
This paper deals with the free transverse vibration of a Timoshenko beam with an arbitrarily located
internal elastic hinge. The ends of the beam were elastically restrained against both rotation and
translation. The results are obtained with the exact solution and with an analytical method that
consists of a combination of the Ritz and the Lagrange multiplier methods. Both were used to
determine free vibration characteristics of the employed beam. In the combined method, trial
functions denoting the transverse deflections and the normal rotations of the cross section of the
beam are expressed in polynomial forms. In order to verify the accuracy of the developed mathematical
model, cases available in the literature have been considered. Results have also been presented for
different end and restraint conditions (in the intermediate point) of the beam. In addition, a comparison
with a crack model is also provided.
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1.      INTRODUCTION

Timoshenko proposed a beam theory which includes the effects of shear distortion and rotatory
inertia to the Euler-Bernoulli model [1, 2]. Afterwards there has been a considerable interest in
developing techniques for the solutions of equations according to the Timoshenko theory. The
problem of free vibration of Timoshenko beams with classical end conditions has been extensively
treated and numerous studies have been devoted to it. The initial studies have been described in
reference [3]. Although it is not possible to present a full account of all these studies here due to
the enormous volume of information some important references have been cited in the presented
paper. The problem of elastic end restraints has also received considerable attention. The problem
of free vibration of Timoshenko beams with elastically supported ends by using a finite element
model (FEM), which satisfies all the geometric and natural boundary conditions, has been studied
by Abbas [4]. The natural frequencies and the critical buckling load coefficients for a multi-span
Timoshenko beam elastically supported have been investigated by Farghaly [5]. Kocaturk and
Simsek [6, 7] analysed free vibration problem of Timoshenko beams (having classical and elastically
supported ends) by using the Lagrange equations with the trial functions expressed in the power
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series form. The free vibration of multi-span Timoshenko beams by the Rayleigh-Ritz method using
static Timoshenko beam functions has been treated by Zhou [8]. Grossi and Aranda [9] applied the
Ritz method in the variational formulation of Timoshenko beams with elastically restrained ends.
A full development and analysis of four theories (including the Timoshenko model) for the transversely
vibrating uniform beam have been presented in reference [10].

A review of the existing literature reveals that there is a limited amount of information for the
vibration of beams with internal hinges. The forced vibrations of two beams joined with a non-linear
rotational joint have been analysed by Ewing and Mirsafian [11]. The studies on the fundamental
frequency of a beam with an internal hinge and subjected to an axial force were presented in reference
[12]. Chang et al. [13] investigated the dynamic response of a beam with an internal hinge, subjected
to a random moving oscillator. The free transverse vibration of a non-homogeneous tapered beam
subjected to general axial forces, with arbitrarily located internal hinge and elastics supports and
ends elastically restrained against rotation and translation have been analysed by Grossi and Quintana
[14]. All these studies refer to beams treated with the Euler-Bernoulli theory.

The problem of vibration of Timoshenko beams with internal hinges (out of the context of cracks)
has not been treated with the exception of Lee et al. [15] who considered a Timoshenko beam with
a free hinge by determining the exact vibration frequencies. Free vibration determination of Timoshenko
beams with cracks using a method of detection of location of cracks in beams based on frequency
measurements have been presented in reference [16]. In order to compare the results with those used
in a crack model, a comparison with the model used in Khaji et al. [17] was presented by Lele and
Maiti [16]. The cracked section of the Timoshenko beam was modeled as local flexibility that was
assumed to be a rotational spring. This model was first proposed by Ostachowicz and Krawczuk
[18] using a theory which is based on the stress intensity factor developed by Haisty and Springer
[19]. Later, Narkis [20] compared the results of this model with three different authors and a FE
analysis (FEA) model. Khaji et al. [17] and Narkis [20] used the model to solve the inverse problem
of identifying crack locations and crack depths from frequency data first obtained from a FEA model.
The comparison of these works indicated that the proposed crack model performed well.

