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Abstract  

 

Neural activity alters osmotic gradients favoring cell swelling in retinal Müller cells. This swelling is 

followed by a regulatory volume decrease (RVD), partially mediated by an efflux of KCl and water. 

The transient receptor potential channel 4 (TRPV4), a nonselective calcium channel, has been 

proposed as a candidate for mediating intracellular Ca2+ elevation induced by swelling. We 

previously demonstrated in a human Müller cell line (MIO-M1) that RVD strongly depends on ion 

channel activation and, consequently, on membrane potential (Vm). The aim of this study was to 

investigate if Ca2+ influx via TRPV4 contributes to RVD by modifying intracellular Ca2+ 

concentration and/or modulating Vm in MIO-M1 cells. Cell volume, intracellular Ca2+ levels, and Vm 

changes were evaluated using fluorescent probes. Results showed that MIO-M1 cells express 

functional TRPV4 which determines the resting Vm associated with K+ channels. Swelling-induced 

increases in Ca2+ levels was due to both Ca2+ release from intracellular stores and Ca2+ influx by a 

pathway alternative to TRPV4. TRPV4 blockage affected swelling-induced biphasic response 

(depolarization-repolarization), suggesting its participation in modulating Vm changes during RVD. 

Agonist stimulation of Ca2+ influx via TRPV4 activated K+ channels hyperpolarizing Vm and 

accelerating RVD. We propose that TRPV4 forms a signaling complex with Ca2+ and/or voltage-

dependent K+ channels to define resting Vm and Vm changes during RVD. TRPV4 involvement in 

RVD depends on the type of stimuli and/or degree of channel activation, leading to a maximum 

RVD response when Ca2+ influx overcomes a threshold and activates further signaling pathways in 

cell volume regulation. This article is protected by copyright. All rights reserved 



This article is protected by copyright. All rights reserved  3 

Introduction 
 
 

A major functional role of Müller cells is to control extracellular osmotic and ionic 

homeostasis in the retina (Kofuji and Newman, 2004; Bringmann et al., 2006; Reichenbach and 

Bringmann, 2010). During intense neural activity, retinal cells can be surrounded by a hypo-

osmotic environment, since light-evoked changes in the ionic composition of the extracellular 

space cause a decrease in osmolarity, thus favoring glial swelling (Dmitriev et al., 1999). This 

swelling is followed by a regulatory volume decrease response (RVD), mediated by an iso-osmotic 

efflux of KCl, organic osmolytes and water through Aquaporin-4 (AQP4), a dynamic process 

resulting from the concerted action of volume-sensing mechanisms and intricate signaling 

cascades directed at initiating multiple adaptations (Hirrlinger et al., 2008; Wurm et al., 2006; 

Pannicke et al., 2004).  

The increase of cytosolic Ca2+ concentration is a widespread consistent cellular response to 

hypo-osmotic swelling, with contributions from both extracellular Ca2+ influx and Ca2+ release from 

intracellular stores (Pasantes-Morales et al., 2006; Pasantes-Morales and Morales-Mulia, 2008). 

However, RVD is Ca2+-dependent in some cell types and Ca2+-independent in others. In the first 

cases, increases in cytosolic Ca2+ modulate Ca2+-activated K+ channels, mainly large-conductance 

Ca2+-activated K+ channels (BK), to elicit K+ efflux. In contrast, in another large number of cell 

types, these channels are not involved in RVD. In these cases, K+ efflux occurs through other 

types of K+ channels, such as voltage-gated K+ (Kv) channels or swelling-activated K+ channels 

(inwardly rectifying K+ channels Kir or two-pore–domain K+ channels) (Stutzin and Hoffmann, 2006; 

Pasantes-Morales 2016). Other RVD mechanisms, such as the volume-sensitive anion channel 

and osmolyte efflux pathways, are also often Ca2+-independent (Pasantes-Morales et al., 2006). 

Though glial cells exhibit a rise in intracellular Ca2+ concentration in response to hypo-osmotic 

stimuli, the RVD and osmolyte fluxes involved in this process are not always Ca2+-dependent 

(Benfenati et al., 2011; Pasantes-Morales et al., 2006; Morales-Mulia et al., 1998; O’Connor and 

Kimelberg, 1993). It is therefore not surprising that the channels involved in RVD may be different, 

even in the same cell type, and cells may respond to a single or several signals elicited by volume 

change, such as depolarization, membrane stretch and/or elevation of intracellular Ca2+. 
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In astrocyte glial cells, the Transient Receptor Potential Vanilloid type 4 (TRPV4), a calcium-

permeable nonselective cation channel, was proposed as a mediator in the swelling-induced 

elevation of intracellular Ca2+ related to cell volume regulation (Butenko et al., 2012; Benfenati et 

al., 2011). Nevertheless, a recent study suggests that TRPV4 and Ca2+ do not seem to be 

essential for RVD to occur (Mola et al., 2015). Until recently, the participation of TRPV4 in the RVD 

of Müller glial cells was less explored. It is now reported that TRPV4 channels traduce mouse 

Müller cell volume increases into physiological responses (Ryskamp et al., 2014). Jo et al. (2015) 

proposed that water influx through the water channel AQP4 drives Ca2+ influx via TRPV4 in the 

glial end foot of mouse Müller cells. This regulates the expression of AQP4 and Kir4.1 K+ channels 

and facilitates the time course and amplitude of hypotonicity-induced swelling and RVD. However, 

the authors concluded that TRPV4 might contribute only to adaptive volume regulation in retinal 

glia (Jo et al., 2015). We have recently shown in a human retinal Müller cell line (MIO-M1) that the 

efficiency of the RVD process depends not only on the activation of ion channels, but is also 

strongly modulated by concurrent changes in resting membrane potential (Vm) (Fernández et al., 

2013). Although Müller cells express different types of K+ channels, it is well accepted that near 

resting Vm, Kir4.1 and BK, are the major channels involved in K+ homeostasis (Puro et al., 1996; 

