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This paper deals with a general variational formulation for the determination of natural frequencies and mode shapes of free
vibrations of laminated thin plates of trapezoidal shape with an internal line hinge restrained against rotation. The analysis
was carried out by using the kinematics corresponding to the classical laminated plate theory (CLPT). The eigenvalue problem
is obtained by employing a combination of the Ritz method and the Lagrange multipliers method. The domain of the plate
is transformed into a rectangular domain in the computational space by using nonorthogonal triangular coordinates and the
transverse displacements are approximatedwith a set of simple polynomials automatically generated and expressed in the triangular
coordinates. The developed algorithm allows obtaining approximate analytical solutions for mentioned plate with different
geometries, aspect ratio, position of the line hinge, and boundary conditions including translational and rotational elastically
restrained edges. It allows studying the influence of the mentioned line on the vibration frequencies and respective mode shapes.
The algorithm can easily be programmed and it is numerically stable. Additionally, as a particular case, the results of triangular
plates can be easily generated.

1. Introduction

Anisotropic plates, particularly those made of fiber-rein-
forced composite materials, are widely used in numerous
industrial and engineering disciplines such as mechanical,
aerospace, electronics, optical, and structural fields.The rapid
increase in the industrial use of this type of structural ele-
ments has brought with it the need to develop analytical and
numerical techniques that are appropriate for the analysis of
its mechanical behavior. In particular, trapezoidal plates are
widely used as structural elements, as well as single elements
or as part ofmore complex structures. Inmany cases, for these
structural components, the rapid and efficient determination
of the natural vibration frequencies and their associated
mode shapes is essential in the design and performance
evaluation. Moreover, the resonant frequencies and mode
shapes of these plates are used to set the corresponding
dynamic response of more complex systems.

Most published papers which analyze the free vibrations
of anisotropic plates with elastically restrained boundaries
concern rectangular plates. There is a less number of works
related to dynamic analysis of anisotropic plates of trape-
zoidal forms [1–7].

The presence of an internal line hinge in a plate can be
used to facilitate the opening of gates and to represent internal
cracks. Rotational springs located in the line hinge can be
used for modeling a fracture plane with an arbitrary depth
[8, 9].

The first known solution theory based on shear deforma-
tion of first order for the vibration of rectangular plates with
an internal line hinge has been provided by [10]. The authors
used the method of Levy and the state-space technique to
solve this problem and obtain the frequency coefficients val-
ues. The method is only applicable to rectangular plates with
at least two parallel edges simply supported. More recently
a discrete method to analyze the free vibration problem of
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moderately thick rectangular plates with an intermediate
line hinge and arbitrary edge conditions has been presented
[11]. Quintana and Grossi [12] dealt with the study of free
transverse vibrations of isotropic rectangular plates with an
internal line hinge and elastically restrained boundaries. The
problem was solved employing a combination of the Ritz
method and the Lagrange multiplier method. However, in
these works, anisotropic materials were not analyzed.

Hamilton’s principle has been used for the derivation
of equations of motion and its associated boundary and
transition conditions of anisotropic plates with an arbitrar-
ily located internal line hinge with elastics supports and
piecewise-smooth boundaries elastically restrained against
rotation and translation among other complicating effects
[13]. In the same manner, the model has been extended
to analyze several anisotropic plates with intermediate lines
hinge [14]. Values of the coefficients of frequencies and
mode shapes were obtained by applying the Ritz method.
Nevertheless, the numerical results obtained in the previously
quoted papers correspond to rectangular plates.

The study of trapezoidal plates through the Ritz method
presents the difficulty of the construction of simple and
adequate approximation functions that can be applied to the
domain of the plate [15, 16]. When these plates also have an
internal line hinge elastically restrained against rotation, the
mathematical structure of the transition conditions becomes
more complex.These transition conditions give rise to several
problems in the rational choice of the coordinate functions. In
fact, the most critical feature of the Ritz method is regarding
the choice of the mentioned functions. So in this paper, only
the essential transition condition along the line hinge is taken
into account with the Lagrange multipliers.