The aim of the presented paper is to investigate the natural frequencies and mode shapes of Timoshenko
beams with several complicating effects such as an internal hinge elastically restrained against both
rotation and translation, and with restrained ends. Several cases have been solved with the exact
solution and with a method that employs a combination of the Ritz and the Lagrange multipliers
methods in conjunction with sets of simple polynomials as trial functions. In order to asses the
accuracy of the developed mathematical models, few cases available in the literature have been
considered and comparisons of the numerical results were made. The algorithms developed can be
applied to a wide range of elastic restraint conditions. A large number of problems have been solved;
however, the results of only few cases have been presented here in view of space limitations. Since
the presence of intermediate elastic restraints and a hinge allow the simulation of a crack model, a
comparison with the results of Khaji et al. [17] has also been included in the presented paper.

2. THEORY AND FORMULATION

Consider a uniform Timoshenko beam of length (l) with two spans which are connected an intermediate
point (x = c) by an hinge elastically restrained against rotation and translation, and with specified
boundary conditions as shown in Figure 1.

According to Timoshenko beam theory, two independent variables (transverse deflection [w = w(x, t)]
and normal rotational angle [ = (x, t)] due to bending) are used to describe the deformation of beam.
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Figure 1. Beam model description.

2.1 Exact Solution using General Solution

The coupled equation of motion, and its associated boundary and transition conditions have been
rigorously derived using Hamilton’s principle [21] and are given by Eqs. (1) to (10).

(1)

(2)

(3)

(4)

(5)

(6)

(8)

(9)

(10)

(7)
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where r1 is the mass per unit length; A1 is the area of cross-section; k1 is the shear correction factor;
G1 is the transverse shear modulus; E1 is the Young’s modulus and I1 is the moment of inertia. The
subscript i denotes the ith span of the beam. The rotational restraints are characterized by the spring
constants r1, r2, r3 and r12 and the translational restraints by the spring constants t1, t2, and tc. The
set of all the transition conditions of the problem are given by Eqs. (5)-(8).

Using the well-known method of separation of variable, Eqs. (11) and (12) may be taken as solution
of Eqs. (1) and Eqs. (2), respectively.

(11)

(12)

(13)

(14)

(15)

(16)

The set of dimensionless parameters can be defined by Eqs. (17) to (23).

(21)

where                                        is the frequency parameter and

Substitution of Eqs. (13) to (16) into Eqs. (1) and (2) and, subsequently, in the boundary and transition
conditions given by Eqs. (3) to (10) a set of eight homogeneous equations in the constants C1 are
obtained. Since the system is homogeneous for existence of a non-trivial solution the determinant
of coefficients must be equal to zero.

(17)

(19)

(18)

(22)

(23)

(20)

where wi = wi,n and i = i,n are the corresponding nth mode of natural vibration and w is the radian
frequency. Introducing the change of variable X = X /1, i (X ) = i (X ) and Wi (X )= Wi (X )/1
into Eqs. (1)-(10), the functions Wi (X ) and i (X ) are given by

...

...

...
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2.2 Combination of Ritz and Lagrange Multiplier Methods

The Ritz method has been proposed to obtain a solution when the geometrical or mechanical properties
of the beam are variable at the ith span. When the Ritz method is applied to a structure which is
constructed  by joining several components together, the transition conditions require a continuity
of displacement between all the joints of the structural components. These transition conditions give
rise to several problems in the rational choice of the coordinate functions. Fortunately it is not
necessary to subject the coordinate functions to the natural boundary conditions [22, 23]. This is
particularly true in the case of a beam with an internal hinge. For this reason, only the essential
transition condition in the hinge is taken into account with the Lagrange multipliers [21-23].

The elastic strain energy due to the beam and the elastic restraints at any instant t is given by Eq. (24).

The kinetic energy of the beam at instant t is given by Eq. (25).