Reichenbach and Bringmann, 2010). Since TRPV4 functionally couples to Ca2+-sensitive K+ 

channels in many tissues (White et al., 2016; Jo et al., 2015; Ma et al., 2013; Sullivan and Earley, 

2013; Early et al., 2005), it is likely that Ca2+ influx via TRPV4 may contribute to RVD response by 

altering intracellular Ca2+ concentration and/or by modulating Vm. Therefore, the aim of this study 

was to further investigate the participation of TRPV4 in the RVD response using a human Müller 

cell line. We propose that in MIO-M1 cells TRPV4 forms a signaling complex with Ca2+and/or 

voltage-dependent K+ channels to define not only resting Vm but also changes in Vm that occur 

during RVD. The contribution of TRPV4 to RVD depends on the type of stimuli and/or degree of 

channel activation, with a maximum RVD response when Ca2+ influx overcomes a threshold and 

activates additional signaling pathways for cell volume regulation.  
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Materials and Methods 

 

Cell Cultures 

The MIO-M1 cell line (kindly provided by Dr. Astrid Limb, University College London, London, 

UK) is a spontaneously immortalized retinal Müller glial cell line, originated from human retina, that 

retains many characteristics of Müller cells (Limb et al., 2002). Cells were grown as monolayers in 

the presence of Dulbecco’s Modified Eagle Medium (DMEM) / glutamax supplemented with 10% 

fetal bovine serum (FBS), containing 5 µg/ml streptomycin and 5 U/ml penicillin at 37°C in a 

humidified atmosphere containing 5% CO2. Cells were routinely subcultured every week, and 

those to be studied were grown on coverslips during 3-4 days before recording. 

For immunofluorescence and functional studies, MIO-M1 cells were seeded on glass 

coverslips (diameter 1.2 cm) at 5-10 x 103 cells/ml densities for 48 hours and then subjected to 

different experimental conditions. 

 

Measurement of Cell Volume Changes, RVD and Intracellular Ca2+  

By using the Ca2+-sensitive dye Fura-2 AM and recording at the Ca2+-sensitive (380 nm) and 

-insensitive (358 nm, isosbestic) wavelengths, we simultaneously recorded changes in cell volume 

and [Ca2+]i in single cells. MIO-M1 cells grown on coverslips were mounted on a chamber, 

incubated in 14 µM Fura 2-AM (Molecular Probes Inc) for 60 minutes at 37ºC and then washed to 

remove excess dye. To prevent dye compartmentalization upon loading, Pluronic F127 (0.2%) 

(Molecular Probes Inc) was used to dissolve the Fura 2-AM dye. The coverslips were again 

incubated in the experimental buffer for 15 minutes before the experiments. The chamber was 

placed on the stage of a Nikon TE-200 epifluorescence inverted microscope (Nikon Planfluor 40X 

oil immersion objective lens) as previously described (Ford et al., 2005). Fluorescence was 

collected from a small circular region (pinhole) of 1-3% of the total area of the cell, localized in the 

central region of the cell. F was inversely proportional to the external osmolarity and showed a 

linear correlation with the relative external osmolarity. The coverslips were incubated in the 

experimental buffer at 20ºC for at least 15 min before the experiment. Fluorescence data were 

acquired every 10 seconds at 20ºC using a charge coupled device camera (Hamamatsu C4742-
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95) connected to a computer with the Metafluor data acquisition software (Universal Imaging 

Corporation, PA). During experiments, bathing solution was exchanged by aspirating the media 

and adding new media.  

As previously reported, changes in cell volume were read from the fluorescence intensity 

recorded at the isosbestic wavelength of 358 nm and changes in [Ca2+]i were obtained from the 

ratio of 358/380 (Rt/R0 Fura-2) (Altamirano et al., 1998; Mualem et al., 1992). For calibration, cells 

were sequentially exposed to solutions with different osmolalities and relative fluorescence (Ft/F0) 

was recorded. F0 represents the signal obtained from each pinhole when placed in equilibrium with 

an iso-osmotic medium with an osmolality OsM0 (300 mOsM). Ft is the fluorescence from the same 

region at time t, when placed in equilibrium with a solution with an osmolality of OsMt (range: 200 

to 400 mOsM). A linear relationship between F0/Ft and the relative external osmolality (OsM0/OsMt) 

was obtained (Supplementary Figure 1). Changes in cell volume were calculated as follows: 
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relative background (fb) is the y intercept of a plot of F0/Ft versus OsM0/OsMt and represents the 

relative fluorescence distributed in the intracellular compartments, which is not sensitive to osmotic 

changes. 

RVD after cell exposure to a hypo-osmotic medium was calculated by the following equation: 

100

1
0

00

























































max

tmax
t

V

V

V

V

V

V

RVD        

where (V/V0)max is the maximal value of V/V0 attained during hypo-osmotic swelling (peak), and 

(V/V0)t represents the value of V/V0 observed at time t. RVDt thus denotes the magnitude of volume 

regulation at time t, with 100% RVD indicating complete volume regulation and 0 % RVD indicating 

no volume regulation.  

 

Measurement of Membrane Voltage Changes 
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Transmembrane potential was measured using bis-(1,3-dibutylbarbituric acid) trimethine 

oxonol (DIBAC4(3), Molecular Probes), a slow response anionic dye, whose emission has been 

shown to be independent of cell volume changes, as previously used for MIO-M1 cells (Fernández 

et al., 2013). The intracellular concentration of DIBAC4(3) depends on Vm following a Nernstian 

distribution (Brauner et al., 1984; Epps et al., 1994). Cells were loaded with 2.5 M DIBAC4(3) for 

15 minutes at 20ºC and placed on the stage of the same microscope described in the previous 

section. Excitation wavelength was 490 nm. Emitted light (above 520 nm) was recorded at 10 

second intervals. Fluorescence intensity was monitored until it reached stable values before 

starting the experiments. Fluorescence intensity changes after interventions were relativized to 

stationary values (F0/Ft) and data were corrected for background noise and drift.  