According to the statement in the preceding paragraphs,
the objective of this paper is to propose a general algorithm
to obtain approximate analytical solutions for the study of the
free vibrations of trapezoidal plates with an intermediate line
hinge elastically restrained against rotation. The procedure is
based on the Ritz method in combination with the Lagrange
multipliers method and covers two aspects. The first is the
approximation of the plate geometry through triangular
coordinates and the second aspect is the approximation of the
transverse displacement with simple polynomials generated
automatically from a basis polynomial.

The obtained analytical solution has a great advantage
since it allows studying the influence of the position of
the line internal line hinge and the degree of rotational
restriction on the vibration frequencies. To demonstrate the
validity and efficiency of the developed algorithm, results of a
convergence study are included, several numerical examples
not previously treated are presented, and some particular
cases are compared with results presented by other authors.

2. Mathematical Formulation

2.1. Geometrical and Mechanical Characteristics of the Plate.
The general scheme of the analyzed composite trapezoidal
plate with an intermediate line hinge is shown in Figure 1.The
laminate thickness is ℎ and, in general, it consists of layers
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Figure 1: General description of themechanical systemunder study.

of unidirectional fibers composite material (Figure 2(b)).
The lamination scheme is symmetric with respect to the
midplane. The angle of fibers orientation is denoted by 𝛽,
measured from 𝑥-axis to the fibers direction as shown in
Figure 2(a). The rotational and translational restraints are,
respectively, characterized by the springs constants 𝑐

𝑅
12

, 𝑐
𝑅
𝑖

and 𝑐
𝑇
𝑖

(𝑖 = 1, . . . , 4).
The present study is based on the kinematics correspond-

ing to the classical laminated plate theory (CLPT). For free
plate vibration, it is possible to suppose that the displacement
is given by harmonic functions of the time; that is,

𝑤 (𝑥, 𝑦, 𝑡) = 𝑊 (𝑥, 𝑦) cos𝜔𝑡, (1)

where 𝜔 is the radian frequency of the plate, and the maxi-
mum kinetic energy of the described plate can be expressed
in rectangular coordinates by

𝑇max =
𝜌ℎ𝜔
2

2

2

∑

𝑝=1

∬
𝐴
(𝑝)

(𝑊
(𝑝)
(𝑥, 𝑦))

2

𝑑𝑥 𝑑𝑦, (2)

where 𝜌 denotes the mass density of the material of the
plate and 𝑊

(𝑝)
(𝑥, 𝑦), 𝑝 = 1, 2 the amplitudes of the

transverse displacements which respectively correspond to
the subdomains 𝐴(1) and 𝐴(2).

Taking into account the assumptions of the CLPT, the
maximum strain energy of the mechanical system is given by

𝑈max = 𝑈𝑃,max + 𝑈𝑅,max + 𝑈𝑇,max, (3)
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Figure 2: Mechanical system. (a) Elastic restraints and angle of fibers orientation. (b) Profile and laminate stacking sequence.

where 𝑈
𝑃,max is the maximum strain energy due to plate

bending, which in Cartesian coordinates is given by
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(4)

where the coefficients 𝐷(𝑝)
𝑖𝑗
, 𝑝 = 1, 2, 𝑖, 𝑗 = 1, 2, 6 are the

bending, twisting, and bending-twisting coupling rigidities,
which are given by

𝐷
(𝑝)

𝑖𝑗
=
1

3
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where 𝑧
𝑘+1

, 𝑧
𝑘
are the distances from the middle plate to the

top and bottom of the 𝑘th layer (see Figure 2(b)), 𝑁
𝑐
is the

total number of layers in the laminate, and (𝑄(𝑘)
𝑖𝑗
)

(𝑝)

are the
reduced transformed rigidities for a plane state of tensions
(see, e.g., [18]).