When the beam is in free vibration, transverse deflection and normal rotation can be expressed as

where          and         are the amplitude of deflection and rotation of the beam, respectively.

By introducing non-dimensional parameters [Eq. (27)], the Lagrangian functional (Lo) of the problem
can be written as Eq. (28).

Since it is difficult to obtain a simple and adequate deflection function which can be applied to the
entire beam and also to show the continuity of displacement and the discontinuities of the slope
crossing the hinge, the minimization of the functional given by Eq. (28) is achieved using subsidiary
conditions. Therefore, it can be assumed that W(x) and F(x) are given by Eq. (29).

(25)

(24)

(26)

(27)

where

(28)

(29)
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This constraint may be incorporated into the energy functional given by Eq. (28) by using the
Lagrange multiplier method [23] as

where LL is called the Lagrangian functional; and         is a time independent Lagrange multiplier.

The transverse deflection and the normal rotation can be represented by a set of characteristic
polynomials pki(X) and qkj(X) as

where both aki and bkj are unknown coefficients to be determined and pki(X), qkj(X) are the trial
functions. It is sufficient that they satisfy the geometric boundary conditions of the beam since (as
the number of trial functions approaches infinity) the natural boundary conditions will be exactly
satisfied [22]. The first member of the set p11 (X) is obtained as the simplest polynomial that satisfies
at least the geometric boundary condition of the first span.

In the case of beam involving free edges or ends elastically restrained against rotation and translation
simpler starting member of zero order are used.

The higher members of the set {p1} are obtained as

The polynomials set {p2} and {qk}  are also generated using the same procedure. Thus

In the presented paper, beams having a variety of boundary conditions including elastic restrained
ends have been considered; the starting functions used are given in Appendix.

Substituting Eq. (33) and (34) into Eq. (32) and minimizing with respect to the unknown coefficients
aki, bkj and the Lagrange multiplier (l) one obtains

By using Eq. (35) to (37), the simultaneous set of linear algebraic equations is obtained which can
be expressed in the following matrix form as given by Eq. (41).

Considering the compatibility requirement on the intermediate elastically restrained point, the
relationships between two adjacent spans can be expressed as

The problem can now be presented as one of extremizing the given functional in Eq. (28)subjected
to the following constraint

(30)

(31)

(32)

(34)

(33)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

,...

...
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The expressions for the various elements of the stiffness matrix [K] and the mass matrix [M] are
given as

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)
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(56)

(57)

(58)

with i, j = 1,2,…, M, n, m = 1,2,…., N

The eigenvalues 2 were found from the condition that the determinant of the system of equations
given by Eq. (41) must vanish.

3. CONVERGENCE AND COMPARISON STUDY

The computations for this study were performed by using computer programme entitled Maple [24].
This subroutine computes in exact way the definite integral over the straight line from xo to x1. The
eigenvalues are computed by the QR decomposition method. The matrix is first balanced and
transformed into upper Hessenberg form. Thereafter, the eigenvalues were computed. Throughout
the presented analysis, the beams were modelled with shear correction factor k = 5/6 and Poisson’s
ratio µ = 0.3.

The first five dimensionless natural frequencies     (1A1/E1I1)I
42 for a cantilever stepped

beam (Figure 2) are given in Table 1. These were determined using the aforementioned method.
The exact solutions were obtained for h2/h1 = 0.8 and c1 = 2/3. The results were compared with
those obtained by Rossi et al. [25] and Tong and Tabarrok [26].

For the rest of the presented work, the beam was considered to be of the same material properties
and cross-section.

Exact results and a convergence study of the Ritz and Lagrange multiplier method (R&LM) of the
first six values of the dimensionless frequency parameter W of a simply supported (S-S) and a clamped-
clamped (C-C) beam with an intermediate support located at c1 = 0.4  for 12  r/1 = 0.1are presented
in Table 2.

