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are quantified with the probability density function of the 
frequencies. Statistical results obtained by means of MCS 
are compared with experimental measurements in order to 
assess the accuracy of the stochastic model. The present 
approach that gives a more realistic description of timber 
structures correlates better with experiments.

Keywords  Timber beams · Knots · Uncertainties · 
Natural vibration frequencies · Natural vibration modes · 
Composite materials

1  Introduction

All trees have branches which start from the pith at the 
heart center of the trunk. Since the fibers on the upper side 
of branches are not interlocked with fibers of the trunk, the 
branches can break off, due to heavy fall or strong wind. 
Later, the wound caused by a broken off branch is, in some 
way, overgrown by wood tissue and the fibers of the trunk 
become continuous again. Thus, the knots are unavoid-
able. When the tree trunk is converted into structural tim-
ber, cuts destroy the interlocking of the fibers and knots 
are created, leaving uncoupled fibers. Knots are related 
to grain distortion and disruption in the fiber continuity. 
Cracks are common in the surrounding material due to the 
stress concentrations caused by the difference in the physi-
cal properties of the knot and the normal wood tissue. Due 
to the specific structure of trunk and branches, structural 
timber can be characterized as a composition of clear 
wood and growth defects, a natural composite material. 
Clear wood is an anisotropic material, but its properties do 
not change considerably along grains. On the other hand, 
growth defects, such as knots, often related to localized 
grain deviations, are the main source of the lengthwise 

Abstract  A stochastic model of the dynamic behavior 
of sawn timber beams of Argentinean Eucalyptus grandis 
is herein presented. The aim of this work was to study the 
influence of the timber knots in the dynamical response of 
timber beams. The presence of knots is known to be the 
main source of the lengthwise variability and reduction in 
bending strength and stiffness in timber beams. The follow-
ing parameters of the timber knots are considered stochas-
tic: position along the beam span and within the beam cross 
section, shape and dimensions. Experimental data, obtained 
from bending and density tests, are employed to find the 
timber modulus of elasticity and density. On the other hand, 
the characteristics of the timber knots used in the stochastic 
model were obtained from a visual survey performed with 
25 beams of the same species. The problem of the natural 
vibration frequencies of the timber beam is approximated 
with the finite element method. Numerical results are 
obtained using Monte Carlo simulations (MCS). The uncer-
tainties of the timber knot parameters and their influence 
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variability in the bending strength and stiffness in timber 
beams. The presence of grain deviations can decrease the 
MOE in the longitudinal direction. Since knots are una-
voidable in structural timber, the effective MOE in the lon-
gitudinal direction varies along the main axis of a beam. 
The reduction in the timber strength and stiffness due to 
the presence of knots depends on the size of the knots, 
their type, and their location.

Eucalyptus grandis, which is mainly cultivated in the 
Mesopotamian provinces of Entre Rios and Corrientes, 
is one of the most important renewable species cultivated 
in Argentina. A simple method for visually strength grad-
ing sawn timber of these species has been developed 
by Piter  [15]. According to Piter, the presence of pith, or 
medulla, often associated with other defects as fissures, sig-
nificantly reduces the strength and the stiffness of this sawn 
timber. This feature is also considered the most important 
visual characteristic for strength grading this material by 
the Argentinean standard IRAM:9662-2 [11]. Other impor-
tant features taken into account in grading are the knot ratio 
and the grain deviation [11, 15].

Due to the variability in the mechanical properties, a sto-
chastic approach appears desirable to attain a more realistic 
structural model.