Themaximum strain energy𝑈
𝑇,max stored in translational

springs of constants 𝑐
𝑇
(𝑠) at the plate edges is given by
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On the other hand, the maximum strain energy 𝑈
𝑅,max

stored in rotational springs of constants 𝑐
𝑅
(𝑠) and 𝑐
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(𝑠) at
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given by
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where 𝑛
𝑥
𝑖

and 𝑛
𝑦
𝑖

denote the components of the outward
normal 𝑛

𝑖
of 𝜕𝐴
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2.2. Triangular Nonorthogonal Coordinates. The actual plate
of trapezoidal plan-form is mapped onto a rectangular one,
using a coordinate transformation between the rectangular
Cartesian and triangular nonorthogonal coordinates, accord-
ing to the following expressions [15, 16]:

𝑢 =
𝑥

𝑙
, V =

𝑦

𝑥 cot𝛼
1

, (9)

where tan𝛼
1
is the slope of the upper side of the plate (see

Figure 1). The relationships between the partial derivatives in
both coordinates systems are given by
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where J is the Jacobian matrix of the geometrical mapping
given by

J = [𝐽11 𝐽12
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and |J| denoted the determinant of the matrix (11). In the
same manner, the relationship between the second partial
derivatives are obtained.

Themaximum kinetic and strain energies of the mechan-
ical system can now be expressed in the non-orthogonal
triangular coordinates and are, respectively, given by
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which depend on the parameters of the problem which
correspond to the geometry and the material properties. The
mentioned coefficients are defined in Appendix A.

The maximum strain energies stored in the translational
and rotational springs at the plate edges become
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3. The Ritz and Lagrange Multipliers
Methods (𝑅 & LMM)

When a variational formulation is used to study the behaviour
of a structure obtained by joining several components
together, several transition conditions arises a correspon-
dence of the presence of the junctions of the structural
components. When employing the Ritz method, fortunately
it is not necessary to subject the coordinate functions to the
natural boundary conditions [18, 19]. This concept can be
extended to the transition conditions and is particularly true
in the case of a rectangular plate with an internal line hinge
[12].

According to [12, 13], the only essential transition condi-
tion of the problem under study is that ensures the continuity

of transverse displacement along the line hinge and which
imposes the analytical condition

𝑊
(1)
(𝑐
𝑙
, V) − 𝑊(2) (𝑐

𝑙
, V) = 0, ∀V ∈ (V

0
, 1) . (16)

It is difficult to construct a simple and adequate deflection
function which can be applied to the entire domain of the
plate and to show the continuity of displacement and the
discontinuities of the slope crossing the line hinge. One way
to eliminate the requirement given by (16) on the coordinate
functions is to perform the process of minimization over a
increased energy functional using subsidiary conditions.The
transition conditions (16) can be incorporated in the energy
functional bymeans of a suitable Lagrangemultiplier [20, 21].
This leads to the following functional:

𝐿 (𝑊, 𝜆) = Π (𝑊) + ⟨𝐺 (𝑊) , 𝜆⟩ , (17)
where

𝐺 (𝑊) ≡ 𝑊
(1)
−𝑊
(2)
= 0, ∀ (𝑥, 𝑦) ∈ Γ

𝑐
,

⟨𝐺 (𝑊) , 𝜆⟩ = ∫
Γ
𝑐

𝜆 (𝑠) (𝑊
(1)
(𝑠) − 𝑊

(2)
(𝑠)) 𝑑𝑠,

Π = 𝑈max − 𝑇max,

(18)

and 𝜆 is the Lagrange multiplier. It must be noted that in this
case, the Lagrange multiplier is a function.

Now, the idea is to minimize the functional (17) over
the deflection functions which satisfy only the geometrical
boundary conditions on the subdomains 𝐴(1) and 𝐴(2).

3.1. Approximating Functions. The approximating functions
are chosen assuming that we have two independent sub-
domains and that these functions verify the corresponding
essential boundary conditions. In the present paper, the
transverse deflections for 𝐴(1) and 𝐴(2) are represented by
means of products of one-dimensional polynomials in each
of the triangular coordinates, as follows:

𝑊
(𝑝)
(𝑢, V) =

𝑀

∑

𝑖=1

𝑁

∑

𝑗=1

𝑐
(𝑝)

𝑖𝑗
𝑝
(𝑝)

𝑖
(𝑢) 𝑞
(𝑝)

𝑗
(V) , 𝑝 = 1, 2, (19)

where 𝑐
(⋅)

𝑖𝑗
are the unknown coefficients to be deter-

mined by the Ritz method. The sets of polynomials
{𝑝
(1)

𝑖
(𝑢)}, {𝑞(1)

𝑗
(V)}, {𝑝(2)

𝑖
(𝑢)}, and {𝑞

(2)

𝑗
(V)} are generated

recursively by starting with polynomials which satisfy the
essential boundary conditions of the equivalent beam in
each triangular coordinate. These polynomials depend on
the boundary conditions and when the edges are free or
have rotational or translational restraints, all the boundary
conditions are natural so it is possible to ignore the boundary
conditions in the construction of the first polynomial. Simi-
larly, it is possible to ignore the restriction (16) on the interface
and to consider it as a free edge.