MIO-M1 resting Vm is -63.1 ± 2.3 mV as previously reported (Fernández et al., 2013). 1% 

changes in fluorescence correspond to a Vm variation of 2.2 mV, as calculated from the mean 

calibration curve (0.0045 ± 0.002, X ± SD, n= 58).  

 

Western blotting studies 

Confluent MIO-M1 cells were washed three times in cold PBS and were incubated for 30 

min at 4C in a cold lysis buffer containing 150 mM NaCl, 20 mM Tris/HCl, pH 7.5, 5 mM EDTA, 

1% Triton 100, 1 mM PMSF, 5 μg/ml aprotinin, 10 μg/ml antipain, 10 μg/ml leupeptin and 10 μg/ml 

pepstatin. Cells were then collected with a rubber scraper, homogenized and sonicated. Cell 

lysates were subjected to electrophoresis in 8% SDS-polyacrylamide gel (Bio-Rad), transferred to 

a nitrocellulose membrane (Bio-Rad) and blocked 1 hour with 5% non-fat dried skimmed milk in 

PBS-T (80 mMNa2HPO4, 20 mMNaH2PO4, 100 mM NaCl and 0.1% Tween 20, pH 7.5). 

Membranes were incubated with the rabbit polyclonal TRPV4 antibody (1/1000), generated against 

a peptide corresponding to amino acids 853–871 of rat TRPV4, (Alomone Labs, #ACC-034) 

overnight at 4C. The blots were then washed and incubated 1h at room temperature with a goat 

anti-rabbit IgG conjugated to horseradish peroxidase (dilution 1:7500; Sigma–Aldrich St. Louis, 

MO, U.S.A). Membranes were visualized using the chemiluminescence method (SuperSignal 

Substrate, Pierce) and captured on a Gbox (Syngene, Frederick, MD). 
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Immunofluorescence Assays 

Colocalization of TRPV4 and the specific plasma membrane marker Alexa Fluor 488-

conjugated wheat germ agglutinin (WGA; Molecular Probes) were performed. Cells were first 

stained with WGA, at 4ºC for 30 minutes to label the surface glycoproteins of the plasma 

membrane. Then, cells were fixed in 3% paraformaldehyde for 30 min, washed with PBS and 

neutralized with NH4Cl for 30 min. Cells were permeabilized for 30 min with 0.2% Triton X-100 at 

room temperature and washed with PBS. Samples were blocked with 1% Bovine Serum Albumin 

(BSA) and incubated with anti-TRPV4 (1/1500; Alomone Labs, #ACC-034) overnight at 4ºC. Next, 

cells were washed and incubated with Cy3-conjugated goat anti-rabbit IgG (1/200, Jacson 

Immuno, 111-165-003) for 2 h at room temperature. Coverslips were mounted with Vectashield 

mounting medium.  

Images were captured using confocal Olympus FV1000 microscope and digitized. 

Fluorescence intensity was quantified per cell, identified by Hoechst nuclei staining. Ten fields 

were analyzed per experiment and quantified by densitometric analysis using Image J-software. 

Since plasma membrane TRPV4 expression was low, to identify its presence, we created a mask 

of plasma membrane as previously described (Janecki et al., 2000). Briefly, WGA images were 

binarized so that the signal from WGA was ascribed the value of “1” and the rest of the image was 

ascribed the value of “0”. The Boolean logical operation “AND” was then performed on the 

corresponding images, representing signals from TRPV4-Cy3 and from WGA (binary mask). This 

resulted in generation of a new image (shown in yellow in the figures) in which only the TRPV4-

Cy3 fluorescent signal corresponding to the membrane was present. Images were also analyzed 

by using colocalization tools and estimated using the M2 superposition coefficient of Manders 

(SCM), which measures the fraction of WGA that overlaps TRPV4 signal, and is described by the 

following equation 
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A value of 1 indicates 100% of superposition between signals of colocalized pixels, while a value of 

0 indicates absence of colocalization.  
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Solutions and Chemicals  

For functional experiments, cells were first set for at least 10 minutes in an external iso-

osmotic solution containing (mM): 126 NaCl; 5,5 KCl; 2,5 CaCl2; 1,25 MgCl2; 20 Hepes and 10 

Glucose (Osmolarity: 299 ± 2 mOsM). Calcium-free solutions were made by adding EGTA (1 mM) 

and replacing CaCl2 by MgCl2. Experiments varying extracellular K+ concentration were done by 

replacing NaCl with KCl. Hypo-osmotic solutions were prepared from iso-osmotic solution by the 

removal of NaCl (Osmolarity: 200 ± 2 mOsM). All solutions were titrated to pH 7.40 using NaOH 

(Sigma-Aldrich), and osmolalities were routinely measured by a pressure vapor osmometer 

(Wescor).  

In some experiments, 1 mM BaCl2; 1 mM Tetraethylammonium (TEA) and 0.2 M Apamin 

were used to block K+ channels. TRPV4 activation or inhibition were tested with 10 M of TRPV4 

specific activator 4α-Phorbol-12,13-didecanoate (4-PDD) and 10 µM TRPV4 specific inhibitor 

RN1734, respectively. Since in the presence of the RN1734 we identified up to a 10% change in 

fluorescence levels, we considered this as a threshold for response to 4-PDD. Additional 

experiments were performed using 3 nM of TRPV4 specific agonist GSK1016790A (GSK101) and 

0,5 nM of TRPV4 specific antagonist HC-067047 (HC-06). Finally, 1 μM of endoplasmic reticulum 

(ER) Ca2+ ATPase inhibitor Thapsigargin (TG) was used to deplete intracellular Ca2+ stores. All 

drugs were purchased from Sigma-Aldrich. Cells were pre-incubated in an iso-osmotic extracellular 

solution containing drugs or vehicle (DMSO). 1 mM Fura-2 and 0.6 mM DIBAC4(3) stock solutions 

were prepared in DMSO and stored at -20°C until used.  