Figure 2. Cantilever stepped beam.

Table 1. Comparative study of first five exact values of frequency parameter
                       for a cantilever stepped beam with h2 / h1 = 0.8 and c1 = 2/3.

r1

0.0133

0.0267

0.04

Reference

Rossi et al. [25]
Tong and Tabarrok [26]
Exact solution

Rossi et al. [25]
Tong and Tabarrok [26]
Exact solution

Rossi et al. [25]
Tong and Tabarrok [26]
Exact solution

1

3.82
3.8219
3.8243

3.80
3.8034
3.8047

3.77
3.7716
3.7730

2

21.35
21.3540
21.3559

20.72
20.7283
20.7275

19.80
19.8036
19.8047

3

55.04
55.0408
55.0510

51.68
51.6851
51.6754

47.35
47.3540
47.3531

4

107.5
107.4993
107.5298

96.39
96.3918
96.3656

84.14
84.1399
84.1407

5

173.62
173.6322
173.6753

148.97
148.9651
148.9066

125.06
125.0681
125.0650
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Boundary

condition

SS-SS

C-C

N=M

3

4

5

6

7

8

9

10

11

12

13

14

Exact

Zhou [8]

3

4

5

6

7

8

9

10

11

12

13

14

Exact

Zhou [8]

 
W1

35.9280

31.3524

31.3505

31.3372

31.3371

31.3371

31.3371

31.3371

31.3371

31.3371

31.3371

31.3371

31.3371

31.3365

53.0692

44.9647

44.9174

44.8972

44.8970

44.8970

44.8970

44.8970

44.8970

44.8970

44.8970

44.8970

44.8970

44.8967

W2

78.4428

67.3305

67.0022

66.9616

66.9553

66.9552

66.9552

66.9552

66.9552

66.9552

66.9552

66.9552

66.9552

66.9549

103.8763

90.0285

89.4652

89.3835

89.3755

89.3751

89.3751

89.3751

89.3751

89.3751

89.3751

89.3751

89.3751

89.3762

W3

139.1719

129.6826

104.4706

104.3777

103.9240

103.9223

103.9196

103.9196

103.9196

103.9196

103.9196

103.9196

103.9196

103.9197

174.1909

141.7985

121.2447

120.6392

120.3072

120.3001

120.2983

120.2982

120.2982

120.2982

120.2982

120.2982

120.2982

120.3014

W4

250.1963

226.1855

194.6074

186.7849

186.5327

185.3377

185.3368

185.3184

185.3184

185.3183

185.3183

185.3183

185.3183

185.3192

276.5284

236.7698

214.0275

204.6194

203.0319

202.1035

202.0641

202.0523

202.0520

202.0519

202.0519

202.0519

202.0519

202.0662

W5

679.3662

268.0760

255.8360

205.4627

204.6538

203.2441

203.2227

203.1968

203.1966

203.1965

203.1965

203.1965

203.1965

203.2250

690.3621

290.3811

251.5873

222.1686

220.9901

220.3835

220.3560

220.3466

220.3463

220.3463

220.3463

220.3463

220.3463

220.4037

 
W6

690.4346

429.2906

396.4166

349.6778

300.6535

300.4937

293.0330

293.0235

292.7686

292.7684

292.7653

292.7653

292.7652

292.8411

721.8255

448.5260

403.2562

361.0645

313.1963

308.1262

304.0140

303.7682

303.6562

303.6523

303.6512

303.6512

303.6512

303.7840

Table 2. Convergence study of first six values of frequency parameter W of a two-span
Timoshenko beam  (TcYh and R12Yh) located at c1 = 0.4 for 12 r/1 0.1

The convergence of the mentioned eigenvalues was studied by gradually increasing the number of
the trial functions. A comparison of values with those of Zhou [8] is also included in Table 2. The
results indicate that N = M = 11 is adequate to reach stable convergence for all cases in R&LM.
Exact values and the R&LM results show an excellent agreement with those of Zhou [8].