The higher members of the described sets are automati-
cally generated using the following procedure, for example:

𝑝(𝑢)
(𝑝)

𝑖
= 𝑝(𝑢)

(𝑝)

1
𝑢
𝑖−1
, 𝑖 = 2, . . . ,𝑀. (20)

The polynomials set along the V direction are generated
using the same procedure.
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Table 1: The first five values of the frequency parameter Ω = 𝜔/(2𝜋)𝑙2√𝜌ℎ/𝐷
0
for anisotropic trapezoidal plates with an internal line hinge

located at different positions and subject to different boundary conditions.

tan𝛼
1
= tan𝛼

2
𝑎
𝑙

𝑐
𝑙

Ω
1

Ω
2

Ω
3

Ω
4

Ω
5

SCSS
0,5 0 0,5 4,0444 9,8133 11,9368 16,1093 16,8048
0,4 0,2 0,6 3,0037 7,4804 9,8142 13,1061 13,9349
0,3 0,4 0,7 2,3947 5,6939 8,4165 10,7334 11,8879

SCCS
0,5 0 0,5 5,7756 11,6366 12,8590 18,0203 19,1298
0,4 0,2 0,6 4,0323 9,1264 10,6307 14,0167 15,1435
0,3 0,4 0,7 2,9223 6,8977 8,6742 11,9163 12,9837

SSCF
0,5 0 0,5 4,8013 9,3880 10,0453 15,4360 17,0102
0,4 0,2 0,6 3,3904 7,7580 8,4436 12,0781 12,7893
0,3 0,4 0,7 2,3467 4,8566 6,1935 8,3330 10,2203

SCFF
0,5 0 0,5 1,9146 3,7634 5,1701 9,3270 12,2469
0,4 0,2 0,6 1,2156 2,3263 4,0540 7,1127 8,3748
0,3 0,4 0,7 0,7525 1,9975 3,1531 4,5058 6,6353

3.2. Lagrange Multiplier Function. Since the Lagrange mul-
tiplier is a function, it can be approximated by using the
following polynomial expression:

𝜆 (V) =
𝑁

∑

𝑖=1

𝑐
(𝜆)

𝑖
V𝑖−1, (21)

where 𝑐(𝜆)
𝑖

are the unknown coefficients.

3.3. Eigenvalue Problem. Application of the Ritz method in
combination with the Lagrange multiplier method requires
the minimization of functional (17). In consequence, we have
[20]

𝛿𝐿 (𝑊, 𝜆) = 0. (22)
Equation (22) can be recovered by setting the partial

variations to zero [20]. This leads to the following:
𝛿𝐿
𝑊 (𝑊, 𝜆; 𝑈) = 0 ⇒ 𝛿Π (𝑊) + 𝜆𝛿𝐺 (𝑊) = 0,

𝛿𝐿
𝜆
(𝑊, 𝜆; 𝜂) = 0 ⇒ 𝐺 (𝑊) = 0.

(23)

Substituting (19) and (21), into (23) an eigenvalue problem
is obtained, which is

([𝐾] − Ω
2
[𝑀]) {c} = {0} , (24)

where Ω = 𝜔𝑙
2
√𝜌ℎ/𝐷

0
is the dimensionless frequency

parameter and the matrix [𝐾] and [𝑀] are given by

[𝐾] =
[
[

[

[𝐾
(1)
] [𝐾
(12)
] [𝐾
(1𝜆)
]

[𝐾
(2)
] [𝐾

(2𝜆)
]

sim. [0]

]
]

]

,

[𝑀] =
[
[

[

[𝑀
(1)
] [0] [0]

[𝑀
(2)
] [0]

sim. [0]

]
]

]

.

(25)

The expressions of the elements of these matrixes are
given in Appendix B.