 

Statistics  

Values are reported as mean ± SEM, and n is the number of cells evaluated in each 

condition. Student's t test for unpaired data was used according to each protocol; p < 0.05 was 

considered a significant difference. 
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Results  
 
 

MIO-M1 cells express functional TRPV4 in the plasma membrane 

Using western blot and immunofluorescence assays, the first set of experiments evaluated 

TRPV4 expression and plasma membrane localization in MIO-M1 cells. Western blot analysis 

revealed a band of ~100 kDa, corresponding to TRPV4 (Figure 1A). Figure 1B shows a 

representative immunofluorescence experiment, with anti-TRPV4 antibodies (red) and the cell 

membrane marker WGA (green), revealing a large intracellular TRPV4 signal and a minor fraction 

of the stain that co-localizes with WGA (yellow). To test whether this small plasma membrane 

TRPV4 expression had functional significance, intracellular Ca2+ levels were monitored by 

videomicroscopy with Fura-2 ratio, using the TRPV4 specific activator, 4α-PDD. Addition of 10 µM 

4α-PDD elicited a robust and transient increase in intracellular Ca2+ levels in 72 ± 5% of cells 

(Figure 1C). This effect was eliminated in the absence of external Ca2+ (Figure 1D) or in cells 

pretreated with 10 µM RN1734, a selective TRPV4 antagonist (Figure 1E). Similar results were 

obtained using a structurally different agonist GSK-1016790A (GSK101, 3 nM) or the antagonist 

HC-067047 (HC-06, 0.5 nM) (Figure 1F). Altogether, molecular and functional results confirmed 

the expression of active TRPV4 channels in MIO-M1 cells. 

 

TRPV4 contributes to resting membrane potential in MIO-M1 cells 

Our previous studies in Müller cells, showed that RVD response is strongly modulated by 

changes in the electrochemical gradient for K+ and Cl- and, thus, by Vm (Fernandez et al., 2013). 

Keeping in mind that the high K+ permeability of the plasma membrane is the basis of the very 

negative resting Vm of Müller cells and that TRPV4 plays a key role in modulating Ca2+-activated K+ 

channels in a variety of cell types, we investigated the putative contribution of TRPV4 in 

modulating the resting Vm in MIO-M1 cells. Cells were loaded with DIBAC4(3) and Vm was 

monitored by videomicroscopy before and after the addition of 10 µM RN1734 or different blockers 

of K+ channels: i- 1 mM BaCl2; ii- 1 mM TEA (a concentration shown to be selective for BK 

channels in Müller cells) or iii- 0.2 μM Apamin, a blocker of SK channels (Reichenbach & 

Bringmann, 2010). Figure 2A shows the time course of Ft/F0 DIBAC4(3) of MIO-M1 cells under iso-
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osmotic conditions, where TRPV4 inhibition elicited a robust plasma membrane depolarization. As 

expected, Figure 2B illustrates that incubation of cells with increasing concentrations of external K+ 

induced Vm depolarization in a concentration-dependent manner, but the slope of this response 

was significantly decreased in the presence of RN1734, suggesting that TRPV4 modulates K+ 

permeability. As depicted in Figure 2C, plasma membrane depolarization was observed not only 

with RN1734 but also by blocking Ba2+-sensitive K+ channels or BK Ca2+-activated K+ channels 

with TEA. In contrast, inhibition of SK Ca2+-activated K+ channels with apamin did not modify 

∆Ft/F0, dismissing the contribution of these channels to resting Vm. Altogether these data strongly 

suggest that TRPV4 may contribute to resting Vm in Müller cells by a functional interaction with 

Ca2+ and/or Vm-sensitive K+ channels. 

 

TRPV4 modulates Vm changes occurring during RVD 

We next investigated the contribution of TRPV4 to changes in cytosolic Ca2+ concentration, 

%RVD10 and Vm after hypo-osmotic swelling in MIO-M1 cells. First we evaluated if the plasma 

membrane localization of TRPV4 was altered after cell exposure to a hypo-osmotic media (OsM ± 

100 mOsM), as described in other systems (Galizia et al., 2012). Figure 3A shows that there were 

no changes in TRPV4 signal after 10 minutes of hypo-osmotic shock (Fluorescence intensity per 

cell, red channel, ISO: 889.3 ± 80.4 vs HYPO 822.0 ± 55.6, 15-20 cells of 7-11 fields, n=3 

experiments, NS) or in the fraction of TRPV4 that co-localizes with the plasma membrane marker 

WGA (yellow) in these experimental conditions (Mander´s coefficient, Plasma Membrane TRPV4 

vs. WGA: ISO 0.283 ± 0.019 vs. HYPO 0.325 ± 0.024, 15-20 cells of 7-11 fields, n=3 experiments, 

NS). Figure 3B shows the time course of relative changes in Ca2+ levels (Rt/R0 Fura-2) when cells 

were exposed to the hypo-osmotic media. It can be observed that cell swelling led to an increase in 

Ca2+ levels that was not affected by the presence of 10 μM RN1734 (Figure 3B insert), suggesting 

that TRPV4 does not contribute to this change in Ca2+ levels. In addition, Figures 3C illustrates that 

neither the kinetics of relative cell volume changes (V/V0) nor cell volume regulation (insert, 

%RVD10) were affected by TRPV4 blockage. However, in Figure 4A we show that the swelling-

induced biphasic response (depolarization-repolarization) was partially absent in the presence of 

RN1734, suggesting the contribution of TRPV4 to these changes. Moreover, while swelling-
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induced depolarization was not affected by K+ channels blockers, the magnitude of the 

repolarization was significantly reduced by Ba2+ and TEA to similar levels as with RN1734, but not 

by Apamin (Figure 4B). 

All these results strongly suggest that even if TRPV4 is not involved in the hypo-osmotic-

induced Ca2+ increase, it contributes to modulate changes in Vm that occur during RVD almost 

certainly associated with major K+ channels expressed in Müller cells, Kir4.1 and BK. 

