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ABSTRACT 

Aiming to produce mucoadhesive polymeric micelles for drug administration by 

mucosal routes, chitosan-g-oligo(epsilon-caprolactone) copolymers were 

synthesized by a microwave-assisted ring-opening polymerization of epsilon-

caprolactone using chitosan as macroinitiator and methanesulfonic acid as solvent, 

catalyst and protecting group of the amine moieties. The reaction was conducted 

under very mild conditions and completed within 10 min with a monomer conversion 

above 90%. The grafting of oligo(epsilon-caprolactone) blocks to the free hydroxyl 

groups of chitosan was confirmed by ATR/FT-IR, 1H- and 13C-NMR, WAXD and 

thermal analysis (TGA/DSC). The molecular weight of the synthetic hybrid 

copolymers was determined by GPC and MALDI-ToF mass spectrometry. Polymeric 

micelles obtained by the solvent diffusion/evaporation method showed spherical 

shape (TEM and AFM), sizes between 111-154 nm and highly positive zeta-potential 

(>+50 mV) (DLS). In addition, they displayed good cell compatibility in the 

human lung adenocarcinoma epithelial line A549 and were readily up-taken by the 

cervical cancer cell line HeLa. Results of the encapsulation of the antituberculosis 

drug rifampicin showed better performance than other nanocarriers previously 

investigated (e.g., cyclodextrins). Moreover, the micelles conserved the 

mucoadhesiveness displayed by pristine chitosan and, in addition, are expected to 

transiently open tight cell junctions and lead to more prolonged residence times in 

mucosal tissues and greater drug bioavailability. 

 

KEYWORDS: Chitosan-graft-oligo(epsilon-caprolactone) copolymers; microwave-

assisted ring-opening polymerization; mucoadhesive polymeric micelles; rifampicin 

encapsulation. 
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1. INTRODUCTION 

Polymeric micelles (PMs) represent one of the most versatile nanotechnology 

platforms to improve the performance of poorly-water soluble drugs.1 PMs are 

formed by the self-assembly of copolymeric amphiphiles above the critical micellar 

concentration (CMC) and display two primary domains, a hydrophobic core and a 

hydrophilic corona. Due to the great flexibility to tailor their molecular weight, 

hydrophilic-lipophilic balance (HLB), size, architecture, surface chemistry and shape, 

PMs can fit the encapsulation of diverse poorly water-soluble drugs. Despite their 

potential, a few PMs reached the clinical stages and all of them for the therapy of 

cancer by the intravenous route. More recently, the potential of these nanocarriers 

for mucosal drug administration has been highlighted.2,3 Our research group and 

others have comprehensively explored the administration of PMs by non-parenteral 

routes.4-10  

The main drawbacks of PMs for non-parenteral drug delivery are the weak 

interaction with mucosa and the associated short residence time in mucosal tissues. 

To extend the application of PMs, the development of mucoadhesive PMs is 

currently under investigation. In this framework, the hydrophobization of 

polysaccharide molecular templates is one of the most promising approaches.11 

Chitosan (CS), a product of the partial or full deacetylation of chitin, is formed by two 

repeating units of β-(1 → 4)-linked D-glucosamine (deacetylated unit) and N-acetyl-

D-glucosamine. Owing to good biocompatibility, biodegradation and 

mucoadhesiveness it has become one of the most popular natural biomaterials in 

drug delivery.12,13 CS establishes a combination of ionic, hydrogen and hydrophobic 

bonds with the negatively-charged mucin and also transiently opens tight junctions in 

the intestinal epithelium increasing the drug absorption extents. Different chemical 
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pathways have been explored to graft hydrophobic blocks and confer amphiphilicity 

to the polysaccharide backbone. Most of them indiscriminately modify both pendant 

hydroxyl and amine groups. However, to maximize mucoadhesiveness, amine 

moieties should remain largely intact and thus different protection methods have 

been proposed. For example, the initial amidation with phthaloyl chloride14,15 and 

later deprotection under relatively mild conditions.16 The main drawback of this 

approach is the introduction of toxic aromatic residues that might be incompatible 

with biomedical uses and the demand of profuse purification steps. The CS salt 

produced with methanesulfonic acid (MSA) is a simple and reversible protection 

method17 that enables graft polymerization reactions of CS in homogeneous water-

free media.18 MSA is a pharmaceutical excipient approved for parenteral 

administration and used to produce salts, namely methanesulfonates or mesylates, 

of poorly-water soluble drugs and increase their aqueous solubility.19 

Poly(epsilon-caprolactone) (PCL) is a biocompatible polyester with higher 

hydrophobicity and slower hydrolysis rate than poly(lactic acid) polymers that due to 

the ability to sustain the release of both hydrophilic and hydrophobic drugs has 

gained a prominent place in the development of drug delivery systems.20 

Aiming to produce mucoadhesive PMs, in this work, we investigated the grafting of 

short PCL blocks to the side-chain of a low molecular weight CS precursor by a fast 

microwave-assisted ring opening polymerization of epsilon-caprolactone (CL) in 

MSA medium. The reaction was completed within 10 min and the monomer 

conversion was high. Spherical PMs with sizes in the 111-154 nm range and highly 

positive zeta-potential were obtained, these findings being consistent with the 

availability of free protonated amine groups. In addition, micelles displayed good cell 

compatibility, were up-taken by a phagocytic cell line and encapsulated the model 
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drug rifampicin to a greater extent than other popular drug nanocarriers. Overall 

results support the potential of this nanotechnology platform for the improved 

administration of drugs by the mucosal routes.   

 

2. EXPERIMENTAL SECTION 

2.1. Materials 

Low molecular weight (Mw) CS (degree of deacetylation of 75-85%; viscosity of 20-

200 cP, 1% w/v in 1% acetic acid solution by Brookfield method at 25ºC), CL and 

MSA were supplied by Sigma-Aldrich (St. Louis, MO, USA). CL and MSA were dried 

with activated molecular sieves 3A (Sigma-Aldrich) at least 24 h before use. 

Rifampicin (RIF, 98.2% purity) was purchased from Parafarm® (Buenos Aires, 

Argentina) and used as received. All the other solvents were of analytical or 

spectroscopic grade (Sintorgan, Buenos Aires, Argentina) and used without further 

purification. 