Equation (24) yields an algebraic equation whose zeros
give the natural frequencies of the mechanical system under
study. Back substitution yields the coefficient vectors {c}, and
finally substitution of these coefficient vectors into (19) gives
the corresponding mode shapes of the plate.

4. Results and Discussion

In order to establish the accuracy and applicability of the
approach developed and discussed in the previous sections,
numerical results were computed for a number of plate
problems for which comparison values were available in the
literature. Additionally, newnumerical results were generated
for trapezoidal plates with an internal line hinge and different
boundary conditions.

The terminology to be used throughout the remainder of
the paper for describing the boundary conditions of the plate
consideredwill now be introduced.ThedesignationCSFS, for
example, identifies a plate with the edges 1 clamped, 2 simply
supported, 3 free, and 4 simply supported (see Figure 1). For
triangular plates, edge 4 disappears. When the plate’s edges
have rotational and/or translational restraints, the restraints
parameters are specifically indicated in each case.

Table 1 shows the first five values of the frequency param-
eters Ω = 𝜔/(2𝜋)𝑙

2
√𝜌ℎ/𝐷

0
, 𝐷
0
= 𝐸
(1)

1
ℎ
3
/12(1 − ](1)

12
](1)
21
)

for anisotropic trapezoidal plate with a free internal line
hinge located at different positions. The plates have different
geometrical properties and are subjected to different bound-
ary conditions. The anisotropic material is characterized by
the constants 𝐷(𝑝)

11
= 1.0, 𝐷(𝑝)

12
= 0.100812496, 𝐷(𝑝)

16
=

−0.2433353, 𝐷(𝑝)
26
= −0.0120837, and𝐷(𝑝)

66
= 0.0948810.
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Table 2: The first five values of the frequency parameter Ω∗∗ = 𝜔/(2𝜋)𝑙2√𝜌ℎ/𝐻 for boron-epoxy (𝛽 = 0) FCFF trapezoidal plates with an
internal line hinge located at different positions (tan𝛼

1
= 1/3, tan𝛼

2
= 0).

𝑎
𝑙

𝑅
12

Ω
∗∗

1
Ω
∗∗

2
Ω
∗∗

3
Ω
∗∗

4
Ω
∗∗

5

𝑐
𝑙
= 0.5

0

∞ 3,7681 14,2391 20,7233 36,8583 50,4389
Reference [17] 3,7682 14,2395 20,7250 36,8596 50,4602

1000 3,7592 14,1806 20,5222 36,7239 50,3837
100 3,6818 13,6411 19,2421 35,7874 49,9690
10 3,0694 10,3632 17,1129 33,2800 48,3122
5 2,6281 9,2487 16,8830 32,7645 47,8666
1 1,4592 7,9784 16,6962 32,2439 47,3974

𝑐
𝑙
= 0.6

0.2

∞ 4,5238 16,0582 24,8369 42,1620 64,6896
1000 4,5071 16,0437 24,4224 41,7750 64,6747
100 4,3630 15,9091 21,7174 39,2726 64,5875
10 3,3755 13,7284 16,9941 34,2600 64,4185
5 2,7871 12,5570 16,7404 33,4563 64,3882
1 1,4681 11,2472 16,5925 32,6963 64,3580

𝑐
𝑙
= 0.7

0.4

∞ 7,0576 18,5364 40,1040 53,4753 81,6813
1000 7,0209 18,5194 39,1366 52,7708 81,2581
100 6,7104 18,4066 33,2704 48,4565 79,1987
10 4,8364 18,0067 22,2985 40,7709 76,8733
5 3,8790 17,7903 20,6121 39,6158 76,6110
1 1,9656 17,2753 19,3033 38,5349 76,3799

Table 2 depicts the variation of the frequency parameters
Ω
∗∗

= 𝜔/(2𝜋)𝑙
2
√𝜌ℎ/𝐻 with 𝐷

0
= 𝐻 = ](1)

12
𝐷
(1)

22
+ 2𝐷
(1)

66

for FCFF trapezoidal plates (tan𝛼
1
= 1/3, tan𝛼

2
= 0) with

an internal line hinge elastically restrained against rotation
located at different positions. The plate consists in a single
boron-epoxy layer with 𝛽 = 0. The physical properties of
the layer are given by 𝐷(𝑝)

11
= 15.637, 𝐷(𝑝)

22
= 0.91160, and

𝐷
(𝑝)

66
= 0.35642. In this table, it can be observed the effect of

the rotational restriction 𝑅
12

over the vibration frequencies.
Additionally, the frequency parameters of the triangular plate
are compared with results of [17] when the intermediate
elastic restriction 𝑅

12
→ ∞ is adopted. It can be observed

that the present solutions are in good agreement, from an
engineering viewpoint.