 

Intracellular Ca2+ stores play a fundamental role in RVD response 

Since an increase in cytosolic Ca2+ concentration may be attributed to both extracellular Ca2+ 

influx and Ca2+ release from intracellular stores, we further investigated the origin of cell swelling-

induced Ca2+ increase in MIO-M1 cells. Figure 6A shows that the kinetics of intracellular Ca2+ 

increase during the hypo-osmotic shock (OsM ± 100 mOsM) was notably modified in the absence 

of external Ca2+. In fact, in a Ca2+-free solution, the swelling-induced Ca2+ increase was transient 

and significantly reduced in comparison to control conditions (Figure 5A, insert), suggesting that 

intracellular Ca2+ changes induced by hypotonicity depend, at least partially, on extracellular Ca2+. 

However, Figure 5B shows that external Ca2+ removal did not affect the kinetics of V/V0 nor cell 

volume regulation response (%RVD10), as compared to control conditions. Afterwards, we 

evaluated whether intracellular Ca2+ stores participate in cell volume regulation. With that aim, we 

treated cells with thapsigargin (TG), a non-competitive inhibitor of the endoplasmic reticulum (ER) 

Ca2+-ATPase (SERCA), which causes the depletion of intracellular Ca2+ stores. Figure 5C shows 

that in a Ca2+-free solution, TG induced a transient increase in Fura-2 Rt/R0 and then Ca2+ levels 

returned to basal values, as cells are unable to induce a Ca2+ entry to refill ER stores. In contrast, 

in the presence of external Ca2+, TG treatment induces a putative store-operated Ca2+ Entry 

(SOCE) evidenced by a sustained increase in intracellular Ca2+ levels. The cells subsequent 

exposure to a hypo-osmotic shock (OsM ± 100 mOsM), in the presence of TG but in the absence 

of extracellular Ca2+, caused a significant decreased in intracellular Ca2+ levels (Figure 5C insert). 

However, in the presence of extracellular Ca2+, TG maintained intracellular Ca2+ levels always 

higher than basal levels (Figure 6C insert). Interestingly, Figure 5D shows that the kinetics of V/V0 

was also quite different with TG treatment in the presence or absence of external Ca2+. TG 
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significantly enhanced RVD as compared to control conditions in a Ca2+ containing solution, but 

this response was almost completely impaired in the absence of external Ca2+ (Figure 5D insert). 

Altogether, these results propose that swelling-induced increase in Ca2+ levels are due to both Ca2+ 

entry from extracellular media and Ca2+ release from ER stores. However, only endogenous Ca2+ 

stores play a key role in MIO-M1 cell volume regulation.  

 

Agonist-induced activation of TRPV4 enhance RVD response  

Since the osmotic swelling-induced increase in Ca2+ levels in MIO-M1 cells was small (~4-5 

%), we tested if activation of TRPV4 by an alternative pathway may contribute to modulate RVD. 

Therefore, to measure intracellular Ca2+ levels and RVD we stimulated TRPV4 with 10 µM of 4-

PDD prior to the hypo-osmotic shock. Figures 6A shows that the increase in intracellular Ca2+ 

levels after TRPV4 activation was not significantly augmented by the exposure of cells to a hypo-

osmotic shock, but this huge rise in intracellular Ca2+ produced a rapid cell volume recovery with 

the consequent increase in %RVD10 (Figure 6B and insert). These changes in Ca2+ and RVD 

responses were completely reverted in the absence of external Ca2+ (Figure 6C and D). In addition, 

Figure 7A illustrates that 4-PDD induced a hyperpolarization in iso-osmotic conditions. The 

changes in Vm evoked by the osmotic swelling (depolarization-repolarization) did not occur in the 

presence of 4-PDD which provoked a higher hyperpolarization. TRPV4-agonist induced 

hyperpolarization was prevented in the presence of K+-channels blockers Ba2+ and TEA (Figure 

7B). 

Altogether, these results indicate that selective activation of TRPV4 during hypo-osmotic 

shock with the agonist 4-PDD causes a larger Ca2+ influx, activating K+ channels, then, 

hyperpolarizing cells, accelerating the RVD response. 

 

Discussion 

 

 The present work provides new insights regarding the contribution of TRPV4 channels to 

RVD response in retinal human Müller cells (MIO-M1 cells). We observed  the expression of a 

small fraction of TRPV4 at the plasma membrane, but also a large intracellular TRPV4 signal. 



This article is protected by copyright. All rights reserved  14 

However, the activation of TRPV4 induced huge increases in Ca2+ levels, demonstrating that 

functional TRPV4 channels are present in the plasma membrane of MIO-M1 cells. Interestingly, 

five splice variants have been described for human TRPV4 (bands migrating at 86-100 kDa), some 

of which lack Ankyrin domains and are retained intracellularly (Arniges et al., 2006). However, we 

detected a single isoform of TRPV4 at ~100 kDa in MIO-M1 cell line. Whether intracellular 

localization is because TRPV4 appears in these compartments as intermediates of biosynthetic 

pathways or if they are active participants in signal transduction and/or membrane trafficking, as 

previously reported (Dong et al., 2010; White et al., 2016), must be further investigated. 

