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The development, computational implementation and application of polynomially-enriched plate macro-
element are presented in this work. This macro-element has been formulated by the authors for thin iso-
tropic plates using Gram–Schmidt orthogonal polynomials as enrichment functions and, in this work, the
first-order shear deformation theory and the material anisotropy is incorporated. For taking into account
plates of several geometrical shapes, an arbitrary quadrilateral laminate is mapped onto a square basic
one, so that a unique macro-element can be constructed. The obtained formulation is applied to the static
and dynamic analysis of thick composite laminated plates. Besides, it is possible to study generally copla-
nar plate assemblies by combining two or more macro-elements via a special connectivity matrix. Thus,
hierarchically enriched global stiffness matrix, mass matrix, and loading vector of general laminated plate
structure are derived. Several different boundary conditions may be arranged in the analysis. This proce-
dure gives a matrix equation of static equilibrium and a matrix-eigenvalue problem that can be solved
with optimum efficiency. Numerical obtained results show very good correlation with published results.
Besides, the formulation produces stable results and it is computationally efficient.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Composite structures, specially laminated composite plates, are
increasingly used in many engineering fields such as civil, marine
and aerospace structures, because of their high strength and stiff-
ness to weight ratios. Laminated composite plates allow the con-
trollability of the structural properties through changing the fibre
orientation angles, the number of plies and selecting proper com-
posite materials. With the wide use of composite structures in
modern industries, mechanical analysis of plates of complex geom-
etry becomes a relevant topic. The solutions to the plate problems
are strongly dependent on the geometrical shapes, boundary con-
ditions and material properties. It is widely recognized that closed
form solutions are possible only for a few specific cases. The deter-
mination of classical solutions (exact and/or approximate) which
correspond to the static and dynamic behaviour of anisotropic
plates of different shapes and configurations has been studied
and is well documented. The bending of anisotropic plates sub-
jected to different normal loads and boundary conditions has been
extensively studied (see, for instance, Refs. [1–3]). There are sev-
eral complete reviews on static behaviour of composite and
ll rights reserved.
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sandwich plates. Moleiro et al. [4] and Auricchio et al. [5] pre-
sented static analysis of square plates using a mixed first-order
shear deformation theory into a finite element model. Wang
et al. [6] analyzed the static and dynamic behaviour of rectangular
plates via FSDT meshless method. Other authors also developed
different alternative solutions for rectangular anisotropic plates
employing the first order and a refined zigzag theory [7], or various
shear deformation theories together with meshless methods [8].
Ferreira et al. [9] presented static and vibration analysis of lami-
nated composite plates using FSDT based on a high order colloca-
tion method. The available literature shows that, comparatively,
most studies for static and dynamic analysis of laminated plates
are mainly concerned with rectangular ones. However, plates of
general shape are common industrial elements in many engineer-
ing fields like air craft wings, ship substructures, bridge entrance
and vehicle bodies. Nevertheless, studies on general quadrilateral
plates or polygonal plates with unequal side lengths are rather lim-
ited. For these reasons, this work presents a polynomially-enriched
plate macro-element and its application to the static and free
vibration analysis of moderately thick composite laminated plates
of several geometries. The enriched finite macro-element is ob-
tained using Gram–Schmidt orthogonal polynomials, while the dif-
ferent geometrical shapes are represented by the mapping of a
square laminated plate defined in terms of its natural coordinates.
The formulation presented in this work allows investigating the
static and dynamic behaviour of several composite laminated
plates with any combination of boundary conditions. Furthermore,
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the described assembly process enables to encompass plates of
more complex geometry. Finally, to demonstrate the validity and
efficiency of the proposed method, numerical examples are solved
and some of them are verified with results from others authors.

2. Mathematical formulation

Let us consider a thick laminated composite plate with an arbi-
trary-shaped quadrilateral planform as shown in Fig. 1. The lami-
nate is of uniform thickness h and is made up of a number of
layers each consisting of unidirectional fibre reinforced composite
material. The fibre angle of the kth layer counted from the surface
z = �h/2 is b, measured from the x axis to the fibre orientation, with
all laminate having equal thicknesses. Symmetric lamination of
plies is considered in this work.