The influence of the knots in the structural behavior of 
timber beams was first considered by Czmoch [6]. He stud-
ied the bending strength in sections with knots and deter-
mined the load carrying capacity of timber beams. The 
presence of knots was modeled through a Poisson process. 
Escalante et al. [7] studied the buckling of Eucalyptus gran-
dis wood columns with the finite element methodology and 
the lengthwise variation of MOE was modeled as a Gauss-
ian random process. They also applied a Karhunen–Loève 
(KL) expansion in order to discretize the random field. 
Köhler et al. [14] reported a probabilistic model of timber 
structures where the MOE and the mass density were repre-
sented by random variables with a lognormal and a normal 
PDF, respectively, assuming a homogeneous value within a 
structural element. Köhler [13] presented a discrete model 
of the lengthwise variability of bending strength taking into 
account the presence of timber knots following the model 
for bending moment capacity proposed by Isaksson [12]. In 
this work, the discrete section transition was assumed to be 
Poisson distributed. Thus, the length between knots follows 
an exponential distribution. Probabilistic models of timber 
materials properties introduced by Köhler et  al.  [14] and 
Faber et al. [8] have been introduced in the context of the 
Probabilistic Model Code (PMC) of the Joint Committee 
on Structural Safety (JCSS) for the probabilistic design of 
timber structures.

Baño et al. [2] presented a study in which timber beams 
with defects are simulated and their maximum load in 
bending is predicted . The development of a bi-dimensional 

model of timber pieces free of defects in order to predict 
the performance of timber structural elements was reported 
by Baño et al. [3]. Baño et al. [4] analyzed the influence of 
the size and position of cylindrical knots on the load capac-
ity of timber elements using a FE program. Guindos  and 
Guaita [9] studied a three-dimensional wood material 
model implemented in a finite element (FE) software which 
is capable of predicting the behavior of timber at the mac-
roscale taking into account the effect of any type of knot. 
They are modeled as oblique cones. Then, the same authors 
[10] analyzed the influence of different types of knots 
and fiber deviations on the bending of wood, using visual 
grading standards, by means of the FEM. The mechanical 
properties of the material in these works [2–4, 9, 10] were 
found in accordance with the guidelines established by the 
standard UNE-EN 408 [18].

The aim of the present work is to quantify the influence 
of the timber knots and the variation that they produce in 
the mechanical properties and the effect in the dynamic 
behavior of sawn timber beams of Argentinean Eucalyp-
tus grandis. This influence is quantified in the first three 
natural frequencies and in their associated modes of vibra-
tion. To accomplish this, the PDFs of the first three natu-
ral frequencies were found via Monte Carlo simulations 
(Rubinstein  [16]). The lengthwise variability of the MOE 
and of the second moment of area of the beam cross sec-
tion is introduced to account for the knots. Frequently, the 
presence of knots in structures made out of sawn timber is 
disregarded, maybe due to the lack of data or an appropri-
ate model. Timber knot parameters are modeled via the 
joint probability mass function (joint PMF) obtained with 
experimental data from visual survey of beams of Eucalyp-
tus grandis with structural dimensions. In this study, tim-
ber knots are modeled as holes in the beam cross section, 
hence considered in the second moment of area. The local 
reduction in the MOE due to the grain deviation is also 
considered. The lengthwise variability of the MOE, pre-
sented in this work, was developed starting from the weak 
zone model [6, 12] with modifications in the length of the 
weak zone, which in this work, is considered proportional 
to the greater dimension of the knot. It should be noted that 
though the knot is modeled as a hole when the bending 
stiffness is calculated, no reduction in mass is made in the 
inertial terms.

The PDFs of the MOE and the mass density are obtained 
by means of the principle of maximum entropy (Shan-
non [17]), and their parameters by means of the maximum 
likelihood method (MLM) applied to MOE values that 
were obtained experimentally. Additionally and in order to 
measure the fit between the experimental and theoretical 
PDFs of the MOE and the mass density, the Kolmogorov–
Smirnov (K–S) and the Anderson–Darling (A–D) tests of 
fit are used.
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Numerical results of simply supported sawn beams of 
Argentinean Eucalyptus grandis are presented and dis-
cussed. The PDFs of the natural frequencies and the modes 
of vibrations are reported. The influence of the knot mod-
eling is evaluated.

Finally, a comparison between results of numerical sim-
ulations and experiments is also reported. Thus, the accu-
racy of the stochastic model herein presented is assessed.

2 � Problem statement

The natural vibration problem of a simply supported sawn 
beam of Argentinean Eucalyptus grandis with knots is 
herein described (Fig. 1).

For the free vibration problem, the well-known differen-
tial equation for a Euler–Bernoulli beam is:

where ρ(x) is the material density per unit of length, a(x) 
is the beam cross section, e(x) is the modulus of elastic-
ity (MOE), i(x) is the second moment of area of the beam 
cross section, v(x, t) is the transverse displacement, x is the 
position within the beam span, and t is the time variable.