A comparison with the crack model used by Khaji et al. [17] is presented in Table 3. The cracked
section of the Timoshenko beam was modelled as local flexibility that was assumed to be a rotational
spring.

The discontinuity in the slope of beam was modelled as

(59)
X=c1 X=c1
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Table 3. Comparative study of first value of frequency parameter W which correspond
to crack model [17] with the R&LM method and exact results varying R12 values as

a function of , with r/l = 0.25

Boundary

condition

S-S

S-C

C-C



0.20

0.35

0.50

0.70

0.20

0.35

0.50

0.70

0.20

0.35

0.50

0.70

R12

9.6689

2.9396

1.2380

0.5185

9.6689

2.9396

1.2380

0.5185

9.6689

2.9396

1.2380

0.5185

Khaji et al. [17]

8.2760

7.1126

5.7693

4.2726

12.0286

11.1045

10.1282

9.1955

15.8527

14.9282

13.9791

13.1041

W1

R&LM, N=M=7

8.2733

7.1102

5.7674

4.2711

12.0246

11.1007

10.1248

9.1919

15.8474

14.9231

13.9743

13.0997

Exact

8.27327

7.11021

5.76738

4.27108

12.0246

11.1007

10.1248

9.19187

15.8474

14.9231

13.9743

13.0997

Table 3 compares the fundamental frequency parameter  for S-S, S-C and C-C beams with  equal
to 0.20, 0.35, 0.50 and 0.70, and c1 = 0.5 for r/l = 0.25. The values were obtained with both R&LM
method using N = M = 7 and the exact values.

4. NUMERICAL EXAMPLES

In order to investigate the influence of the internal elastically restrained hinge on the free vibration
characteristics of Timoshenko beams, numerical results were computed by using the proposed
methods. A large number of problems were solved. Since the number of cases are extremely large,
the results for only a few cases are presented. All calculations have been performed taking N = M
= 7, k = 5/6 and µ = 0.3 unless otherwise specified.

Table 4 provides values of the fundamental frequency parameter W of a Timoshenko beam for
different values of R12 with To = Ro = 0 located at c1 = 0.1, 0.3 and 0.5 for 12  r/1  0.001, 0.01 and
0.1. The results correspond to S-S, C-C, F-F, C-F, C-S and S-F boundary conditions.

Tables 5 and 6 present results of the R&LM method and the exact solution, respectively, of the
fundamental frequency parameter W of a uniform Timoshenko S-S, C-C and F-F beam with 12
r/1 0.1, 0.3 and 0.6 (obtained with R&LM method) and the exact solution for Rc = 0 and different
values of Tc and R12 located at c1 = 0.5. Modal shapes shown in Tables 5 and 6 correspond to 12
r/1 0.1 and R12 = 0.

where = 62f()(h/1) is the non-dimensional crack sectional flexibility and depends on the
extension of the crack,  = a/h is the crack depth ratio where a is the crack depth and h is the beam
depth of a rectangular section.

Assuming a one side open crack

To perform a comparison between modal frequency results from this work and the ones obtained
by Khaji et al. [17], the relationship between the non-dimensional hinge rigidity and the non-
dimensional crack sectional flexibility is

(60)

(61)
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Table 4. Values of fundamental frequency parameter  of a Timoshenko beam for
different boundary conditions and different values of 12 r/1 , with Tc = Rc = 0 and