We demonstrate that TRPV4 contributes to define the resting Vm of Müller cells since specific 

blockage of the channel induced plasma membrane depolarization, indicating that TRPV4 is a 

tonically-active channel. Given that inhibition of TRPV4-mediated Ca2+ currents should lead per se 

to membrane hyperpolarization, and not to the observed depolarization, we hypothesize that in 

Müller cells TRPV4 works in concert with K+ channels, just as it does in other systems (Ma et al., 

2013; Sullivan and Earley, 2013; Early et al, 2005). Even if Müller cells express different types of 

K+ channels, such as voltage-gated K+ channels and Ca2+-activated K+ channels, it is well 

accepted that at the resting Vm, K+ permeability is mediated by Ba2+-sensitive inwardly rectifying K+ 

channels (Kir4.1), which are key players in retinal K+ homeostasis along with BK channels (Puro et 

al., 1996). Kir4.1 and BK channels are well discernible due to their different electrophysiological 

properties (Reichenbach and Bringmann, 2010). In Müller cells, BK channels are mainly activated 

by an increase in the free Ca2+ level at the intracellular side of the plasma membrane as well as by 

membrane depolarization. We provide evidence that blockade of K+ channels with Ba2+ evoked a 

depolarization similar to that induced by TRPV4 inhibition, and TEA also induced a depolarization, 

but to a lesser extent than Ba2+. Therefore, it is likely that TRPV4, in concert with activation of one 

or more K+ channels, contributes to define resting Vm in MIO-M1 cells. We propose that Ca2+ influx 

via TRPV4 may activate Ca2+-dependent BK channels but at the same time Ca2+ influx induces a 

transient depolarization that, in turn, may increase Kir4.1 outwardly directed K+ currents at Vm more 

positive than resting Vm in Müller cells (Reichenbach and Bringmann, 2010).  

 Our data also demonstrates that, as in many other cell types, MIO-M1 cells had increased 

intracellular Ca2+ levels during osmotic swelling. However, this increase was slight (~5%) and 
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occurred through a pathway other than TRPV4. External Ca2+ removal significantly reduced 

swelling-activated increases in Ca2+ levels without affecting RVD, suggesting the contribution of 

RVD effectors independently of extracellular Ca2+ influx, at least in these experimental conditions. 

These data differ from studies on rodent Müller glia, which conclude that TRPV4 is the main 

mediator of hypotonic-induced Ca2+ entry (Ryskamp et al., 2014; Jo et al., 2015), but agree with 

the final suggestion that TRPV4 is not necessarily involved in RVD. The reasons for these 

discrepant results are unclear but might be due to differences between species, cell models, 

experimental means of detection of intracellular Ca2+ and/or size of the hypotonic stimuli. However, 

our results are consistent with previous data from mouse-cultured astrocytes in which the inhibition 

of TRPV4 or the removal of extracellular Ca2+ did not affect RVD (Mola et al., 2016; Morales-Mulia 

et al., 1998). Mola et al. (2016) concluded that the rapid AQP4-dependent cell swelling is the main 

determinant of RVD efficiency. Nevertheless, there are also reports in astrocytes showing that 

AQP4 is functionally coupled to TRPV4 (Benfenati et al., 2011). We did not focus our present work 

on evaluating the role of AQP4 association with TRPV4 during a hypotonic shock in MIO-M1 cells 

since our previous results showed that the removal of AQP4 from the plasma membrane affects 

osmotic water permeability and RVD without altering TRPV4 expression or function (unpublished 

results). In line with this observation, we here showed that TRPV4 activation or inhibition did not 

modify cell swelling kinetics, probably indicating the absence of a functional interaction between 

TRPV4 and AQP4 to determine RVD, as previously reported in mouse Müller cells (Jo et al., 

2015). However, we cannot disregard that this interaction may occur to define other 

pathophysiological processes. In fact, previous reports in mouse Müller cells described that TRPV4 

absence or overactivation as well as AQP4 deletion are associated with reactive gliosis and 

gliovascular modifications (Ryskamp et al., 2014, Nicchia et al., 2016) which are, in turn, 

associated with alterations in Ca2+ homeostasis. 

 We also suggest that a possible alternative pathway for Ca2+ increase during a hypo-osmotic 

challenge in MIO-M1 cells could be Ca2+ release from stores, as previously shown in astrocytes 

(Morales-Mulia et al., 1998; Mola et al., 2015). In fact, our data demonstrated that RVD largely 

depended on intracellular Ca2+ stores, probably indicating that intracellular Ca2+ release may be 

sufficient to elicit the RVD response and could explain the insensitivity of RVD to external Ca2+ in 
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MIO-M1 cells. A recent work showed that store-operated signalling represents a major source of 

cytosolic Ca2+ in mouse Müller cells; however, the physiological relevance of this finding has not 

yet been established (Molnar et al., 2016). The likely purpose of extracellular Ca2+ entry during a 

hypo-osmotic challenge may be the replenishment of endogenous stores, which are depleted after 

swelling. 

 The lack of contribution of TRPV4 to the increase of Ca2+ levels under a hypo-osmotic 

stimulation in MIO-M1 cells does not rule out the possibility that TRPV4 may participate in RVD 

response when it is largely activated by agonists, as shown by other authors (Cardin et al, 2003).

 We demonstrated that stimulation of Ca2+ influx via TRPV4 enhanced RVD to a greater 

extent than observed in control conditions. A similar response was observed when intracellular 

Ca2+ stores were depleted in the presence of extracellular Ca2+, activating SOCE. Finally, we found 

a positive correlation between changes in intracellular Ca2+ levels and % RVD (r2: 0.7012; n = 100 

cells). Therefore, we propose that RVD machinery involves both Ca2+-independent and Ca2+-

dependent machinery in MIO-M1 cells. When Ca2+ levels enhance over those induced by a 

physiological hypo-osmotic swelling, a more potent RVD takes place due to the opening of other 

Ca2+-activated channels. In line with this idea, there are reports in astrocytes that indicate that 

increasing intracellular [Ca2+] over hypo-osmotic-induced levels by the ionophore ionomycin or by 

activation of G-protein coupled receptors markedly potentiates some of the osmolyte efflux 

pathways (Cardin et al. 2003; Vazquez Juarez et al., 2008).  