2.2. Methods 

2.2.1. Synthesis of CS amphiphiles. The microwave-assisted graft polymerization 

of CL was conducted in a monowave 300 high performance microwave reactor 

(Anton Paar® GmbH, Graz, Austria). CS:CL weight feeding ratios of 1:8; 1:12; 1:16 

and 1:24 were used to obtain CS-g-oligo(CL) copolymers with growing molecular 

weight and CL content (Table 1). Briefly, dry CS (0.5 g) was placed in a dried glass 

reactor and dissolved in dry MSA (7.5 mL), followed by the injection of a certain 

amount of CL (4-12 g for the different copolymers). Then, the reactor was irradiated 

at (i) 45ºC (5 min) and (ii) 70ºC (5 min); these conditions were identical for all the 

derivatives. Reaction crudes were thoroughly dialyzed against distilled water 

(regenerated cellulose dialysis membranes; MWCO of 3500 g/mol, Spectra/Por® 3 
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nominal flat width of 45 mm, diameter of 29 mm, and volume/length ratio of 6.4 

mL/cm; Spectrum Laboratories, Inc., Rancho Dominguez, CA, USA) for 72 h, frozen 

(-80ºC, 24 h) and freeze-dried (48 h). CS-g-oligo(CL) copolymers synthesized with 

CS:CL weight ratios of 1:8, 1:12, 1:16 and 1:24 are named CS-CL8, CS-CL12, CS-

CL16 and CS-CL24, respectively. The synthesis of fluorescent CS-CL8 copolymer 

used in cell uptake assays was carried out by reacting 0.2 g of the copolymer with 

4.5 mg of fluorescein isothiocyanate (Isomer I, FITC, Sigma-Aldrich) in N,N-

dimethylformamide (DMF) (10 mL) at room temperature (12 h) protected from light 

as reported elsewhere.21 Then, the product was dialyzed (24 h), frozen and freeze-

dried (48 h).   

2.2.2. Characterization of CS-g-oligo(CL) copolymers. The different products 

were fully characterized and compared to pristine CS and when relevant to 

poly(epsilon-caprolactone)diol (PCL, Mw of 40 kg/mol) synthesized following a 

previous microwave-assisted technique.22  

Attenuated Total Reflectance/Fourier Transform-Infrared Spectroscopy 

(ATR/FT-IR). ATR/FT-IR spectra of CS-CL8, CS-CL12, CS-CL16 and CS-CL24 were 

recorded in a Nicolet 380 spectrometer (Avatar Combination Kit, Smart Multi-Bounce 

HATR with ZnSe crystal 45º reflectance, Thermo Scientific, Madison, WI, USA) from 

4000 to 600 cm-1 (32–64 scans with a resolution of 4 cm-1) at room temperature. For 

this, powders were mounted on the ATR crystal-ZnSe metal plate (45o angle) and 

spectra obtained using the Thermo Scientific OMNIC 8 spectrum software (Thermo 

Scientific).  

Proton and carbon Nuclear Magnetic Resonance Spectroscopy (NMR). 1H- and 

13C-NMR spectra of the different copolymers were recorded in a 500-MHz Bruker® 

Avance II High Resolution spectrometer (1H- at 500.13 MHz and 13C-NMR at 125.77 
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MHz) and Bruker TOPSPIN 2.1 software (Bruker BioSpin GmbH, Rheinstetten, 

Germany) using acetone-d6 (Sigma-Aldrich) as solvent and 2% w/v solutions. 

Chemical shifts are reported in ppm using tetramethylsilane (TMS) as internal 

standard. The experimental average number of CL units per glucosamine unit in the 

graft copolymer (CLn) was calculated from 1H-NMR spectra according to Equation 

123 

CLn = (APLC/ACS)/2                            (1) 

Where APCL represents half of the integration area of –CH2 protons of oligo(CL) at 

2.30 ppm and ACS is the integral area of the CS protons at 3.89 ppm.  

Molecular weight. The molecular weight of the copolymers was determined using 

two complementary methods.  

(i) Matrix-assisted laser desorption/ionization-Time-of-Flight mass spectrometry 

(MALDI-TOF MS). The mass spectral data of the graft copolymers was obtained 

using a Ultra Flex II MALDI-TOF (Bruker Daltonik GmbH, Bremen, Germany) 

equipped with a pulsed nitrogen laser, operating at a wavelength of 337 nm in 

reflectron mode, using 2,5-dihydroxybenzoic acid as matrix. Copolymers were 

dissolved in chloroform (10 µg/mL), mixed with the matrix (1 mg) dissolved in 

acetonitrile:water (3:2, v/v) in 1:1 (v/v) ratio, deposited onto a ground steel plate 

(Bruker Daltonics GmbH) and slowly dried to allow matrix crystallization.24 MALDI-

TOF MS spectra were recorded and the intensity represented as a function of the 

m/z in the range between 2000 and 60,000 g/mol using Bruker Daltonics Flex 

Analysis software (Bruker Daltonics GmbH) and calibrated by using commercial 

proteins (angiotensin, neurotensin insulin), and β- and γ-cyclodextrins as external 

standards. 
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(ii) Gel permeation chromatography (GPC). Number- and weight-average molecular 

weights (Mn and Mw, respectively) and molecular weight distribution (defined Mw/Mn) 

were determined by analytical GPC using an Agilent 1100 Series HPLC System 

(Agilent Technologies, Santa Clara, CA, USA) including a refractive index detector.25 

Polystyrene standards were used for Mw calibration and the calculation done with 

Win-GPC Software. The measurements were run in tetrahydrofuran (THF) as eluent 

(flow of 1 mL/min) at 20ºC using an array of Suprema Lux 100, Suprema 1000 and 

Suprema Lux 3000 columns (8 x 300 mm, polystyrene particle size of 10 µm, Knauer 

Wissenschaftliche Geräte GmbH, Berlin, Germany). 