Based on the First-order Shear Deformation Theory (FSDT)
[10,11] the displacement field of a laminated composite plate is ex-
pressed as:

uðx; y; zÞ ¼ z/xðx; yÞ
vðx; y; zÞ ¼ z/yðx; yÞ
wðx; y; zÞ ¼ w0ðx; yÞ

ð1Þ

where (u,v,w) are the displacements of a generic point (x,y,z) in the
laminate, w0 is the displacement of a corresponding point on the
mid-plane, and (/x,/y) denote the rotations of the transverse nor-
mal about y and x axis, respectively.

2.1. Transformation of coordinates

Some authors have used the mapping technique, as commonly
employed in finite element analysis, in conjunction with other
methods to study the mechanical behaviour of plates of various
geometrical shapes. Nallim et al. [12] combined the mapping tech-
nique and the Ritz method to derive a general formulation for the
analysis of symmetrically laminated plates. Also, Nallim and Oller
[13] extended that previous work together with the mapping tech-
nique to the general case of unsymmetrically laminated plates.
Applying the same concept, an arbitrarily shaped quadrilateral
plate in Cartesian coordinates, may be expressed simply by map-
ping a parent square plate, which will be called master plate, de-
fined in the natural coordinates by the simple boundary
equations n = ±1 and g = ±1 (Fig. 2).

The mapping of the Cartesian coordinate system is given by
[14,15]:

x ¼
X4

i¼1

Niðn;gÞxi

y ¼
X4

i¼1

Niðn;gÞyi

ð2Þ
Fig. 1. Geometry of an N-laye
where (xi,yi), i = 1, . . . , 4 are the coordinates of the four corners of
the quadrilateral region R and Ni(n,g) are the interpolation func-
tions of the serendipity family given by:

Niðn;gÞ ¼
1
4
ð1þ gigÞð1þ ninÞ ð3Þ

The transformation (2) maps a point (n,g) in the master plate R
onto a point (x,y) in the real plate domain R and vice versa if the
Jacobian determinant of the transformation given by:

jJj ¼ @x
@n

@y
@g
� @x
@g

@y
@n

ð4Þ

is positive.
Applying the chain rule of differentiation it can be shown that

the first derivatives of a function in both spaces are related by:

@
@x
@
@y

" #
¼ J�1

@
@n

@
@g

" #
¼

J22
jJj � J12

Jj j

� J21
jJj

J11
jJj

2
4

3
5 @

@n

@
@g

" #
ð5Þ

where J is the Jacobian given by:

J ¼
J11 J12

J21 J22

� �
¼

P
xiNi;n

P
yiNi;nP

xiNi;g
P

yiNi;g

� �
ð6Þ

The elemental area dxdy in the Cartesian domain R is trans-
formed into jJjdndg.

2.2. Approximating functions

The use of Gram–Schmidt orthogonal polynomials to study
anisotropic plates is very satisfactory, as has been demonstrated
by Nallim et al. [12,13,16], since the convergence of the solution
is rapid and practically without oscillations. For this reason, in
the present paper the transverse deflection and the rotations are
expressed in terms of the natural coordinates system by sets of
polynomials {pi(n)} and {qj(g)}, of which the first two polynomials
are Hermite polynomials and then an adequate number of Gram–
Schmidt polynomials are added to formulate a polynomially-en-
riched plate macro-element. This macro-element has been formu-
lated by the authors for thin plates [17].

Then, the components of displacement field can be expressed
as:

wðn;gÞ ¼
Xn

i;j¼1

cw
ij piðnÞqjðgÞ

/xðn;gÞ ¼
Xn

i;j¼1

c/x
ij piðnÞqjðgÞ

/yðn;gÞ ¼
Xn

i;j¼1

c/y
ij piðnÞqjðgÞ

ð7Þ
red symmetric laminate.



Fig. 2. Mapping of an arbitrary quadrilateral plate into natural coordinates.
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Fig. 3. Laminates of various shapes.

96 R.F. Rango et al. / Composite Structures 101 (2013) 94–103
where cw
ij , c/x

ij and c/y
ij are the unknown coefficients, p1(n) and p2(n)

are Hermite polynomials in the n direction given by:

p1ðnÞ ¼ �
1
2

nþ 1
2
; p2ðnÞ ¼

1
2

nþ 1
2

ð8Þ

The Gram–Schmidt polynomial in the n direction is as follows:

p3ðnÞ ¼ �1þ n2 ð9Þ
This polynomial satisfies the condition p3(n)jn=�1 = p3(n)jn=1 = 0 in
order to contribute only to the internal displacement field of the
element.