different values of R12 located at c1  = 0.1, 0.3 and 0.5

Boundary

condition

S-S

C-C

F-F

C-F

C-S

S-F

R12

0

1

10

100

1000

0

1

10

100

1000

0

1

10

100

1000

0

1

10

100

1000

0

1

10

100

1000

0

1

10

100

1000

0.001

17.8621

8.9962

9.7760

9.8602

9.8686

18.9073

19.6422

21.4330

22.2488

22.3604

26.3124

21.9475

22.3331

22.3694

22.3730

18.8924

19.5378

21.1604

21.9180

22.0224

12.1297

12.8700

14.5730

15.3080

15.4068

25.9582

13.2815

15.1810

15.3943

15.4158

0.01

c1 = 0.1

17.8545

8.9948

9.7744

9.8585

9.8670

18.8972

19.6312

21.4194

22.2337

22.3450

26.2932

21.9392

22.3250

22.3612

22.3649

18.8853

19.5299

21.1499

21.9061

22.0103

12.1268

12.8666

14.5679

15.3020

15.4007

25.9442

13.2785

15.1771

15.3903

15.4118

0.1

17.1396

8.8644

9.6176

9.6984

9.7066

17.9663

18.6246

20.1814

20.1814

20.9616

24.7237

21.1615

21.5673

21.6045

21.6082

18.2209

18.7885

20.1790

20.8108

20.8970

11.8480

12.5364

14.0854

14.7389

14.8261

24.6665

12.9936

14.8074

15.0088

15.0290

0.001

26.3351

6.3947

9.2746

9.8055

9.8631

20.0982

21.0117

22.0828

22.3405

22.3698

39.7090

14.4029

21.0996

22.2396

22.3598

19.1291

20.2577

21.6476

21.9907

22.0300

15.0959

15.2344

15.3805

15.4139

15.4177

38.5079

8.9482

14.1399

15.2763

15.4038

12 r/1

0.01

c1 = 0.3

26.3169

6.3941

9.2732

9.8039

9.8615

20.0865

20.9987

22.0680

22.3252

22.3545

39.6812

14.3985

21.0922

22.2316

22.3517

19.1186

20.2466

21.6357

21.9786

22.0179

15.0897

15.2283

15.3744

15.4078

15.4116

38.4833

8.9468

14.1366

15.2724

15.3998

0.1

25.2004

6.3317

9.1353

9.6460

9.7013

19.0201

19.8173

20.7290

20.9450

20.9695

37.2193

13.9808

20.4056

21.4827

21.5959

18.1464

19.2208

20.5404

20.8656

20.9027

14.5074

14.6492

14.7979

14.8318

14.8356

36.2888

8.8109

13.8198

14.8973

15.0177

0.001

39.4761

5.6796

9.0078

9.7723

9.8597

14.0640

16.8748

20.9977

22.2111

22.3566

61.6725

11.8182

19.9794

22.0961

22.3450

9.8696

14.2254

20.1497

21.8141

22.0120

9.0711

11.4895

14.5168

15.3145

15.4076

46.0557

8.6977

14.0154

15.2596

15.4021

0.01

c1 = 0.5

39.4510

5.6791

9.0065

9.7707

9.8581

14.0596

16.8678

20.9849

22.1960

22.3413

61.6083

11.8154

19.9729

22.0882

22.3370

9.8665

14.2202

20.1398

21.8023

21.9999

9.0688

11.4862

14.5114

15.3084

15.4015

46.0191

8.6962

14.0121

15.2557

15.3981

0.1

37.0962

5.6308

8.8779

9.6141

9.6980

13.6391

16.2113

19.8188

20.8377

20.9586

56.2079

11.5448

19.3621

21.3498

21.5822

9.5771

13.7321

19.2178

20.7111

20.8870

8.8515

11.1740

14.0093

14.7414

14.8264

42.8134

8.5557

13.6969

14.8810

15.0161

Tables 7 and 8 present results of the R&LM method and exact solution respectively of the first five
values of the frequency parameter W of a Timoshenko beam for Rc = 0 and different values of Tc

and R12 located at c1 = 0.5 with 12  r/1 0.5 for S-S, C-C and F-F boundary conditions. Modal shapes
shown in Table 7 and 8 correspond to Tc = 1000  and R12 = 0.