Thermal analysis. The thermal behavior of the different copolymers was analyzed 

employing a TG-DSC SDT Q600 V8.1 simultaneous thermal analyzer using the 

Universal Analysis Software V4.2E (TA Instruments; New Castle, DE, USA) under 

dry N2 atmosphere (flow of 100 mL/min) and In as standard. Dry samples (2.0-2.5 

mg) were sealed in 40 µL Al-crucibles pans and subjected to three consecutive 

thermal treatments at a heating/cooling rate of 10ºC/min: (i) 25 to 100ºC (first heating 

ramp to erase the thermal history), (ii) 100 to 0ºC (cooling ramp) and (iii) 0 to 500ºC 

(second heating ramp). The melting temperature (Tm) of native and graft copolymers 

and the enthalpy involved in each transition (∆Hm) were calculated from the 

endothermic peaks, registered during the second heating ramps (see above). ∆Hm 

values were normalized to the PCL content of each copolymer. The remaining 

weight of sample (expressed in %) in the second heating ramp was also recorded.  

Powder wide-angle X-ray diffraction (WAXD). The crystallinity of the different 

copolymers was analyzed by WAXD in an Empyrean Diffractometer (PANalytical, 

Almelo, Netherlands) using Ni-filtered Cu radiation generated at 40 mA and 40 kV. 
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The experimental data were collected between 0º and 60º at a scanning rate of 

2º/min.  

2.2.3. Preparation of RIF-free and RIF-loaded PMs. Drug-free PMs were prepared 

by the co-solvent diffusion/evaporation method. Briefly, copolymers (0.1 g) were 

dissolved in pure acetone and added drop wise (flow of 20 mL/h) to water (10 mL; 

Simplicity® Water Purification System, Millipore, Billerica, MA, USA; pH = 5.8) under 

mechanical stirring (three-blade propeller, 1060 RPM) using a programmable syringe 

infusion pump (PC11UB, APEMA, Buenos Aires, Argentina), at room temperature.26 

Mechanical stirring was continued under the same conditions for 1.5 h after the end 

of the addition to ensure the complete elimination of acetone.27 Resulting aqueous 

dispersions were centrifuged (12,000 RPM; 15 min) with a Centrifuge 5810 R 

(Eppendorf AG, Hamburg, Germany) and filtered through clarifying filters (0.45 µm; 

GE nitrocellulose mixed esters membrane, Osmonics Inc., Minnesota, MN, USA). 

To prepare RIF-loaded PMs, the procedure was similar to the previously described 

though with the addition of 10 mg/mL of RIF to the organic phase containing the 

copolymer. The drug payload into PMs was determined using UV-Visible 

spectroscopy (λmax. = 340 nm, CARY (1E) UV-Visible Spectrophotometer Varian, 

Palo Alto, CA, USA) at room temperature, after the appropriate dilution in DMF. A 

calibration curve of RIF in DMF covering the range between 5 and 50 µg/mL (R2 

>0.999) was used. Copolymer solutions in DMF were used as blank. The percentage 

of RIF loading (%RIF) in the different micellar systems was calculated according to 

Equation 2  

%RIF = Ce/(Ce + Cp) x 100   (2) 

Where experimental RIF cargo (Ce) is the concentration of RIF in PMs of a certain 

copolymer concentration (Cp), both values being expressed in mg/mL.  
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In addition, the encapsulation efficiency (%EE) of the PMs was determined 

according to Equation 3 

%EE = (Ce/Ct) x 100 (3) 

Where Ct is the theoretical RIF cargo. 

Finally, solubility factors (fs) were calculated according to Equation 4 

          fs = SPM/Swater           (4)                       

Where SPM and Swater are the apparent solubility of RIF in the corresponding PMs 

and the experimental intrinsic solubility in water determined at the time of the 

experiments (2.13 mg/mL), respectively, at 25oC. All the results were expressed as 

mean ± S.D. of three independent samples prepared under identical conditions. 

2.2.4. Characterization of the micellization process. Stock aqueous solutions (1% 

w/v) of the copolymers were diluted (0.0001–1% w/v) and stabilized at 37ºC for at 

least 24 h. Refractive indices and viscosities for these measurements were between 

1.333-1.350 and 0.6855–0.6875 cP, respectively (37ºC). The intensity of the 

scattered light (DCR) expressed in kilo counts per second (kcps) was measured by 

Dynamic Light Scattering (DLS, Zetasizer Nano-ZS, Malvern Instruments, Malvern, 

UK) provided with a 4 mW He-Ne laser (λ = 633 nm), a digital correlator ZEN3600 

and a Non-Invasive Back Scatter (NIBS®) technology (37ºC) and plotted as a 

function of the copolymer concentration (% w/v). Measurements were carried out at 

a scattering angle of 173º to the incident beam and data were analyzed using 

CONTIN algorithms (Malvern Instruments). Data for each single specimen was the 

result of at least six runs. The micellization was observed as a sharp increase in the 

scattering intensity and the intersection between the two straight lines corresponded 

to the CMC.24 
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2.2.5. Size, size distribution and zeta potential. The hydrodynamic diameter (Dh), 

the size distribution (polydispersity index, PDI) and the zeta-potential (Z-potential) of 

RIF-free and RIF-loaded fresh PMs were determined using the Zetasizer Nano-ZS. 

For Z-potential, laser Doppler micro-electrophoresis is used. Values are expressed 

as mean ± S.D. of three independent samples prepared under identical conditions. 

Data for each single specimen were the result of at least six runs.  

2.2.6. Morphology of the micelles. The morphology of fresh RIF-free and RIF-

loaded (1% w/v) PMs was visualized by transmission electron microscopy (TEM) 

(Electron microscope ZEISS EM109 TEM, Oberkochen, Germany) equipped with a 

Digital ES1000W ErlangshenTM 11 megapixel high-speed affordable CCD camera 

(Model 785, Gatan GmbH, München, Germany). For this, PMs suspensions (1% w/v, 

30-50 µL) were deposited on a carbon grid membrane coated with a hydrophilic 

acrylic resin, the excess of sample was soaked with filter paper and the grid covered 

with a drop of phosphotungstic acid (50 µL, 2% w/v in deionized water) during 60 s. 

Then, grids were air-dried and analyzed. Analysis was conducted at 80 kV and room 

temperature and the diameter of PMs estimated using TEM AutoTuneTM software 

(Gatan Digital Micrograph® software, Gatan GmbH).  