In the present work, the lengthwise variabilities of the 
MOE and of the second moment of area of the beam cross 
section are introduced to account for the presence of timber 
knots that produce a local reduction in both. Random vari-
ables are used and, in what follows, these stochastic quan-
tities will be denoted with capital letters. The differential 
equation Eq. (1) becomes:

The results will be reported for pinned–pinned boundary 
conditions. At x = 0 and x = L, the deflections and bend-
ing moment are zero.

As mentioned before, timber knots are modeled as holes 
in the beam that modify the second moment of area of the 
beam cross section and consequently the bending stiffness. 
However, no holes are considered in the mass since the 
knot mass participates in the inertial terms, assuming that 

(1)ρ(x)a(x)
∂2v(x, t)

∂t2
+

∂2

∂x2

(

e(x)i(x)
∂2v(x, t)

∂x2

)

= 0

(2)Pa
∂2V(x, t)

∂t2
+

∂2

∂x2

(

E(x)I(x)
∂2V(x, t)

∂x2

)

= 0

the material inside the knots has similar density to the rest 
of the beam.

3 � Stochastic finite element approach

If a set of admissible functions ψ is prescribed, Eq. (1) can 
be written in a variational formulation context as:

In particular, for the pinned–pinned beam,

this formulation together with the boundary conditions 
leads to the following form of the variational problem:

where M(v,φ) and K(v,φ) are the mass and stiffness opera-
tors, respectively, and are defined as follows:

and

Now, Eq. (5) is discretized using the Galerkin method. We 
define a N-dimensional subspace ψN ⊂ ψ, where a function 
vN ∈ ψN. The problem can be formulated as follows: Find 
vN ∈ ψN such that:

Applying the standard finite element methodology (see, for 
example, Bathe [5]), the variational form Eq. (8) is discre-
tized. Euler–Bernoulli beam elements with two nodes and 
two degrees of freedom per node (transverse displacement 
and rotation, respectively) are employed. These elements 
are based on the following shape functions:

where Le is the element length. The spatial interpolation of 
the transverse deflection v(x) can be written in terms of the 
nodal variables as

(3)

∫

L

0

[

ρ(x)a(x)
∂2v(x, t)

∂t2
+

∂2

∂x2

(

e(x)i(x)
∂2v(x, t)

∂x2

)]

φ(x)dx = 0 ∀φ(x) ∈ ψ

(4)
ψ = {φ : [0, L] → R,φ is piecewise continuous

and bounded,φ(0) = 0,φ(L) = 0}

(5)M(v,φ)+ K(v,φ) = 0 ∀φ ∈ ψ

(6)M(v,φ) =
∫ L

0

ρ(x)a(x)
∂2v(x, t)

∂t2
φ(x)dx

(7)K(v,φ) =
∫ L

0

e(x)i(x)
∂2v(x, t)

∂x2

∂2φ(x)

∂x2
dx

(8)M(vN ,φ)+ K(vN ,φ) = 0 ∀φ ∈ ψN

(9)
n(x) =


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Fig. 1   A simply supported sawn beam with knots
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where

is the nodal displacement vector of the beam element 
(Fig. 2).

Through the application of the finite element method, 
the components of the beam element stiffness and mass 
matrices are obtained:

where the random (stochastic) quantities E(x) and I(x) rep-
resent the lengthwise variability within the beam. P pre-
sents variability among beams though its lengthwise vari-
ability within each beam is not taken into account.

Next, the global stiffness and mass matrices can be 
obtained with the usual finite element assembling. The nat-
ural frequencies and modes are obtained solving Eq. (14) 
below:

where K and M are the n × n positive-definite global stiff-
ness and mass matrices, respectively.

4 � Mechanical properties

In this section, we present the assumptions and the way in 
which the mechanical properties that appear in Eq. (2) are 
represented.

