUAGCAUCAUUUCACUCC</td>
<td>21</td>
<td>1,486.382</td>
<td>1,313.820</td>
</tr>
<tr>
<td>tcr-miR-3479a-3p</td>
<td>UAAUGACGUUCUUCUCUGCAUC</td>
<td>22</td>
<td>950.942</td>
<td>1,010.33</td>
</tr>
<tr>
<td>tcr-miR-3479b-5p</td>
<td>UAGCCGUGUCCGGCGGCAUUUCUG</td>
<td>24</td>
<td>130.699</td>
<td>84.003</td>
</tr>
<tr>
<td>tcr-miR-4989-3p</td>
<td>AAAAUACGCAACUAUCUGAGA</td>
<td>22</td>
<td>11,369.805</td>
<td>17,156.062</td>
</tr>
<tr>
<td>tcr-miR-10293-3p</td>
<td>UAUAUAGCAUCAACAGCGGCGGCUU</td>
<td>23</td>
<td>57.520</td>
<td>43.2102</td>
</tr>
<tr>
<td>tcr-miR-new-1a-3p</td>
<td>AGUUGACGUGACGUGACGUCCU</td>
<td>23</td>
<td>220.045</td>
<td>163.755</td>
</tr>
<tr>
<td>tcr-miR-new-1a-5p</td>
<td>UAGCCGCUAGUACUCACAGCU</td>
<td>22</td>
<td>446.029</td>
<td>314.704</td>
</tr>
<tr>
<td>tcr-miR-new-2a-5p</td>
<td>UAGCCGCUAGUACACAGCUG</td>
<td>21</td>
<td>192.259</td>
<td>126.974</td>
</tr>
</tbody>
</table>

The average proportions of miRNA reads were normalized to the total number of mature miRNAs in each library.

*miRNAs detected by miRNA self organizing maps (miRNA-SOM) but not by miRDeep2.

**Candidate new miRNAs detected by miRDeep2 with precursors confirmed by miRNA-SOM.
Table 2. *Taenia solium* microRNAs (miRNAs) predicted to target genes related to drug response.