The morphology study was complemented by atomic force microscopy (AFM) using 

tapping mode (Nano World tips, Non-Contact/Tapping Mode-Long Cantilever, NCL-

W) with resonance frequency of 190 kHz and spring constant of 48 N m-1 

(NanoDevices, Digital Instruments, Veeco, Santa Barbara, CA, USA) in a MultiMode 

8 AFM equipped with a Nanoscope V controller (Veeco).25 For this, PMs aqueous 

solutions (2 mg/mL) were spin coated on a mica sheet at 90 rps and 5 min. Data 

were analyzed using NanoScope Analysis 1.3 software.  
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2.2.7. In vitro mucoadhesion. The mucoadhesion of the micelles in vitro was 

determined using the mucin method that is based on the growth of the micellar Dh as 

a result of the interaction and agglomeration in the presence of soluble mucin.28,29 

Briefly, mucin aqueous solution (0.25 % w/v) was prepared overnight at room 

temperature. Then, fresh PMs (5 mL, 1 % w/v) were added to the mucin solution (5 

mL), vortexed (30 s) and incubated for 12 h at 37ºC. Measurements of Dh were 

carried out by DLS as described above. The mucoadhesion index (MI) was 

calculated according to Equation 5 

 MI = Dh12/Dh0         (5) 

Where Dh0 and Dh12 are the Dh of particles before (t = 0 h) and after (t = 12 h) the 

incubation with mucin, respectively. Results were expressed as mean ± S.D. of three 

independent samples prepared under identical conditions. Data for each single 

specimen were the result of at least six runs.  

2.2.8. Cytotoxicity and cellular uptake. A human lung adenocarcinoma epithelial 

cell line (A549) and an epithelioid human cervix carcinoma cell line (HeLa) were 

obtained from American Type Culture Collection (ATCC, Manassas, VA, USA) and 

cultured in Dulbecco's Modified Eagle Medium (DMEM, Life Technologies Corp., 

Carlsbad, CA, USA) supplemented with 10% heat-inactivated fetal calf serum (FCS, 

Life Technologies Corp.) and 1% penicillin/streptomycin (PAN-Biotech GmbH, 

Aidenbach, Germany), respectively. All cells were maintained at 37ºC in a humidified 

5% CO2 atmosphere and split 1:10 into fresh media every three-four days.  

(i) Cytotoxicity of RIF-free PMs. In vitro cytotoxicity of the PMs was assessed using 

the trypan blue (Sigma-Aldrich) exclusion assay. For this, A549 cells were seeded at 

a density of 1 x 105 cells/mL in 6-well plates and culture medium (2 mL) (t = 0) and 

incubated for 14 h. Then, fresh 0.1% PMs in fresh full growth medium were added to 
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the cells and incubated for 8 and 24 h, at 37ºC and 5% CO2. After the incubation 

time, the medium was removed and the cells were washed with 5 mL PBS and then 

trypsinized by adding 500 µL of trypsin solution (0.25%, PAN-Biotech GmbH). 

Trypsinization was stopped with 500 µL full growth medium. The cell suspension (50 

µL) mixed with trypan blue solution (50 µL, 0.4%) was transferred to a Neubauer 

chamber and the number of unstained (live) cells determined. Cell viability should be 

at least 95% for healthy log-phase cultures. The statistical analysis on data of viable 

cell concentrations (relative to untreated control cells) was performed by a two-way 

analysis of variance (ANOVA). The software used was GraphPad Prism version 5.01 

for Windows (GraphPad Software Inc., San Diego, CA, USA). 

(ii) Cellular uptake. The cellular uptake of RIF-free PMs was tested in a phagocytic 

cell line, HeLa. For microscopic studies, 1 x 105 cells/mL were initially seeded on 

cover slips in 6-well plates and grown overnight at 37ºC and 5% CO2. Then, 1.0, 0.5, 

0.1 and 0.05 mL of FITC-labeled PMs (0.1% w/v) was added to the cells and 

incubated for 15 h. FITC-labeled dextran (FITC-dextran, average molecular weight of 

20 kg/mol, Sigma-Aldrich) was used as control. Thereafter, the media was removed, 

the cells were washed three times with PBS and fixed with 10% Neutral Buffered 

Formalin (NBF) in PBS (20 min) at room temperature. Afterwards, the fixing solution 

was removed and cells permeabilized with 0.1% Triton X-100 in PBS (5 min). Cover 

slips were washed three times with PBS and incubated in the dark (30 min, 37ºC) 

with approximately 200 µL of 4,6-diamidino-2-phenylindole (2.5 µg/mL, DAPI, Carl 

Roth GmbH, Karlsruhe, Germany). After three times washings with PBS, cover slips 

were dipped in water, mounted onto microscopy slides with ProTaqs Mount Fluor 

(Quartett) and dried overnight at room temperature. Microscopic image acquisition 

was performed with a TCS SP8 confocal laser scanning microscope (Leica 
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Microsystems GmbH, Wetzlar, Germany) with a 63x oil immersion objective and 

LASAF software (Leica).  

 

3. RESULTS AND DISCUSSION 

3.1. The rationale 

The potential of PMs as nano-drug delivery systems by non-parenteral routes relies 

on the ability to synthesize polymeric amphiphiles with a strong aggregation 

tendency at relatively low concentrations and that, at the same time, display a 

micellar corona that undergoes strong interaction with mucin, a negatively-charged 

glycoprotein that is the main component of mucosa. In this work, we investigated the 

hydrophobization of CS templates by means of a fast microwave-assisted ring-

opening graft polymerization of CL under very mild temperature. Aiming to conduct 

the reaction under homogenous conditions and preserve amine groups that play a 

fundamental role in mucoadhesion mainly unreacted, MSA was used as solvent, 

catalyst and protecting group.    