On the other hand, effect of the position of the line hinge
is presented in Figure 3.This figure shows the variation of the
fundamental frequency parameters Ω∗ = 𝜔/(2𝜋)𝑙

2
√𝜌ℎ/𝐷

with 𝐷
0
= 𝐷 = 𝐸ℎ

3
/[12(1 − ]2)] of an isosceles triangular

isotropic plate with respect to parameter 𝑐
𝑙
. Plates with several

types of combinations of edge conditions are taken into
account. It can be observed, in all cases, that the effects due
to the presence of the line hinge over the frequency increase
when the position of the line hinge is away from the left side
of the plate; that is, 𝑐

𝑙
> 0.4.

Finally, some representative mode shapes and nodal
patterns for a triangular SCF triangular anisotropic plate
(tan𝛼

1
= − tan𝛼

2
= 0.5) with a free internal line hinge

located in 𝑐
𝑙
= 0.5 are presented in Figure 4. It can be

observed that the line hinge presence introduces significant
deformations along this line. The physical properties are the
same that have been used to generate Table 2.

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1
c1

CCC

SCS

SSS

FSC

SSF

Ω
∗

Figure 3: Variation of the fundamental frequency parametersΩ∗ =
𝜔/(2𝜋)𝑙

2
√𝜌ℎ/𝐷

0
with respect to the position of the line hinge

𝑐
𝑙
for isosceles triangular isotropic plates with different boundary

conditions (tan𝛼
1
= − tan𝛼

2
= 0.5, 𝑅

12
= 0).

5. Conclusion

This paper presents a simple, accurate, and general algorithm
for the determination of frequencies and modal shapes of
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= 1,9146

= 3,7634

= 5,1701

= 9,3270

= 12,2469

Ω1

Ω2

Ω3

Ω4

Ω5

Figure 4: First five values of the frequency parameterΩ = 𝜔/(2𝜋)𝑙2√𝜌ℎ/𝐷
0
nodal patterns andmode shapes for a SCF anisotropic triangular

plate (tan𝛼
1
= − tan𝛼

2
= 0.5) with a line hinge (𝑅

12
= 0) located at 𝑐

𝑙
= 0.5.

natural vibrations of trapezoidal and triangular symmetri-
cally laminated plates with an arbitrarily located internal
line hinge. The approach is based on a combination of the
Ritz method and the Lagrange multipliers method using
the kinematic corresponding to de CLPT plate theory and
non-orthogonal right triangular coordinates to express the
geometry of the plate in a simple form.The transverse deflec-
tion is approximated by means of simple polynomials. The
algorithm allows a unified treatment of symmetrically lami-
nated plates with several trapezoidal or triangular planform,
different boundary conditions, including edges elastically
restrained against rotation and translation.

Sets of numerical results are given in tabular and graphi-
cal forms illustrating the influence of the position of the inter-
nal line hinge and the degree of the corresponding rotational
restriction on the vibration frequencies and respective mode
shapes.

Finally, it is important to note that the proposed method
can be easily extended for application to static and stability
analysis. It can also be generalized to study trapezoidal plates
with non-symmetrical stacking sequence about themidplane.

Appendices

A.