<table>
<thead>
<tr>
<th>Pathway and associated genes</th>
<th>Annotation</th>
<th>miRNAs</th>
<th>Score</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC transporters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TsM_001160500</td>
<td>>tcr-miR-2b-3p</td>
<td>ABC transporter-like</td>
<td>147</td>
<td>-17.72</td>
</tr>
<tr>
<td>TsM_000989600</td>
<td>>tcr-miR-2c-3p</td>
<td>ABC transporter-like</td>
<td>154</td>
<td>-18.98</td>
</tr>
<tr>
<td>TsM_000971500</td>
<td>>tcr-miR-31-3p</td>
<td>ABC-2 type transporter</td>
<td>158</td>
<td>-20.92</td>
</tr>
<tr>
<td>TsM_001225200</td>
<td>>tcr-miR-61-3p</td>
<td>ABC transporter type 1 2C</td>
<td>151</td>
<td>-17.48</td>
</tr>
<tr>
<td>TsM_000459700</td>
<td>>tcr-miR-71-5p</td>
<td>ABC transporter-like</td>
<td>150</td>
<td>-19.48</td>
</tr>
<tr>
<td>TsM_000740200</td>
<td>>tcr-miR-125-5p</td>
<td>ABC transporter-like</td>
<td>143</td>
<td>-21.69</td>
</tr>
<tr>
<td>TsM_000068000</td>
<td>>tcr-miR-184-3p</td>
<td>ABC transporter-like</td>
<td>146</td>
<td>-21.49</td>
</tr>
<tr>
<td>TsM_000726600</td>
<td>>tcr-miR-3479b-3p</td>
<td>ABC transporter-like</td>
<td>153</td>
<td>-20.57</td>
</tr>
<tr>
<td>Drug metabolising/conjugation enzymes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TsM_000648500</td>
<td>>tcr-miR-124a-3p. >tcr-miR-124b-3p</td>
<td>Cytochrome b5-like heme/steroid binding</td>
<td>157</td>
<td>-24.90</td>
</tr>
<tr>
<td>TsM_000648500</td>
<td>>tcr-miR-124b-3p. >tcr-miR-124a-3p</td>
<td>Cytochrome b5-like heme/steroid binding</td>
<td>161</td>
<td>-24.56</td>
</tr>
<tr>
<td>TsM_000191900</td>
<td>>tcr-miR-31-3p</td>
<td>Selenoprotein 2C Rdx type</td>
<td>148</td>
<td>-18.14</td>
</tr>
<tr>
<td>TsM_000625200</td>
<td>>tcr-miR-2a-3p. >tcr-miR-2b-3p</td>
<td>Thioredoxin-like fold</td>
<td>160</td>
<td>-23.38</td>
</tr>
<tr>
<td>TsM_000625200</td>
<td>>tcr-miR-2b-3p. >tcr-miR-2a-3p</td>
<td>Thioredoxin-like fold</td>
<td>160</td>
<td>-25.38</td>
</tr>
<tr>
<td>TsM_000685100</td>
<td>>tcr-miR-9-5p</td>
<td>Thioredoxin-like fold</td>
<td>157</td>
<td>-19.71</td>
</tr>
<tr>
<td>TsM_000979200</td>
<td>>tcr-miR-281-3p</td>
<td>Thioredoxin-like fold</td>
<td>155</td>
<td>-19.21</td>
</tr>
<tr>
<td>TsM_000610200</td>
<td>>tcr-miR-307-3p</td>
<td>Glutathione S-transferase 2C Mu class</td>
<td>145</td>
<td>-18.17</td>
</tr>
<tr>
<td>TsM_000860300</td>
<td>>tcr-miR-2162-3p</td>
<td>Thiols-like</td>
<td>149</td>
<td>-19.86</td>
</tr>
<tr>
<td>TsM_000219500</td>
<td>>tcr-miR-96-5p</td>
<td>Glutathione S-transferase 2C C-</td>
<td>159</td>
<td>-21.39</td>
</tr>
<tr>
<td>Ion transport</td>
<td>tsM_000598200</td>
<td>>tcr-miR-31-3p</td>
<td>Voltage-dependent calcium channel 2C alpha-2/delta</td>
<td>151</td>
</tr>
<tr>
<td>tsM_000845300</td>
<td>>tcr-miR-2c-3p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tsM_000896200</td>
<td>>tcr-miR-36a-3p, >tcr-miR-36b, >tcr-miR-307-3p</td>
<td></td>
<td>Voltage-dependent calcium channel 2C alpha-2/delta</td>
<td>141</td>
</tr>
<tr>
<td>tsM_000896200</td>
<td>>tcr-miR-36a-3p, >tcr-miR-36b, >tcr-miR-307-3p</td>
<td></td>
<td>Voltage-dependent calcium channel 2C alpha-2/delta</td>
<td>156</td>
</tr>
<tr>
<td>tsM_000253000</td>
<td>>tcr-miR-124a-3p, >tcr-miR-124b-3p</td>
<td></td>
<td>Voltage-dependent calcium channel 2C L-type 2C</td>
<td>146</td>
</tr>
<tr>
<td>tsM_000253000</td>
<td>>tcr-miR-124a-3p, >tcr-miR-124b-3p</td>
<td></td>
<td>Voltage-dependent calcium channel 2C L-type 2C</td>
<td>148</td>
</tr>
<tr>
<td>tsM_000783500</td>
<td>>tcr-miR-133-3p</td>
<td></td>
<td>Voltage-dependent calcium channel 2C alpha-1</td>
<td>147</td>
</tr>
<tr>
<td>tsM_000896200</td>
<td>>tcr-miR-36a-3p, >tcr-miR-36b, >tcr-miR-307-3p</td>
<td></td>
<td>Voltage-dependent calcium channel 2C alpha-2/delta</td>
<td>144</td>
</tr>
<tr>
<td>tsM_000436700</td>
<td>>tcr-miR-745-3p</td>
<td></td>
<td>Voltage-dependent calcium channel 2C L-type 2C</td>
<td>148</td>
</tr>
</tbody>
</table>
Highlights

1. The first known report on *Taenia solium* and *Taenia crassiceps* miRNA repertoires is presented.

2. The first known small RNA-seq profile was characterized for *T. crassiceps* control and praziquantel-treated cysticerci.

3. The first known analysis of a drug effect on miRNA expression in cestodes is presented.
A

- CDS: 8% (±1.0)
- rRNA: 4% (±1.0)
- tRNA: 2% (±1.0)
- miRNAs: 86% (±3.3)

B

- CDS: 10% (±4.5)
- rRNA: 5% (±1.0)
- tRNA: 2% (±1.0)
- miRNAs: 83% (±3.3)