3.2. Microwave-assisted graft polymerization of CL on CS templates 

The microwave-assisted ring opening polymerization of lactones has been proven 

more efficient and faster than the conventional thermal reaction.27,30,31 Due to the 

extremely low solubility of CS in non-aqueous solvents, traditional synthetic 

pathways employ aqueous or heterogeneous chemistry or, conversely, ionic liquids 

as solvent.32 

In this study, we report for the first time on the microwave-assisted graft 

polymerization of CL to the free hydroxyl groups of CS in the presence of MSA as 

both catalyst and solvent (Figure 1). This medium not only solubilized CS but also 

prevented the opening of the lactone ring by the amine groups due to the formation 
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of a stable methanesulfonate salt. Reactions were completed within 10 min and the 

monomer conversion was greater than 90%. In addition, yellowish precursor 

solutions turned into dark brown crudes that after profuse dialysis resulted in light 

brown powders probably due to some level of CS oxidation. The gradual increase of 

the CL feeding ratio in the reaction mixture was used to increase the Mw of the 

hydrophobic blocks and the lipophilicity of the copolymer (Table 1). In general, the 

reaction yield was in the 75-90% range, growing for higher CL feeding ratios due to a 

decrease of the amount of low Mw products lost in the dialysis step (Table 1). Finally, 

as opposed to pristine CS, copolymers were readily soluble in DMF, THF, dimethyl 

sulfoxide (DMSO) and acetone (up to 20 mg/mL) and slightly soluble in chloroform. 

3.3. Chemical characterization of the copolymers 

The grafting of oligo(CL) blocks was confirmed by various complementary methods.  

3.3.1. ATR/FT-IR. ATR/FT-IR spectra of unmodified CS showed characteristic bands 

at 1660 and 1600 cm-1 that corresponded to the stretching vibrations of the carbonyl 

(C=O) and free amine groups, respectively (Figure 2A). These results indicated that 

in agreement with the supplier information, CS was not completely deacetylated. 

After grafting, clear CH stretching bands of methylene groups at 2865 cm-1 and C=O 

at 1726 cm-1 due to the incorporation of oligo(CL) blocks were apparent (Figure 2B). 

These results fitted the spectrum of pure PCL (Figure 2C). In addition, the intensity 

of the band of the hydroxyl groups of pristine CS at 3000-3500 cm-1 decreased 

significantly. Furthermore, the carbonyl band gradually grew with the CL feeding ratio 

from CS-CL8 to CS-CL24 (data not shown).  

3.3.2. 1H- and 13C-NMR. To confirm the grafting of oligo(CL) blocks, the copolymers 

were thoroughly analyzed by NMR spectroscopy and compared to pristine CS and 

PCL. The 1H-NMR spectrum of CS-CL8 showed peaks at 4.04, 2.30, 1.75-1.63 and 
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1.40 ppm that corresponded to the oligo(CL) chains (Figure 3A). In addition, 

characteristic H signals of CS were observed at higher fields. Finally, the presence of 

a peak in 3.07 ppm that corresponds to the methyl group of methylsulfonate 

indicated the conservation of the amine groups as the methansulfonate salt and the 

prevention of the amidation reaction due to the ring opening of CL by the amine 

moieties (Figure 3A). In general, by increasing the CL feeding ratio, longer oligo(CL) 

blocks were produced. This growth in the CL content was gradual though no linear 

and the decrease of the grafting rate suggested a relative decrease of the monomer 

conversion for higher CL feeding ratios. To determine the average number of CL 

units in the side-chain per N-glucosamine repeating unit in the CS backbone, the 

experimental values of CLn were calculated. For CS-CL8, CS-CL12, CS-CL16 and 

CS-CL24, CLn values gradually increase from 19.6 to 39.7 (Table 1). Finally, 13C-

NMR spectra of all copolymers presented peaks of C=O at 174.05-175.15 ppm and 

CH and CH2 at 20-70 ppm that are characteristic of oligo(CL) blocks (Figure 3B). 

Overall, these results confirmed the good efficiency of the synthetic method.  

3.4. Molecular weight of the copolymer 

MALDI-TOF MS data showed three m/z populations with similar peak maxima 

(Table 2) as exemplified in Figure 4A for CS-CL8. On the other hand, the peak with 

the highest m/z maximum corresponded to the Mw and showed a slight increase in 

the distribution end set values from 5747 g/mol for CS-CL8 to 6658 g/mol for CS-

CL24 as the CL feeding ratio increased (Table 2). GPC analysis revealed that even 

if the values were in the same order of magnitude, they were smaller than those 

measured by MALDI-TOF MS (Table 2, Figure 4B). These differences are 

reasonable considering the different principle used by both methods and the fact that 

GPC standards were of polystyrene. In addition, the molecular weight distribution 
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was estimated from Mw/Mn where values between 1.7 and 3.8 (Table 2) were 

consistent with the use of polymeric precursors obtained from natural sources that 

usually show intrinsic high molecular weight dispersions.33 

3.5. Thermal characterization of the copolymers 

DSC was used to study the thermal transitions of the different copolymers. The Tm of 

pristine PCL (Mw of 40 kg/mol) was 64ºC and the associated ∆Hm 72.3 J/g. The Tm of 

the oligo(CL) blocks in the different copolymers gradually increased from 50oC for 

CS-CL8 to 54oC for CS-CL24 (Table 1, Figure 5). A decrease of the Tm and the ∆Hm 

(57.1-70.8 J/g) with respect to pure PCL stemmed from the lower crystallinity of 

oligo(CL) blocks in the copolymers due to their fragmented nature that increase the 

number of terminal repeating units and thus reduce their crystallizability. To gain 

understanding on the effect of the graft polymerization on the thermal stability of CS, 

samples were also analyzed by TGA where the weight loss was monitored during a 

heating step up to 500oC. CS showed a sharp weight loss of 40-45% at 

approximately 300oC that corresponded to the thermal decomposition of the 

polysaccharide chain (Figure 6). Then, the weight loss was less pronounced. 

Pristine PCL displayed a moderate weight loss up to 350oC when the most 

significant degradation began. The thermal degradation of the copolymers was much 

slower, with a weight loss of only 10-20% up to 350oC and a faster one between 

400-450oC. These results were consistent with the increase of the thermal stability of 

CS due to the grafting of oligoester blocks in the side-chain.34,35 

3.6. WAXD of the copolymers 

Powder WAXD patterns were recorded to confirm the crystalline nature of oligo(CL) 

blocks in the copolymers. It is worth mentioning that as opposed to DSC, the thermal 

history of these samples was not erased. CS and pristine PCL showed patterns of 
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amorphous and semi-crystalline materials, respectively. All the copolymers displayed 

two strong diffraction signals at 2θ 21.5º and 23.7º characteristic of semi-crystalline 

PCL (Figure 7).36 These findings were in good agreement with the thermal analysis 

that showed the crystalline nature of the grafted polyester chains, regardless of their 

relatively short length when compared to PCL.      