The higher members of the set {pi(n)}, i = 4, . . . , n are con-
structed by employing the Gram–Schmidt orthogonalization pro-
cedure, as has been proposed by Bhat [18,19]. The coefficients of
the polynomials are chosen in such a way as to make the polyno-
mials orthonormal,

R 1
�1 p2

kðnÞ ¼ 1.
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The polynomials along the g direction are also generated using
the same procedure. It is important to point out that working with
the master element in natural coordinates allows us to use the
same set of orthogonal polynomials for plates of different geomet-
ric shapes. This fact makes possible a unified treatment.

The Hermite polynomials confer displacement or rotations to
each corner of the element. These are recognized as the linear dis-
placement functions used in the standard h-version of the Finite
Element Method (FEM) [14,15]. The subsequent assumed polyno-
mials, the Gram–Schmidt polynomials, have zero displacement at
each end. These hierarchical polynomials contribute only to the
internal displacement field of the element, and do not therefore af-
fect the displacement and rotations along the element edge. How-
ever, when any of these hierarchical polynomials are used in
conjunction with the Hermite ones, they will constitute what
amounts to an edge degree of freedom along the element bound-
aries. Adjacent elements may be joined by ensuring compatibility
of both nodal and edge displacements; this procedure guarantees
that all element-to-element interfaces are fully conforming, as
has been demonstrated by Bardell et al. [20].

3. Governing equations

3.1. Stiffness matrix

For the selected problems, let us consider a symmetric laminate
of total uniform thickness h, composed of a number of orthotropic
layers. Considering the established kinematics and basic assump-
tions of the first order theory, the strain energy is given by:

U ¼ 1
2

Z Z
R
ðksA44 /y þ

@w
@y

� �2

þ 2ksA45 /x þ
@w
@x

� �
@w
@y
þ /y

� �
þ ksA55 /x þ

@w
@x

� �2

þ D11
@/x
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þ 2D12
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@/y
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þ 2D26
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� �

þ D66
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@/y

@x

� �2

Þdxdy ð10Þ

where R is the mid-surface area and ks is the shear correction factor.
In Eq. (10) the bending stiffness and transverse shearing stiff-

ness are respectively given by:

Dij ¼
Z h=2

�h=2
z2Q ij dz i; j ¼ 1;2;6

Aij ¼
Z h=2

�h=2
Q ij dz i; j ¼ 4;5

ð11Þ

where Qij are the mechanical reduced rigidities referred to x, y axes
[1,3].

The strain energy given by Eq. (10) can be rewritten as:

U¼1
2

Z Z
R

ks /yþ
@w
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� �
/xþ
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� �� � A44 A45

A45 A55

" #
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D16 D26 D66

2
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ð12Þ
By substituting Eq. (7) into Eq. (12), we can obtain the following
equation:

U ¼ 1
2

Z 1

�1

Z 1

�1
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where

Nf ¼Nf ðn;gÞ¼ ½piðnÞqjðgÞ� i; j¼1. . .n

½Nf �¼ ½p1q1 p1q2 p1q3 p1q4 p1q5 . . . p1qn p2q1 p2q2 p2q3 .. . pnqn �
ð14Þ

and the unknown coefficients are:

½cw� ¼ ½ cw
11 cw

12 cw
13 cw

14 c15
w . . . c1n

w c21
w c22

w c23
w . . . cnn

w �
T

½c/x� ¼ c/x
11 c/x
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13 c/x
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15 . . . c/x
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� 
T

ð15Þ

Finally, taking into account Eqs. (14) and (15) the strain energy
results:

U ¼ 1
2
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The macro-element stiffness matrix can be written, based on the
Hamilton’s principle, as:
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Table 2
Centroidal deflection for SSSS, (0/90/0) square laminated plate �w ¼ w0

E2 h3

a4 q0
100

� �
.

h/a Source �w

0.05 Present 0.7712
Reddy [1] 0.7572
Belinha and Dinis [23] 0.7583
Xiao et al. (K = 1) [24] 0.7256

0.10 Present 1.0418
Reddy [1] 1.0219
Belinha and Dinis [23] 1.0225
Xiao et al. (K = 1) [24] 0.9465

0.20 Present 2.0357
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3.2. External forces

The potential energy of a transversal load q0(x,y) distributed
over the plate surface (R) is given by:

V ¼ �
Z Z

R
q0ðx; yÞwdxdy ð18Þ

By substituting Eq. (7) into Eq. (18), and considering the Hamilton’s
principle we can obtain the external forces vector as:

fFg ¼ �q0

Z 1

�1

Z 1

�1
½Nf �T jJjdndg ð19Þ
Reddy [1] –
Belinha and Dinis [23] –
Xiao et al. (K = 1) [24] 1.7572

Table 3
Centroidal deflection for SSSS, (0/90/0) skew laminated plate �w ¼ w0

E2 h3

a4 q0
100

� �
.

h/a Source �w

0.10 Present 0.8619
Chakrabarti and Sheikh FSDT [25] 0.9182
Chakrabarti and Sheikh RHSDT [25] 0.8814

0.20 Present 1.6527
Chakrabarti and Sheikh FSDT [25] 1.8642
Chakrabarti and Sheikh RHSDT [25] 1.6811

Table 4
Convergence study for SFSF right trapezoidal with a = 1, b = 0.5 and
h ¼ 0:1b �x ¼ xb2

h

ffiffiffiffi
q
E2

q� �
.

Source �w1 �w2 �w3

(0/90/90/0)
Present n = 3 5.7779 13.3079 23.6391
Present n = 4 5.4254 11.9664 17.6758
Present n = 5 5.2728 11.2116 16.2064
3.3. Mass matrix

The kinetic energy for free vibrations of the plate is given by:

T ¼ 1
2

Z Z
V

Z
q

@u
@t

� �2

þ @v
@t

� �2

þ @w
@t

� �2
" #

dxdydz ð20Þ

where q is the material density, which is considered here to be uni-
form through the volume of the laminate (V).

The displacement functions are assumed periodic in time, so the
maximum kinetic energy in a vibratory cycle is:

T ¼ 1
2

Z Z
R
qx2 hw2 þ h3

12
/2

x þ
h3

12
/2

y

" #
dxdy ð21Þ

where x is the radian natural frequency.
By substituting Eq. (7) into Eq. (21), and taking into account the

Hamilton’s principle we can obtain the mass matrix as:

½M� ¼
Z 1

�1

Z 1

�1
qh

NT
f Nf 0 0

0 h2

12 NT
f Nf 0

0 0 h2

12 NT
f Nf

2
664

3
775jJjdndg ð22Þ
Present n = 6 5.2607 11.1408 15.4678
Zamani et al. [26] 5.4563 11.2542 16.0392

(30/60/60/30)
Present n = 3 5.5002 15.6608 25.4215
Present n = 4 4.6272 10.2732 13.5640
Present n = 5 4.1196 9.2204 11.1098
Present n = 6 4.0406 8.7365 9.9018
Zamani et al. [26] 4.1514 8.6176 9.8155

Table 5
Dimensionless frequencies for (0/90/0) square laminated plate �x ¼ xb2

p2

ffiffiffiffi
qh
D0

q� �
.

h/a Source �w1 �w2 �w3
3.4. Static and free vibration problems

In order to model irregular planforms, it is now necessary to
consider how to combine individual elements. The first stage in
formulating an assembly process is to separate out the degrees of
freedom fcw

ij , c/x
ij , c/y

ij g into nodal (corner), edge and purely internal
degrees of freedom, and then rearrange the corresponding entries
in the element stiffness and mass matrices (and load vector). Then,
it is possible to form the global stiffness [KG] and mass [MG] matri-
ces and the global load vector {FG} by identifying and then adding
Table 1
Convergence study for SFSF, (90/0/90/0/90), square laminated plate �w ¼ w0

E2 h3

a4 q0
100

� �
.

h/a Source �w

0.01 Present n = 3 2.0768
Present n = 4 2.0875
Present n = 5 2.5957
Present n = 6 2.5957
Moleiro et al. [4] 2.5957

0.05 Present n = 3 2.1893
Present n = 4 2.3539
Present n = 5 2.7082
Present n = 6 2.7082
Moleiro et al. [4] 2.7082

0.10 Present n = 3 2.5410
Present n = 4 2.8415
Present n = 5 3.0599
Present n = 6 3.0600
Moleiro et al. [4] 3.0600

SSSS
0.001 Present 6.6270 9.4665 16.3962

Ferreira and Fasshauer [27] 6.6226 9.5306 16.4255
0.050 Present 6.1289 8.8774 15.0919