4.1 � Timber knot dimensional parameters

In order to simulate the timber knots, we define the joint 
PMF of the timber knot shape parameters within the tim-
ber beam cross section and the probability mass functions 
of the distance between timber knots and of their lengths in 
the direction parallel to the longitudinal axis of the timber 
beam. To find the joint PMF of the knots parameters, experi-
mental data obtained from visual survey of 25 sawn beams 

(10)v(x) = n
T (x)v

(11)v
T =

[

v1 θ1 v2 θ2
]

(12)Ke,ij =
∫ Le

0

E(x)I(x)
d2ni(x)

dx2
d2nj(x)

dx2
dx

(13)Me,ij =
∫ Le

0

Pani(x)nj(x)dx

(14)
[

K − V2
nM

]

�n = 0

of Eucalyptus grandis of structural size with 180 timber 
knots were employed. The distance between knots, their 
dimensions perpendicular and parallel to the longitudinal 
beam axis, their depth and position within the beam cross 
section are the knot features reported in the visual survey.

Considering these visual parameters, the timber knots 
are classified into four types (Fig. 3):

a.	 Timber knots with the depth equal to the beam width 
and with vertical position within the beam height.

b.	 Timber knots with the depth less than the beam width 
and with vertical position within the beam height.

c.	 Timber knots with the depth less than the beam width 
and with vertical position near to the edge of the beam 
cross section.

d.	 Timber knots with the depth equal to the beam width 
and with vertical position near to the edge of the beam 
cross section.

In order to simulate the dimensions of the timber knots 
and their position within the cross section, a joint PMF of 
the three random variables is defined taking into account 
the parameters which define the position and dimensional 
characteristic of the timber knots within the beam cross 
section:

where the random variables are as follows (see Fig. 4):

–– x is the position of the knot centroid along the height of 
the beam cross section.

(15)
pX ,Y ,Z (x, y, z) = P[Z = z | X = x,Y = y]P[Y = y | X = x]P[X = x]

Fig. 2   Euler–Bernoulli beam finite element with four degrees of 
freedom Fig. 3   Geometry of the knots types considered in this work

Fig. 4   Beam cross section with a knot. Random variables of the joint 
probability mass function

Author's personal copy
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–– y is the knot size along the height of the beam cross sec-
tion.

–– z is the knot depth along the width of the beam cross 
section.

In the type b timber knots, the timber beams are not 
cut through the cross section with the knot to determine 
the knot depth because they become useless to perform 
other experimental tests. Due to the lack of information 
about the depth in the beam cross section, the princi-
ple of maximum entropy (PME) is employed to obtain 
the probability distribution. The PME states that, sub-
jected to known constraints, the PMF which best rep-
resents the current state of knowledge is the one with 
the largest entropy. The measure of uncertainties of a 
discrete random variable Z is defined by the following 
expression:

in which pi is the probability of the discrete random 
variable Z which assumes n different values. It is possi-
ble to demonstrate that the application of the PME when 
the random variable assumes a finite number of values 
within the interval [a,  b] without further knowledge 
about the random variable, leads to a uniform PMF.

The random variables that define the distance between 
timber knots and their dimension in the direction parallel to 
the beam axis are, respectively:

–– u is the distance between timber knots.
–– r is the length of the knot (dimension along the longitu-

dinal beam axis).

––  and they are defined, respectively, by the following 
joint PMF:

The last expression is assumed to simulate the knot shape 
resulting from the visual survey. This assumption implies 
that the dimension of the timber knots parallel to the lon-
gitudinal beam axis r is related to the dimension of the 
timber knots perpendicular to the longitudinal beam axis 
y.

In Table  1, the mean values, standard deviations, and 
coefficients of variation of the random variables that rep-
resent the characteristics of the timber knots are depicted.

(16)S(p) = −
n

∑

i=1

piln(pi)

(17)pU(u) = P[U = u]

(18)pY ,R(y, r) = P[R = r | Y = y]P[Y = y]

4.2 � Modulus of elasticity (MOE)

To find the PDF parameters of the MOE, experimental data 
presented by Piter [15], obtained by means of two-point load 
bending tests performed with 349 sawn beams of Argen-
tinean Eucalyptus grandis with structural dimensions, are 
employed. Bending tests were carried out according to UNE-
EN 408 [18] (Fig. 5), and the worst defects were placed in the 
constant bending zone, between two concentrated loads and 
within the tensile region of the cross section. These values of 
the MOE were calculated taking into account the shear defor-
mation (global MOE Eg). Then, the MOE values obtained 
experimentally are classified according to the strength classes 
established for the visual grading of the Eucalyptus grandis 
cultivated in the Mesopotamian provinces of Argentina by the 
standard IRAM:9662-2 [11], see Table 2.