3.7. Characterization of the micellization process 

All the derivatives showed very low CMC values between 3.6 and 5.0 x 10-4% w/v 

(equivalent to 3.6-5.0 x 10-3 mg/mL) (Table 3). Even though values were very 

similar, the increase of the CL feeding ratio led to a slight increase of the CMC. 

These results were unexpected because usually, the more hydrophobic the 

copolymer the lower the CMC; greater CL feeding ratio resulted in higher CLn values 

(Table 1). On the other hand, it points out that longer oligo(CL) blocks hindered the 

self-aggregation process, a phenomenon that has been reported for other 

amphiphiles based on PCL as the hydrophobic component.26 This behavior should 

be considered at the time of optimizing the drug encapsulation properties.  

3.8. Characterization of RIF-free micelles 

RIF-free PMs in aqueous solution (1% w/v) displayed Dh in the 111-154 nm range, 

as measured by DLS (Table 3). In addition, very low PDI values (0.12-0.23) were 

indicative of unimodal size distributions for all of them. As expected, the increase of 

the CL feeding ratio resulted in a gradual increase of the micellar size due to the 

enlargement of the hydrophobic core. In addition, the Z-potential of all the micelles 

was highly positive, consistent with the presence of free amine groups in protonated 

form due to the formation of a methanesulfonate salt (Table 3). The spherical 

morphology of RIF-free PMs was confirmed by TEM and AFM (Figure 8). Moreover, 

the average sizes visualized by both microscopies (90 ± 8 and 115 ± 30 nm, 
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respectively) were in good agreement with DLS data (Table 3). Small differences 

were due to the flattening or shrinking of the PMs during sample preparation.  

To investigate the mucoadhesive properties, RIF-free PMs were incubated with 

mucin solution and the size growth change due to agglomeration monitored by DLS.  

A priori, a size growth was anticipated due to the positively-charged surface of the 

PMs (see Z-potential results) and the negative nature of sialic acid residues in 

mucin. In this context, MI values were between 3.4 and 9.2 times, CS-CL16 micelles 

showing the highest agglomeration (Table 3); CS-CL24 was very unstable and 

tended to precipitate relatively fast. These results supported the conservation of free 

amine groups. Intriguingly, the gradual increase in the agglomeration extent for 

copolymers bearing increasingly longer oligo(CL) block from CS-CL8 to CS-CL16 

suggested the involvement of hydrophobic interactions of oligo(CL) blocks with 

hydrophobic domains in mucin, as previously shown for PCL nanoparticles.34 On one 

hand, oligo(CL) blocks are expected to form the micellar core and not being exposed 

at the surface to interact with mucin. On the other, PMs are dynamic systems in 

equilibrium with free copolymer molecules (known as unimers) and thus, the gradual 

formation of agglomerates of non-micellized copolymer molecules and mucin that 

contributes to the size growth could not be ruled out.  

3.9. Encapsulation of RIF 

RIF is one of the most potent and effective antituberculosis agents, though its oral 

bioavailability is challenged by a low aqueous solubility and chemical instability in the 

acid gastric medium.38,39 Furthermore, there is a growing interest in nano-

encapsulating RIF for inhalation delivery to target the mycobacterium reservoir, 

alveolar macrophages.18,40,41 In this scenario, conferring mucoadhesiveness to the 

nanocarrier would prolong the residence time of the drug delivery system in the 
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lungs and sustain the release of the encapsulated cargo. Due to a peculiar 

combination of molecular features including bulkiness, amphotericity and 

amphiphilicity, RIF is hard to encapsulate within PMs and other nanocarriers.42 We 

were interested in evaluating the performance of CS-g-oligo(CL) PMs as a possible 

nanotechnology platform that would pave the way to a more efficient RIF nano-

encapsulation. The encapsulation was possible in CS-CL8, CS-CL12 and CS-CL16 

PMs (1% w/v), fs average values being 1.7, 1.5 and 1.9, respectively (Table 3). 

%RIF and %EE values were 24-28% and 31-40%, for CS-CL8, CS-CL12 and CS-

CL16 (Table 3). When the oligo(CL) chains increased in the graft copolymer, RIF-

loading capacity and encapsulation efficiency seemed to increase slightly, although 

the trend was not clear (Table 3). Conversely, the encapsulation failed with CS-CL24 

due to a fast precipitation of this very hydrophobic copolymer in aqueous medium 

immediately after addition of the organic solution to water during the production 

process (Table 3). RIF-loaded PMs retained the spherical morphology without any 

sign of drug crystallization in the core (Figure 9), as opposed to other PCL-

containing micelles.26 This encapsulation performance was similar to that of 1% 

flower-like PMs.26 Moreover, PMs conserved the strong electropositive surface upon 

encapsulation (Table 3). Thus, mucoadhesiveness in mucosal epithelia are expected 

to prolong the residence time and increase the bioavailability of the cargo. 

3.10. Cytocompatibility and cellular uptake  

Mucoadhesive PMs are designed to deliver drugs by mucosal routes. Thus, initially 

we assessed the cytocompatibility of RIF-free PMs using in A549 cells, a lung 

epithelial cell line. This cell line is a valid in vitro model of the pulmonary epithelium 

that could be of relevance in the inhalatory treatment of tuberculosis. PMs showed 

good cell compatibility (between 70-90%) after 8 h of exposure with minimal 
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dependence of the oligo(CL) length (Figure 10). Longer exposure led to a slight 

decrease of the cell viability though still to extents that are acceptable for in vitro 

studies.43 Moreover, a two-way ANOVA analysis indicated that differences in cell 

viability as a function of exposure time were not significant (P value = 0.0579). 

Conversely, CS-CL24 PMs were not stable and precipitated very fast. Thus, they 

were not included in the assay.  