Ferreira and Fasshauer [27] 6.1365 8.8846 15.1061
0.100 Present 5.1457 7.7242 12.9065

Ferreira and Fasshauer [27] 5.1652 7.7549 12.9129
0.150 Present 4.2484 6.6337 9.4672

Ferreira and Fasshauer [27] 4.2741 6.6657 9.4875
0.200 Present 3.5649 5.7417 7.3647

Ferreira and Fasshauer [27] 3.5934 5.7683 7.3968

CCCC
0.001 Present 14.7086 17.7335 26.9921

Ferreira and Fasshauer [27] 14.6918 18.4741 26.9611
0.050 Present 10.9578 14.1253 20.3958

Ferreira and Fasshauer [27] 10.9530 14.0235 20.3851
0.100 Present 7.4127 10.4611 13.9342

Ferreira and Fasshauer [27] 7.4107 10.3930 13.9124
0.150 Present 5.5492 8.1867 9.9126

Ferreira and Fasshauer [27] 5.5481 8.1467 9.9039
0.200 Present 4.4472 6.6654 7.7043

Ferreira and Fasshauer [27] 4.4465 6.6420 7.6995



Table 6
Dimensionless frequencies for right trapezoidal with a = 1, b = 0.5 and h = 0.1b,

�x ¼ xb2

h

ffiffiffiffi
q
E2

q� �
.

B.C. Lay-up Source �w1 �w2 �w3

SSSS (0/90/90/0) Present 10.5827 22.3750 26.2464
Zamani et al. [26] 10.8137 22.7508 26.2021

(30/60/60/30) Present 11.3023 19.1494 27.7253
Zamani et al. [26] 11.7158 19.1542 26.3149

CFSF (0/90/90/0) Present 7.0066 13.4300 16.9591
Zamani et al. [26] 7.2436 13.5562 17.5084

(30/60/60/30) Present 4.4213 10.2217 13.8375
Zamani et al. [26] 4.4120 10.1717 13.3471

CFFF (0/90/90/0) Present 1.9671 3.9469 8.7758
Zamani et al. [26] 1.9660 3.9440 8.7862

(30/60/60/30) Present 0.8209 3.1551 5.3198
Zamani et al. [26] 0.5721 3.3197 5.2285

Table 7
Static bending deflection and frequencies of free vibration for rhomboidal laminated
plate with a = 1 and b ¼ 2; �wjA ¼ w0 jA

E2 h3

a4 q0
100; �x ¼ xa2

h

ffiffiffiffi
q
E2

q� �
.

h/a Lay-up W jA �w1 �w2 �w3

Point supported (four corners)
0.05 (0/30/0) 11.9638 1.7920 4.4359 5.3728

(0/90/0) 11.9544 1.8335 4.4652 5.3657
0.10 (0/30/0) 13.8528 1.6995 4.0872 5.0250

(0/90/0) 13.8433 1.7471 4.1303 5.0428
0.20 (0/30/0) 19.8095 1.4825 3.3042 4.1946

(0/90/0) 20.0840 1.5393 3.3638 4.2426

SS (ed. 3 and 4) and point supported (one corner)
0.05 (0/30/0) 11.4435 1.8455 5.3839 5.6827

(0/90/0) 11.3323 1.8802 5.4863 5.6823
0.10 (0/30/0) 12.9058 1.7342 5.0397 5.1377

(0/90/0) 12.7356 1.7763 5.1551 5.1787
0.20 (0/30/0) 16.8646 1.5064 4.1850 4.2847

(0/90/0) 16.6583 1.5606 4.2502 4.4579
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together all the like terms from any two adjacent elements which
correspond to common nodal and edge degrees of freedom along
their interface. Bardell et al. [21,22] demonstrated that the purely
internal modes from one element cannot affect the purely internal
modes from any other element, and so these contributions to the
global stiffness and mass matrices and the global load vector re-
main unaffected by the assembly process.