MOE values obtained experimentally were corrected to a 
uniform moisture content of 12 %, in order to make the 349 
values comparable. The humidity content previously estab-
lished corresponds to measurements made at a temperature 
of 20 ◦C and a relative humidity of 65 %. The values of Eg 

Table 1   Mean values and standard deviations of the timber knot 
parameters

Knot 
dimension

µ (mm) σ (mm) δ = σ/µ   

X 61.62 38.77 0.63

Y 23.95 11.46 0.48

Z 20.22 11.49 0.57

U 288.62 175.52 0.61

R 40.19 21.36 0.53

Fig. 5   Two-point load bending test according to UNE-EN 408 [18]

Table 2   Eucalyptus grandis strength classes, according to IRAM 
9662-2 [11]

Strength class Presence of pith Knot ratio Grain deviation

C1 No K ≤ 1/3 gd < 1/12

C2 No 1/3 < K ≤ 2/3 gd < 1/9

C3 Yes 2/3 < K 1/9 < gd

Author's personal copy
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obtained with experimental data have been corrected, increas-
ing in 2 % for each 1 % in excess to the standardized condi-
tion of 12 % of humidity content, and vice versa, in each tim-
ber beam. On the other hand, using the expression (19), 349 
values of Eg have been calculated and reported by Piter [15].

where (F2 − F1) is the load increment and (w2 − w1) is the 
midspan deflection increment corresponding to the load 
increment. This load increment is within the linear elastic 
range of the material.

To determine the PDF of the MOE, the principle of max-
imum entropy was applied. The measure of uncertainties of 
a random variable X that represents the MOE is defined by 
the following expression

in which fX stands for the PDF of X and D is its domain. 
It is possible to demonstrate that the application of the 
PME under the constraints of positiveness and bounded 
second moment leads to a gamma PDF. This is due to the 
fact that the domain of MOE is the positive real numbers, 
Ei ∈]0,∞[, and the interval is open, i.e., the boundaries do 
not belong to the interval.

The parameters of the PDF of the MOE are estimated 
by using the maximum likelihood method (MLM). Finally, 
the Kolmogorov–Smirnov (K–S) and the Anderson–Darling 
(A–D) tests of fit are used (e.g., Ang and Tang  [1]). These 
tests have been employed due to the fact that the first one is 
more sensitive to the values closer to the median of the distri-
bution, whereas the second method gives more weight to the 
values in the tail of the distribution. The level of significance 
α of the parametric hypothesis is assumed to be 0.05. For 
α = 0.05, the critical values for the K–S and the A–D tests 
of fit have been obtained from [1]. Test statistics, critical val-
ues, and the results of the test of fit are presented in Table 3. 
As can be observed, the best fit is attained with the gamma 
PDF in agreement with the principle of maximum entropy.

The gamma PDF of the MOE is (Fig. 6):

where a and b (shape and scale parameters, respectively) 
are depicted in Table 4.

(19)Eg =
L3(F2 − F1)

4.7bh3(w2 − w1)

(20)S(fX) = −
∫

D

fX(X)log(fX(X))dX

(21)f (x|a, b) =
1

baŴ(a)
xa−1e−

x
b

4.3 � Lengthwise variability of the MOE

The structural timber is composed of clear wood and wood 
with defects. The knots affect the mechanical properties 
considerably. However, the quantitative knowledge about 
this relation is very scarce. In the present study, the length-
wise variability of the MOE is represented following the 
model of the bending strength presented by Isaksson  [12] 
and Czmoch [6]. In the weak zone model, the timber beam 
is modeled as a composite of short weak zones connected 
by longer sections of clear wood. Weak zones correspond 
to knots or group of knots and are randomly distributed.