Table 9 shows the first three values of the frequency parameter W of a uniform Timoshenko beam
with F-F, S-S, C-C, S-F and C-F boundary conditions (obtained with the R&LM method with N =
M = 12) and the exact solution for Tc = Rc = R12 = 0 at different locations for 12  r/1 0.001.

Table 10 shows the first six exact values of the frequency parameter                            for a cantilever
(C-F) and simply supported (S-S) stepped beam with an internal free hinge (Tc = Rc = R12 = 0) located
at different positions.
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Table 5. Values of fundamental frequency parameter  of a uniform Timoshenko S-
S, C-C and F-F beams with 12 r/1 = 0.1, 0.3 and 0.6, obtained with R&LM method,

for Rc = 0 and different values of Tc and R12 located at c1 0.5

Table 6. Exact results of fundamental frequency parameter  of a uniform Timoshenko

S-S, C-C and F-F beams with 12 r/1 = 0.1, 0.3 and 0.6, for Rc = 0 and different values
of Tc and R12 located at c1 = 0.5
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Table 7. First three values frequencies parameter  of a uniform Timoshenko beam
obtained with R&LM method with Rc = 0 and different values of Tc and R12 located

at c1 = 0.5 with 12 r/1 = 0.5 for S-S, C-C and F-F boundary conditions

Table 8. First three exact values frequencies parameter  of a uniform Timoshenko
beam, with Rc = 0 and different values of Tc and R12 located at c1 = 0.5 with

12 r/1 = 0.5 for S-S, C-C and F-F boundary conditions
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Table 9. First three values of frequencies parameter  of a uniform Timoshenko beam
with different boundary conditions, obtained with the R&LM method with N = M = 12
and the exact solution, for TC = RC = R12 = 0 at different locations, for 12 r/1 = 0.001

Table 8.  Continued

Table 10. First six exact values of frequency parameter                           for C-F and
S-S stepped beams with h2 / h1 = 0.8, r1 = 0.0267 with an internal free hinge located

at c1 = 0.2, 0.5 and 0.7
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5. CONCLUSIONS

The free transverse vibration of a Timoshenko beam with ends elastically restrained against rotation
and translation, and an arbitrarily located internal hinge including intermediate elastic constraints
is studied. For this purpose, an exact model and a simple and accurate approach has been developed
based on two models: a combination of the Ritz and the Lagrange multiplier methods for the
determination of natural frequencies. The algorithm is general and it is characterized by a low
computational cost and high accuracy. Close agreement with the results presented by previous
investigators is demonstrated for some examples and for a crack model.

The obtained results may provide useful information for structural designers and engineers. Finally,
the algorithms developed with the combined method can be easily extended to a beam with an
arbitrary number of hinges and variable cross-section.
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NOTATION

A = cross-sectional area

c1 = c/l = geometrical parameter

E = Young’s modulus

G = transverse shear modulus

I = moment of inertia

l = length of  the beam

h = beam depth

a = crack depth

n = crack depth ratio

q = non-dimensional crack sectional flexibility

 = radius of gyration of cross section

r1, r2 = rotational stiffness at the left and right ends respectively

r12 = rotational stiffness at the internal hinge

rc = rotational stiffness at the point

Rc, R12, Ri, i = 1, 2 = dimensionless rotational parameters

t = time

t1, t2 = translational stiffness at the left and right ends respectively

tc = translational stiffness at the point

T = kinetic energy

Tc, Ti, i = 1, 2 = dimensionless translational parameters

U = strain energy

x = dimensionless abscissa

X = abscissa

 = dimensionless natural frequency parameter

w = radian frequency

r = mass density
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APPENDIX

First members of the set of polynomials {p
i

(k)(X )} and {q
j

(k)(X )} for all possible combinations of classical
boundary conditions and with intermediate elastic restraints.

Classical boundary conditions and

intermediate elastic restraints hinge at.
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F-F

C-C
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Classical boundary conditions with

intermediate point support at.
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