PMs are often used as reservoir for the release of the encapsulated drug that is then 

absorbed in free form. However, in other therapeutic scenarios, they could be 

capitalized for the passive intracellular delivery of the cargo to phagocytic cells (e.g., 

macrophages). This is the case of tuberculosis, where alveolar macrophages are the 

reservoir of the mycobacterium. To evaluate the cellular uptake, HeLa cells, a 

phagocytic cell line, were incubated with fluorescently-labeled drug-free PMs and the 

uptake monitored by confocal microscopy (Figure 11). The uptake of the PMs 

(Figure 11A-C) was higher than that of a FITC-dextran control (Figure 11D) and 

indicated that the micelles accumulated in the perinuclear region of the citoplasm. 

These results also supported the low cytotoxicity of the carriers.  

 

4. CONCLUSIONS 

New hybrid drug carriers combining the encapsulation capacity of PMs with the 

mucoadhesion of CS were extensively investigated. The grafting of oligo(CL) chains 

onto free-OH moieties of CS was successfully carried out by microwave radiation 

under relatively mild temperature conditions. It was found that 10 min of irradiation 

was sufficient to complete the grafting, a remarkable advantage over conventional 

reactions that require several hours at relatively high temperatures and that usually 

result in the extensive degradation of the polysaccharide backbone, especially in 
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acid media. In addition, the reaction conditions were highly reproducible, controllable 

and with up to 90% higher yields. These new amphiphilic copolymers were soluble 

several aprotic solvents, unlike their unmodified counterpart CS. Moreover, they 

were employed for the production of nanoscopic PMs that underwent agglomeration 

in presence of mucin due to the preservation of free amine groups. Moreover, they 

allowed the encapsulation of hydrophobic drugs such as the complex RIF to an 

extent comparable with other micelles that together with mucoadhesion and the 

capacity to open tight cell junctions constitute advantageous features to prolong and 

sustain the release of the encapsulated drug in mucosal tissue such as the intestine 

and the lungs. 
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Figures legends 

Figure 1. Microwave-assisted ring opening grafting of CL to CS templates to 

amphiphilic copolymers. MSA was used as catalyst, solvent and protectant of side 

amine groups in CS. 

Figure 2. ATR/FT-IR spectrum of (A) pristine CS, (B) CS-CL8 and (C) pristine PCL 

(MW of 40 kg/mol). The carbonyl group (C=O) of CL in the graft copolymer was 

observed at 1726 cm-1. 

Figure 3. NMR analysis of CS-CL8 (2%) in acetone-d6. (A) 1H-NMR. The integrals 

shown for CL and CS at 2.30 and 3.89 ppm, respectively, used to calculate the 

number of CL units per glucosamine residue. (B) 13C-NMR. The characteristic signal 

of the newly formed ester bond (C=O) and the methanesulfonate carbon (CH3SO3
-) 

are clearly observed at 174.05 and 40.15 ppm, respectively (indicated with arrows). 

Figure 4. (A) MALDI-TOF spectrum and (B) GPC chromatogram of CS-CL8.  

Figure 5. DSC thermograms of (A) pristine CS, (B) pristine PCL and (C) CS-CL8 

during the second heating ramp. The Tm of pristine PCL and CS-CL8 are indicated 

with arrows. 

Figure 6. TGA thermograms of (A) pristine CS, (B) pristine PCL and (C) CS-CL8. 

Figure 7. WAXD diffractograms of pristine CS and PCL, and CS-g-oligo(CL) 

copolymers. 

Figure 8. Morphology of RIF-free CS-CL8 PMs (1% w/v) by (A) TEM (scale bar = 

100 nm) and (B) AFM (scale bar = 2 µm). 

Figure 9. TEM micrograph of RIF-loaded CS-CL8 PMs (1% w/v). Scale bar = 50 nm. 

Figure 10. Viability of A549 cells exposed to different RIF-free PMs (1% w/v) of CS-

CL8, CS-CL12 and CS-CL24 copolymers expressed as relative cell concentration, 
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as a function of exposure time. The 80-90% of viability was observed up to 24 h 

post-exposure. A control without treatment was considered 100% viability. 

Figure 11. Fluorescent microscopy of HeLa cells exposed (15 h) to: (A) 0.5 mL, (B) 

0.1 mL and (C) 0.05 mL of FITC-labeled CS-CL8 PMs and (D) FITC-dextran 

(control). Green areas represent FITC-labeled PMs, while blue areas represent the 

DAPI stained nuclei of the cells. Note that PMs seem to accumulate particularly in 

the perinuclear region. 
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Tables 

Table 1. Weight feeding ratios used for the grafting of CL to pristine CS by 

microwave-assisted ring opening polymerization and thermal analysis of the 

copolymers. 

 

 

 

 

 

 

 

 

 

 

 

a Experimental average number of CL units per D-glucosamine unit in CS as calculated by 
1H-NMR; b melting temperature (Tm) of oligo(CL) blocks determined during the second 

heating ramp and c enthalpy of fusion (∆Hm) of oligo(CL) blocks determined during the 

second heating ramp and normalized to the oligo(CL) content. 
 
 
 
 

Table 2. Experimental MW of the different copolymers determined by MALDI-TOF 

and GPC.  

a MALDI-TOF MS showed three m/z populations. Values presented in the table correspond 

to the peak maxima of each fraction. The m/z range for each fraction is indicated between 

brackets. 

Copolymer CS amount  

(g) 

CL amount 

(g) 

Yield 

(%) 
CL

n

a

 
Tm

b  

(ºC) 
∆Hm

c 

(J/g) 

CS-CL8  

 

0.5 

4.1 75 19.6 50 57.1 

CS-CL12 6.2 80 24.3 51 66.2 

CS-CL16 8.2 85 32.9 53 70.8 

CS-CL24 12.4 90 39.7 54 66.9 

 
Copolymer 

MALDI-TOF MSa GPC 

MW (g/mol) 
MW 

(g/mol) 
MW/Mn 

Fraction 1 Fraction 2 Fraction 3 

CS-CL8 
1067.5 

(611.3-1751.9) 

2550.4 

(1751.9-3918.9) 

5176.3 

(3918.9-5747.2) 
2960 1.7 

CS-CL12 
1067.4 

(611.2-2094.1) 

2550.3 

(2094.1-4146.9) 

5062.3 

(4146.9-5744.5) 
6140 3.8 

CS-CL16 
953.4 

(611.0-1865.9) 

2550.4 

(1865.9-4375.0) 

5175.3 

(4375.0-6314.7) 
2690 2.0 

CS-CL24 
1173.9 

(611.3-2116.4) 