 Interestingly, our observation of a functional association between TRPV4 and Ca2+ and/or 

Vm-sensitive K+ channels to define resting Vm in MIO-M1 cells, opens the question about its 

contribution to the depolarization-repolarization that takes place during an osmotic shock. Our 

results show that cell swelling-induced depolarization  was significantly reduced with TRPV4 

antagonist. Since this depolarization is due to concurrent events, such as intracellular ions dilution, 

Ca2+ influx and/or Cl- efflux (Fernandez et al., 2013), it would be expected to be affected by 

reductions in the K+ driving force by dilution and blocking Ca2+ influx via TRPV4. RVD-induced 

repolarization was inhibited to the same extent by blocking TRPV4 or blocking K+ channels with 

Ba2+ or TEA, suggesting a functional association of TRPV4 and BK channels during RVD. This 

relationship was further confirmed when TRPV4 was activated by the agonist 4-PDD during a 
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hypo-osmotic shock, which causes cell hyperpolarization, that was completely blunted by Ba2+ or 

TEA.  

How could TRPV4 blockage affect Vm without evoking detectable changes in the magnitude 

of cytosolic Ca2+ levels or in the %RVD during the osmotic shock? We have previously 

demonstrated that in MIO-M1 cells, as in many other systems, only a fraction of RVD is mediated 

by KCl efflux: there is also a major component (~70%) mediated by organic osmolyte efflux 

(Fernández et al., 2013; Ando et al., 2012; Pasantes-Morales et al., 1994). Therefore it is likely that 

hypo-osmotic-induced local changes in Ca2+ conductance mediated by TRPV4 occur close to the 

plasma membrane and do not affect intracellular Ca2+ levels, though they are sufficient for BK 

channel activation. In fact, it has been reported that in local Ca2+ microdomains, Ca2+ concentration 

can rapidly rise to very high levels, often up to orders of magnitude greater than bulk cytoplasmatic 

Ca2+, providing means for rapid and selective activation of targets closeby, such as Ca2+-activated 

K+ channels (Parekh, 2008). Parallely, other Ca2+-dependent and independent mechanisms could 

be activated to evoke RVD response. Previous studies in human Müller cells have shown that RVD 

also depends on ATP activation of purinergic receptors P2Y, which elicits an increase in 

intracellular Ca2+ levels (Reichenbach & Bringmann 2016). Moreover, it was reported that TRPV4 

activation evokes ATP release in several systems (White et al., 2016). Hence, there may be a link 

between TRPV4 and purinergic receptor activation during RVD. Future experiments are necessary 

to address this issue. 

In summary, our data reveal that TRPV4 in association with K+ channels not only defines 

steady-state Vm but also modulates changes in Vm occurring during a hypo-osmotic shock. This 

functional association is mediated by Ca2+ influx via TRPV4. We also propose that the involvement 

of TRPV4 in RVD response depends on the type of stimuli and/or degree of channel activation, 

leading to a maximum RVD response when Ca2+ influx overcomes a threshold to activate further 

signalling pathways for cell volume regulation. Altogether, these findings add new insights into 

knowledge on the role of TRPV4 in the retinal Müller cells. 
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Legend to figures 

 

Figure 1: TRPV4 expression and functionality in MIO-M1 cells. A- Western blot showing 

TRPV4 expression. B- Representative confocal images of MIO-M1 cells immunostained for TRPV4 

(Cy3, red) and for the cell plasma membrane marker WGA-Alexa Fluor 488 (green). Image 

showing TRPV4 expressed at the plasma membrane (PM TRPV4, yellow) generated by a mask of 

plasma membrane (see Methods). Scale bar, 10 µm. C and D- Representative recordings of 

intracellular Ca2+ levels with Fura-2 AM (Rt/R0 Fura-2) in cells exposed, at the arrow, to 10 µM 4-

PDD (TRPV4 specific agonist) in the presence of 2.5 mM of external CaCl2 (+Ca2+) or in the 

absence of external Ca2+ (0Ca2+). E- Representative recordings of intracellular Ca2+ levels with 

Fura-2 AM in cells pretreated with 10 µM RN1734 (TRPV4 antagonist), and then with 10 µM 4-

PDD + 10 µM RN1734 and finally removing RN1734 (Insert: enlarged y-scale to show the effects 

of RN1734 during the first 25 min). F- Maximal variation in intracellular Ca2+ levels (Δmax Rt/R0 

Fura-2) for cells treated with vehicle, 10 µM 4-PDD, 3 nM GSK101, 10 µM RN1734 + 10 µM 4-

PDD or 0.5 nM HC-06 + 10 µM 4-PDD. Three independent assays were performed for each 

experimental condition including 19-29 cells per experiment. 

 
 

Figure 2: Contribution of TRPV4 to resting membrane potential in MIO-M1 cells. Vm was 

monitored using the dye DIBAC4(3) under different experimental conditions. A- Representative 

kinetics of relative fluorescence changes, Ft/F0 DIBAC4(3), when cells were exposed, at the arrow, 

to 10 µM of the TRPV4 antagonist RN1734 or vehicle (DMSO). B- Slope x 10-4, Ft/F0DIBAC4(3) x 

mM-1: Vehicle 79.1 ± 2.8 vs  RN1734 48.0 ± 4.1, p<0.001, n=9-18 cells from 4 experiments. C- 

Maximal change in fluorescence obtained after pretreatment of cells with: Vehicle, 10 µM RN1734 

or different blockers of K+ channels (1 mM BaCl2; 1 mM TEA or 0.2 μM Apamin). Values are mean 

± SEM from 3-4 experiments including a total of 40-91 cells; ***p < 0,001 vehicle vs. RN1734 or 

Ba2+; ** p < 0,01 vehicle vs. TEA. 

 

Figure 3: Role of TRPV4 on swelling-induced Ca2+ levels and RVD.  
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MIO-M1 cells were subjected to a hypo-osmotic stress (OsM = 100 mOsM) in the presence of 10 

µM RN1734 or vehicle (DMSO). Intracellular Ca2+ levels and cell volume changes were measured 

in cells loaded with Fura 2-AM A- Representative confocal images of cells showing TRPV4 

distribution before and after 10 minutes exposure to hypo-osmotic media. Cells were 

immunolabeled with anti-TRPV4 (red) and the cell plasma membrane marker WGA-Alexa Fluor 

488 (green). Plasma membrane fraction was obtained for TRPV4-Cy3 fluorescent signal (PM 

TRPV4, yellow). Scale bar, 10 µm. B- Kinetics of changes in relative Fluorescence (Rt/R0 Fura-2) 

after the hypo-osmotic shock showing that RN1734 do not affect swelling-induced Ca2+ levels 

increase. Insert: mean values of the percentage of intracellular Ca+2 levels increase for both 

experimental conditions. C- Dynamics of relative cell volume changes (V/V0) in the presence of 

RN1734 or vehicle (DMSO). Insert: mean values of %RVD10 for both experimental conditions. 