By using the Hamilton’s principle, the following relation can be
written:

½MG�f€cijg � ½KG� cG
ij

n o
þ fFGg ¼ 0 ð23Þ

where fcG
ijg ¼ fcw

ij ; c
/x
ij ; c

/y
ij g is the unknown coefficients vector.
Fig. 4. Static bending deflections of (0/30/0) rhomboidal plate w
This is the basic governing equation to be solved for a general
dynamic problem. For the special cases of static and free vibration
problems this takes the familiar forms, respectively:

½KG� cG
ij

n o
¼ fFGg ð24Þ

and

½MG�f€cG
ijg � ½K

G� cG
ij

n o
¼ 0 ð25Þ

which leads to the following standard matrix-eigenvalue problem

ð½KG� �x2½MG�Þ cG
ij

n o
¼ 0 ð26Þ

A variety of different boundary conditions may be applied to the
plate, simply by removing from the stiffness matrix (and from the
external forces vector or mass matrix) those rows and columns
which correspond to the degrees of freedom cG

ij

n o
associated with

an edge being simply supported, clamped or free, or a corner being
point supported.

4. Verification and numerical results

4.1. Generalities

A computer code, based on the method developed in this paper,
has been implemented and used for the analysis of plates having
different shapes, material properties and boundary conditions.
The presented results correspond to the dynamic and static analy-
sis of the above mentioned plates. For the dynamic analysis, natu-
ral frequencies parameter and modal shapes were computed.
While, for the static analysis, deflections were calculated under
uniformly distributed loads. Although, in the present study, only
plates under uniformly distributed loads are presented, the devel-
oped algorithm can handle many others applied loads.

In order to establish the accuracy and applicability of the de-
scribed approach, numerical results were computed for a number
of plate problems for which comparison values were available in
the literature. Additionally, a number of new problems were
solved. Calculations have been performed taking plates with differ-
ent geometrical shapes, material properties, angles of fibre orienta-
tion, stacking sequences and a/h ratios.

Let us introduce the terminology to be used throughout the
remainder of the paper for describing the boundary conditions of
the plates considered. The designation CSFS, for example, identifies
a plate with edges (1) clamped, (2) simply supported, (3) free and
(4) simply supported (see Fig. 3). The subscripts 1 and 2 represent
the directions parallel with and perpendicular to the fibre
direction.
ith b = 2a and h/a = 0.05, obtained with the present method.



Fig. 5. Modal shapes and nodal patterns of (0/30/0) rhomboidal plate with b = 2a and h/a = 0.05, obtained with the present method.
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4.2. Convergence and comparison of static transverse deflections

The material properties for the layers of all laminates of Sec-
tion 4.2 are E1 = 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, m12 = 0.25 and
the shear correction factor is ks = 5/6. In all cases the dimensionless
deflection is given by w ¼ 100w0E2h3

=ða4q0Þ.
Results of a convergence study of central transverse deflections

are presented in Table 1. This example considers a SFSF square
laminated composite plate (Fig. 3a with h1 = h2 = 0 and a = b) under
a uniformly distributed load of intensity q0. The stacking sequence
adopted is (90/0/90/0/90).

The convergence of the mentioned deflections is studied by
gradually increasing the number of Gram–Schmidt polynomials
used in each natural co-ordinate. It can be seen that m, n = 4, is suf-
ficient to reach stable convergence. Results of Moleiro et al. [4] are
presented alongside the numerical results for comparison pur-
poses, showing an excellent agreement.

The accuracy and reliability of the deflections obtained with the
presented method are also demonstrated in the following two
cases. First, the centroidal deflection of a SSSS square laminated
composite plate (a = b) is depicted in Table 2 and it is compared
to those of Reddy [1], Belinha and Dinis [23] and Xiao et al. [24].
The second example considers a SSSS skew plate as shown in
(A

(B
Fig. 6. Geometry of a L-plan
Fig. 3b. The centroidal deflection for a plate with a = 30� and
a = b = 1 is tabulated in Table 3. The results are compared to those
of Chakrabarti and Sheikh [25], and very good agreement is ob-
tained. In both cases plates are subjected to a uniformly distributed
load q0, and the stacking sequence adopted is (0/90/0).
4.3. Convergence and comparison of natural frequencies