2544.0 

(2116.4-4147.0) 

5176.7 

(4147.0-6658.1) 
3700 2.5 
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 Table 3. Characterization of the micellization process and the RIF-free and RIF-loaded PMs at 37ºC. 

a Hydrodynamic diameter (Dh) of drug-free CS-g-oligo(CL) PMs (1% w/v), determined by DLS; b RIF cargo in 1% w/v PMs; c RIF loading (%RIF) 
considering the concentration of copolymer in the system; d Encapsulation efficiency of RIF (%EE) calculated based on the total amount of RIF 
included in the encapsulation stage; fs, Solubility factor, defined as SPM/Swater where, SPM is the solubility of RIF within PMs and Swater the 
intrinsic solubility of RIF water at 25ºC; e Hydrodynamic diameter (Dh) of RIF-loaded CS-g-oligo(CL) PMs (1% w/v), determined by DLS; MI, 
Mucoadhesion index, defined as Dh2/Dh0 where, Dh0 and Dh2 represent the values of Dh before (t = 0 hours) and after (t = overnight) incubation 
with mucin (0.25% w/v) at 37ºC, respectively; f Hydrodynamic diameter (Dh) reached after the incubation with mucin (0.25 % w/v) at 37ºC, 
determined by DLS; ND: Not determined because of the poor solubility of RIF-loaded 1:24 CS-g-oligo(CL) derivative at 1% w/v in water. 
 

 

 

 

 

 RIF-free PMs RIF-loaded PMs Mucoadhesion 

Copolymer 
CMC 

(10
-4 % w/v) 

D
h
a (nm) 

(± S.D.) 
PDI 

Z-potential 
(mV) 
(± S.D.) 

RIF cargob 

(mg/mL) 
(± S.D.) 

%RIFc 
 (± S.D.) 

%EEd 
(± S.D.) 

fs 
(± S.D.) 

D
h
e (nm) 

(± S.D.) 
MI 

D
h
f (nm) 

(± S.D.)
 

CS-CL8 3.6 
110.7 
(2.4) 

0.13 
(0.02) 

+53.0 
(0.8) 

3.57 
(0.05) 

26 
(0.2) 

36 
(0.5) 

1.7 
(0.02) 

118.0 
(2.1) 

3.4 
483.2 
(19.9) 

CS-CL12 3.7 
115.6 
(2.0) 

0.21 
(0.03) 

+54.2 
(0.7) 

3.12 
(0.27) 

24 
(1.6) 

31 
(2.8) 

1.5 
(0.13) 

121.6 
(2.0) 

6.5 
548.8 
(10.3) 

CS-CL16 4.9 
121.7 
(5.5) 

0.23 
(0.05) 

+53.4 
(0.8) 

3.96 
(0.37) 

28 
(1.9) 

40 
(3.7) 

1.9 
(0.17) 

126.0 
(4.7) 

9.2 
902.3 
(8.2) 

CS-CL24 5.0 
153.7 
(5.2) 

0.12 
(0.02) 

+54.5 
(0.6) 

ND ND ND ND ND ND ND 
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Figure 1. Microwave-assisted ring opening grafting of CL to CS templates to amphiphilic copolymers. MSA 
was used as catalyst, solvent and protectant of side amine groups in CS.  

2079x838mm (96 x 96 DPI)  
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Figure 2. ATR/FT-IR spectrum of (A) pristine CS, (B) CS-CL8 and (C) pristine PCL (MW of 40 kg/mol). The 
carbonyl group (C=O) of CL in the graft copolymer was observed at 1726 cm-1.  

1087x962mm (96 x 96 DPI)  
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Figure 3. NMR analysis of CS-CL8 (2%) in acetone-d6. (A) 1H-NMR. The integrals shown for CL and CS at 
2.30 and 3.89 ppm, respectively, used to calculate the number of CL units per glucosamine residue. (B) 

13C-NMR. The characteristic signal of the newly formed ester bond (C=O) and the methanesulfonate carbon 
(CH3SO3-) are clearly observed at 174.05 and 40.15 ppm, respectively (indicated with arrows).  

1087x933mm (96 x 96 DPI)  
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Figure 4A. MALDI-TOF spectrum of CS-CL8.  
1087x797mm (96 x 96 DPI)  
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Figure 4B. GPC chromatogram of CS-CL8.  
761x558mm (96 x 96 DPI)  
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Figure 5. DSC thermograms of (A) pristine CS, (B) pristine PCL and (C) CS-CL8 during the second heating 
ramp. The Tm of pristine PCL and CS-CL8 are indicated with arrows.  

1087x797mm (96 x 96 DPI)  
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Figure 6. TGA thermograms of (A) pristine CS, (B) pristine PCL and (C) CS-CL8.  
1376x1142mm (96 x 96 DPI)  
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Figure 7. WAXD diffractograms of pristine CS and PCL, and CS-g-oligo(CL) copolymers.  
1404x1062mm (96 x 96 DPI)  
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Figure 8. Morphology of RIF-free CS-CL8 PMs (1% w/v) by (A) TEM (scale bar = 100 nm) and (B) AFM 
(scale bar = 2 µm).  

1659x814mm (96 x 96 DPI)  
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Figure 9. TEM micrograph of RIF-loaded CS-CL8 PMs (1% w/v). Scale bar = 50 nm.  
1087x797mm (96 x 96 DPI)  
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Figure 10. Viability of A549 cells exposed to different RIF-free PMs (1% w/v) of CS-CL8, CS-CL12 and CS-
CL24 copolymers expressed as relative cell concentration, as a function of exposure time. The 80-90% of 

viability was observed up to 24 h post-exposure. A control without treatment was considered 100% viability. 
1087x797mm (96 x 96 DPI)  
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Figure 11. Fluorescent microscopy of HeLa cells exposed (15 h) to: (A) 0.5 mL, (B) 0.1 mL and (C) 0.05 mL 
of FITC-labeled CS-CL8 PMs and (D) FITC-dextran (control). Green areas represent FITC-labeled PMs, while 
blue areas represent the DAPI stained nuclei of the cells. Note that PMs seem to accumulate particularly in 

the perinuclear region.  
1171x797mm (96 x 96 DPI)  
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