Consider
𝑆
(𝑖)

1
= 𝐷
(𝑖)

11
𝑢,

𝑆
(𝑖)

2
= 𝐷
(𝑖)

11
V4 + 𝐷

(𝑖)

22
cot4 𝛼

1
+ (𝐷
(𝑖)

12
+ 2𝐷
(𝑖)

66
) 2V2cot 2𝛼

1

− 4𝐷
(𝑖)

16
V3cot𝛼

1
− 4𝐷
(𝑖)

26
V cot3 𝛼

1
,

𝑆
(𝑖)

3
= 𝐷
(𝑖)

11
V2 + 𝐷

(𝑖)

12
cot2 𝛼

1
− 2𝐷
(𝑖)

16
V cot𝛼

1
,

𝑆
(𝑖)

4
= −𝐷
(𝑖)

11
V + 𝐷

(𝑖)

16
cot𝛼
1
,

𝑆
(𝑖)

5
= − 𝐷

(𝑖)

11
V3 − 𝐷

(𝑖)

12
V cot2 𝛼

1
− 2𝐷
(𝑖)

66
V cot2 𝛼

1

+ 3𝐷
(𝑖)

16
V2cot𝛼

1
+ 𝐷
(𝑖)

26
cot3𝛼
1
,

𝑆
(𝑖)

6
= 𝐷
(𝑖)

11
V2 + 𝐷

(𝑖)

66
cot2𝛼
1
− 2𝐷
(𝑖)

16
V cot𝛼

1
,

𝑆
(𝑖)

7
= −𝑆
(𝑖)

4
,
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𝑆
(𝑖)

8
= −𝑆
(𝑖)

5
,

𝑆
(𝑖)

9
= −𝑆
(𝑖)

6
,

𝑆
(𝑖)

10
= 𝑆
(𝑖)

6
,

𝐷
(𝑝)

𝑖𝑗
=

𝐷
(𝑝)

𝑖𝑗

𝐷
0

, 𝑝 = 1, 2,

𝐷
0
=

𝐸
(1)

1
ℎ
3

12 (1 − ](1)
12
](1)
21
)
.

(A.1)

B.

Consider

𝐾
(𝑝)

𝑖𝑗𝑚𝑛
= ∫

𝑢
𝑝

𝑢
𝑝−1

∫

1

V
0

[𝑆
(𝑝)

1
𝑢𝑃
(𝑝,𝑝)(2,2)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,0)

𝑗𝑙

+
𝑆
(𝑝)

2

𝑢3
𝑃
(𝑝,𝑝)(0,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(2,2)

𝑗𝑙

+
𝑆
(𝑝)

3

𝑢
(𝑃
(𝑝,𝑝)(0,2)

𝑖𝑘
𝑄
(𝑝,𝑝)(2,0)

𝑗𝑙

+𝑃
(𝑝,𝑝)(2,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,2)

𝑗𝑙
)

+ 2𝑆
(𝑝)

4
𝑢 (𝑃
(𝑝,𝑝)(1,2)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,0)

𝑗𝑙

+𝑃
(𝑝,𝑝)(2,1)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,1)

𝑗𝑙
)

+ 2
𝑆
(𝑝)

5

𝑢2
(𝑃
(𝑝,𝑝)(1,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,2)

𝑗𝑙

+𝑃
(𝑝,𝑝)(0,1)

𝑖𝑘
𝑄
(𝑝,𝑝)(2,1)

𝑗𝑙
)

+ 4
𝑆
(𝑝)

6

𝑢
𝑃
(𝑝,𝑝)(1,1)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,1)

𝑗𝑙

+ 2
𝑆
(𝑝)

7

𝑢
(𝑃
(𝑝,𝑝)(0,2)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,0)

𝑗𝑙

+𝑃
(𝑝,𝑝)(2,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,1)

𝑗𝑙
)

+ 2
𝑆
(𝑝)

8

𝑢3
(𝑃
(𝑝,𝑝)(0,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,2)

𝑗𝑙

+𝑃
(𝑝,𝑝)(0,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(2,1)

𝑗𝑙
)

+ 4
𝑆
(𝑝)

9

𝑢2
(𝑃
(𝑝,𝑝)(0,1)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,1)

𝑗𝑙

+𝑃
(𝑝,𝑝)(1,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,1)

𝑗𝑙
)

+ 4
𝑆
(𝑝)

10

𝑢3
𝑃
(𝑝,𝑝)(0,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,1)

𝑗𝑙
]𝑑𝑢𝑑V

+
𝑇
1

cos𝛼
2
tan𝛼
1

× ∫

𝑢
𝑝

𝑢
𝑝−1

𝑃
(𝑝,𝑝)(0,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,0)

𝑗𝑙

V=V
0

𝑑𝑢

+ 𝑢
2(𝑝−1)