Values are mean ± SEM for 40-46 cells of 4 independent experiments.   

 

Figure 4: Effects of blockage of TRPV4 on swelling-induced changes in Vm. MIO-M1 cells 

were subjected to a hypo-osmotic stress (OsM = 100 mOsM) in the presence of 10 µM RN1734 

or vehicle (DMSO). A- Representative kinetics of changes in relative fluorescence (Ft/F0) using 

DIBAC4(3), when cells were exposed to the hypo-osmotic stress in both experimental conditions. 

B- Ft/F0 DIBAC4(3) mean values of maximal fluorescence changes (Depolarization) obtained after 

pretreatment of cells with: 10 µM RN1734 or different blockers of K+ channels (1 mM BaCl2; 1 mM 

TEA or 0.2 μM Apamin).  The magnitude of the Repolarization was assessed as the difference 

between Ft/F0 at the maximum peak and Ft/F0 30 minutes after exposure to a hypo-osmotic 

media. Values are mean ± SEM for 25-47 cells from 3-6 independent experiments *** p < 0.001 

vehicle vs. RN1734, Ba2+ or TEA.  

  

Figure 5: Contribution of extracellular and intracellular Ca2+ to RVD. MIO-M1 cells were 

loaded with Fura 2-AM to measure intracellular Ca2+ levels and cell volume changes. Cells were 

exposed to a hypo-osmotic stress (OsM = 100 mOsM, HYPO) A- Kinetics of changes in relative 

fluorescence (Rt/R0 Fura-2) in cells subjected to a hypo-osmotic stress in the presence (+Ca2+) or 
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absence of external Ca2+ (0Ca2+). Insert: mean values of the percentage of intracellular Ca+2 levels 

increase for both experimental conditions. Values are mean ± SEM for 28-67 cells from 4 

independent experiments, *** p < 0.001 +Ca2+ vs. 0Ca2+ B- Dynamics of relative cell volume 

changes in cells subjected to a hypo-osmotic in the presence (+Ca2+) or absence of external Ca2+ 

(0Ca2+). Insert: mean values of %RVD10 for both experimental conditions. Values are mean ± SEM 

for 28-67 cells from 4 independent experiments, *** p < 0.001 +Ca2+ vs. 0Ca2+. C- To deplete 

intracellular Ca2+ stores, cells were first incubated with 1 µM TG in the presence (+Ca2+) or in the 

absence of Ca2+ (0Ca2+) followed by the hypo-osmotic shock. Insert: Percentage of intracellular 

Ca2+ increase 20 minutes after the addition of 1 µM TG in the absence or in the presence of 

external Ca2+ (TG + Ca2+ and TG 0Ca2+ respectively). Values are mean ± SEM for 42-61 cells from 

3-4 independent experiments, *** p < 0.001 TG +Ca2+ Vs TG 0Ca2+.  D- Kinetics of relative cell 

volume Changes (V/V0) in cells exposed to all conditions described in C. Insert: Mean values of 

%RVD10 in the presence or absence of external Ca2+ when cells were incubated with 1 µM TG (TG 

+ Ca2+ and TG 0Ca2+ respectively). Values are mean ± SEM for 42-61 cells from 3-4 experiments. 

*** p < 0.001 TG +Ca2+ vs TG 0Ca2+. 

 

Figure 6: Effect of TRPV4 activation on swelling-induced Ca2+ levels and RVD. Intracellular 

Ca2+ levels and cell volume changes were measured in cells loaded with Fura 2-AM and subjected 

to a hypo-osmotic stress (OsM = 100 mOsM) in the presence of 10 µM 4-PDD or vehicle 

(DMSO). A-C Representative experiments showing the kinetic of intracellular Ca2+ levels, as 

relative fluorescence changes (Ft/F0 Fura-2), in the presence (A) or absence of external Ca2+ (C). 

B- Kinetic of cell volume changes, as relative fluorescence changes (Ft/F0), in the presence or 

absence of 4-PDD or vehicle. D- Kinetic of cell volume changes, as relative fluorescence 

changes (Ft/F0), in the presence of 4-PDD with (+Ca2+) or without (0Ca2+) external Ca2+. Inserts in 

B and D: Mean values of % of RVD at 10 minutes after the osmotic shock (%RVD10) in both 

experimental conditions. Values are mean ± SEM for 40-91 cells from 3-5 independent 

experiments ** p < 0.01 vehicle vs. 4-PDD and 4-PDD + Ca2+ vs. 4-PDD, 0Ca2+.  
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Figure 7: Effects of TRPV4 activation on swelling-induced changes in Vm. MIO-M1 cells were 

loaded with DIBAC4(3) and subjected to a hypo-osmotic stress (OsM = 100 mOsM) in the 

presence of 10 µM 4-PDD or vehicle (DMSO). A- Kinetics of changes in relative fluorescence 

(Ft/F0) when cells were exposed to a hypo-osmotic stress in the presence of 4-PDD or control 

(vehicle). B- Mean values of maximal fluorescence changes (Ft/F0 DIBAC4(3)) during the osmotic 

challenge in cells treated with vehicle (DMSO), 4-PDD, 4-PDD + Ba2+ or 4-PDD + TEA. Values 

are mean ± SEM for 40-91 cells from 3-5 independent experiments *** p < 0.001 vehicle vs. 4-

PDD and ### p < 0.001 4-PDD + Ca2+ vs. 4-PDD, 0Ca2+.  
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Figure 5 
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Figure 6 
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