Results of a convergence study of dimensionless frequencies

x ¼ xb2

h

ffiffiffiffi
q
E2

q
are presented in Table 4. This table shows the first

three dimensionless natural frequencies of a moderately thick SFSF
right trapezoidal plate (Fig. 3a), with h1 = 0 and h2 = 45�, and two
different lay-up configurations. Composite material properties
used in this study are: E1 = 40E2, G12 = G13 = G23 = 0.6E2, m12 = 0.25,
q = 2500 kg/m3, and the shear correction factor is ks = 5/6. Results
of Zamani et al. [26] are also included in Table 4 for comparison
purposes. It can be concluded that predictions of the present meth-
od are in good agreement with the results of GDQ method pre-
sented by Zamani et al. [26]. Furthermore, results show that as
the number of Gram–Schmidt polynomials increased results are
rapidly converged to the final values which shows a fast rate of
convergence of the method.
)

)
form laminated plate.



Fig. 7. Frequencies and nodal patterns of L-planform laminated plates with mixed boundary conditions.
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In Table 5, frequency parameters �x ¼ xb2

p2

ffiffiffiffi
qh
D0

q
ðD0 ¼ E2h3

12ð1�m12m21Þ
Þ,

for (0/90/0) square laminated plates, with SSSS and CCCC boundary
conditions, and for various thickness ratios, are tabulated. In this
case the material properties are E1 = 40E2, G12 = G13 = 0.6E2,
G23 = 0.5E2, m12 = 0.25, and the shear correction factor is ks = p2/
12. Results of Ferreira and Fasshauer [27] are also included for
comparison purposes. From the results one can conclude that the
present method leads to accurate results even using a few polyno-
mials (m,n = 4).

Table 6 shows the first three dimensionless natural frequencies
of the same right trapezoidal laminated plate (Fig. 3a) used for the
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convergence study in Table 4. Again, present results are in good
agreement with those of Zamani et al. [26].

4.4. Applications to rhomboidal plates

In this section, results are presented of the developed method
applied to study the static and dynamic behaviour of rhomboidal
laminates as shown in Fig. 3c. Three–ply E-glass/epoxy laminates
(E1 ¼ 60:7 GPa, E2 ¼ 24:8 GPa, G12 ¼ 12 GPa, m12 ¼ 0:23), with
stacking sequence (0,b,0) are considered. As shown in Table 7
two different combinations of boundary conditions and various
h/a ratios are taking into account.

For the static analysis, deflections in a specific point of the
rhomboidal plate (point marked by A in Fig. 3c), under uniform dis-
tributed load q0 are computed. For the dynamic analysis, the first
three natural frequencies of free vibrations are determined.

As example, Figs. 4 and 5 present the static deflections and the
modal shapes and nodal patterns of (0/30/0) rhomboidal plate with
b = 2a and a/h = 0.05, obtained with the present method, corre-
sponded to a plate with edges (3) and (4) (see Fig. 3c) simply sup-
ported and a point supported at a corner defined by the
intersection of edges (1) and (2).

4.5. Example of assembly of presented macroelements

Vibration analysis for a partially simply supported L-planform
plate with a corner point supported at x = 0, y = a (see Fig. 6a), is
presented in this section. The plate structure was modelled using
two macro-elements: ME1 and ME2 as shown in Fig. 6b. For this

structure the first eight natural frequencies �x ¼ xa2

h

ffiffiffiffi
q
E2

q� �
and

modal shapes are depicted in Fig. 7, corresponding to a three-ply
E-glass/epoxy laminates (E1 ¼ 60:7 GPa, E2 ¼ 24:8 GPa, G12 ¼
12 GPa, m12 ¼ 0:23), with h/a = 0.1. In order to demonstrate the ver-
satility of the presented formulation the free vibration characteris-
tics frequency for three different stacking sequences are presented.

5. Conclusions

This article presents the formulation of an enriched plate ele-
ment based on FSDT. This quadrilateral four-node laminated plate
finite element has been formulated and generalized for being ap-
plied to anisotropic plates, with symmetric lamination scheme,
and it is tested through the static and dynamic analysis in some
numerical examples, producing very good results. It is possible to
achieve very good accuracy in the results using a low number of
polynomials and without densify the mesh in plates with general
quadrilateral planform, which can be divided into a small number
of macro-elements. The assembly example provides evidence of
the versatility and capability of the current method.
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