𝑇
2(3−𝑝)/𝑝

× ∫

1

V
0

𝑃
(𝑝,𝑝)(0,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,0)

𝑗𝑙

𝑢=𝑢
2(𝑝−1)

𝑑V

+
𝑇
3

sin𝛼
1

∫

𝑢
𝑝

𝑢
𝑝−1

𝑝𝑃
(𝑝,𝑝)(0,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,0)

𝑗𝑙

V=1
𝑑𝑢

+ 𝑅
1
∫

𝑢
𝑝

𝑢
𝑝−1

[𝑑
11
𝑃
(𝑝,𝑝)(1,1)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,0)

𝑗𝑙

+
𝑑
12

𝑢2
𝑃
(𝑝,𝑝)(0,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,1)

𝑗𝑙

+
𝑑
13

𝑢
(𝑃
(𝑝,𝑝)(1,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,1)

𝑗𝑙

+ 𝑃
(𝑝,𝑝)(0,1)

𝑖𝑘

×𝑄
(𝑝,𝑝)(1,0)

𝑗𝑙
)]
V=V
0

𝑑V

+ 𝑅
3
∫

𝑢
𝑝

𝑢
𝑝−1

[𝑑
31
𝑃
(𝑝,𝑝)(1,1)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,0)

𝑗𝑙

+
𝑑
32

𝑢2
𝑃
(𝑝,𝑝)(0,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,1)

𝑗𝑙

+
𝑑
33

𝑢
(𝑃
(𝑝,𝑝)(1,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,1)

𝑗𝑙

+𝑃
(𝑝,𝑝)(0,1)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,0)

𝑗𝑙
)]
V=1
𝑑𝑢

+ 𝑢
2(𝑝−1)

𝑅
2(3−𝑝)/𝑝 ∫

1

V
0

[𝑑
21
𝑃
(𝑝,𝑝)(1,1)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,0)

𝑗𝑙

+
𝑑
22

𝑢2
𝑃
(𝑝,𝑝)(0,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,1)

𝑗𝑙

+
𝑑
23

𝑢
(𝑃
(𝑝,𝑝)(1,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,1)

𝑗𝑙

+ 𝑃
(𝑝,𝑝)(0,1)

𝑖𝑘

×𝑄
(𝑝,𝑝)(1,0)

𝑗𝑙
)]
𝑢=𝑢
2(𝑝−1)

𝑑V

+ 𝑐
𝑙
𝑅
12
∫

1

V
0

[𝑑
21
𝑃
(𝑝,𝑝)(1,1)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,0)

𝑗𝑙

+
𝑑
22

𝑢2
𝑃
(𝑝,𝑝)(0,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,1)

𝑗𝑙

+
𝑑
23

𝑢
(𝑃
(𝑝,𝑝)(1,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,1)

𝑗𝑙

× 𝑃
(𝑝,𝑝)(0,1)

𝑖𝑘
𝑄
(𝑝,𝑝)(1,0)

𝑗𝑙
)]
𝑢=𝑐
𝑙

𝑑V

𝐾
(12)

𝑖𝑗𝑘𝑙
= −𝑐
𝑙
𝑅
12
∫

1

V
0

[𝑑
21
𝑃
(1,2)(1,1)

𝑖𝑘
𝑄
(1,2)(0,0)

𝑗𝑙

+
𝑑
22

𝑢2
𝑃
(1,2)(0,0)

𝑖𝑘
𝑄
(1,2)(1,1)

𝑗𝑙

+
𝑑
23

𝑢
(𝑃
(1,2)(1,0)

𝑖𝑘
𝑄
(1,2)(0,1)

𝑗𝑙
𝑃
(1,2)(0,1)

𝑖𝑘

×𝑄
(1,2)(1,0)

𝑗𝑙
)]
𝑢=𝑐
𝑙

𝑀
(𝑝)

𝑖𝑗𝑘𝑙
= ∫

𝑢
𝑝

𝑢
𝑝−1

∫

1

V
0

𝑢𝑃
(𝑝,𝑝)(0,0)

𝑖𝑘
𝑄
(𝑝,𝑝)(0,0)

𝑗𝑙
𝑑𝑢 𝑑V.

(B.1)
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