In the stochastic model herein presented, the length of the 
weak zones are proportional to the greater dimension of the 
knot. This is based on the fact that the local deviation of the 
fibers is greater than the knot dimension and with a length 
proportional to its size. This feature was observed in the 
visual survey of the timber knots and its surrounding fibers. 
The MOE in each of these zones is constant and is randomly 
assigned. The MOE of the clear wood is assumed constant 
along the beam span, analogously to the model of bend-
ing strength presented by Isaksson  [12]. The dimensional 

Table 3   Results of the K–S and 
the A–D tests of fit of the MOE 
PDF

PDF K–S D
√
n statistics Significance test A–D A∗ statistics  Significance test

Gamma 0.64 0.64 < 1.36 0.23 0.23 < 0.75

Lognormal 0.74 0.74 < 1.36 0.81 0.81 < 0.75

Normal 1.00 1.00 < 1.36 1.32 1.32 < 0.75

Table 4   Parameters of the gamma PDF of the MOE

Parameters MOE sections with knots MOE sections free of knots

a 42.730 31.301

b 0.315 0.507

µ 13.4879 GPa 15.889 GPa

σ 2.063 GPa 2.84 GPa

δ = σ/µ 0.153 0.178

7 9 11 13 15 17 19 21 23 25 270

0.05

0.1

0.15

0.2

MOE GPa.

Pr
ob

ab
ili

ty

MOE sections with knots
MOE sections free of knots

Fig. 6   Gamma PDFs of the MOE in the free of knots sections (red) 
and in the sections with knots (blue) (color figure online)

Author's personal copy



2667J Braz. Soc. Mech. Sci. Eng. (2016) 38:2661–2673	

1 3

parameters of the beam cross section affected by the knots 
presence are modified only within the length of the knot.

4.4 � Mass density

In this work, the mass density was considered constant 
along the beam span and the lengthwise variability due to 
the knot presence is not taken into account. In the Euca-
lyptus grandis beams, the knots are frequently composed 
of material with similar density than the clear wood. 
This does not mean that a mass lengthwise variability 
might be present, but it is not considered in the present 
investigation.

The variability in the density among beams is consid-
ered through the PDF obtained from experimental values. 
To find the parameters of the PDF of the mass density (P ), 
experimental data presented by Piter [15] and obtained by 
means of density measurement performed with 50 sawn 
beams of Argentinean Eucalyptus grandis were employed. 
The density measurements were taken according to UNE-
EN 408 [18].

Values of mass density experimentally obtained were 
corrected to a uniform moisture content of 12 %, in order 
to make comparable the 50 values that have been cal-
culated of beams with different humidity content. The 
values of ρ have been corrected, increasing in 0.5 % for 
each 1 % in excess to the standardized condition of 12 
% of humidity content, and vice verse, in each timber 
beam.

Köhler et al. [14] represented the variability of the mass 
density between structural timber beams with a normal 
PDF. In the present work, the parameters of the PDF of the 
mass density are estimated using the MLM. Finally, the 
K–S and the A–D tests of fit are used to choose the most 
adequate PDF. As before, a level of significance α = 0.05 
is assumed. Test statistics, critical values, and the results of 
the tests of fit are presented in Table 5.

As can be seen in Table 3, the PDF with the best fit is the 
lognormal:

The parameters µ and σ are depicted in Table 6.

(22)f (x|µ, σ) =
1

xσ
√
2π

e
−(ln(x)−µ)2

2σ2 .

5 � Numerical results

In what follows, some numerical results are presented. In 
all the simulations, 100 finite beam elements are used. The 
integrals of the components of the element stiffness matrix, 
Eq. (12), are computed by means of the Gauss quadrature 
using five points. The dimensional parameters of the tim-
ber knots are simulated with the inverse transform method 
(Rubinstein [16]).

Table 5   Results of the K–S and 
the A–D tests of fit of the mass 
density PDF

PDF K–S D
√
n statistics Significance test A–D A∗ statistics  Significance test

Lognormal 0.65 0.65 < 1.36 0.39 0.39 < 0.74

Gamma 0.69 0.69 < 1.36 0.39 0.39 < 0.75

Normal 0.75 0.75 < 1.36 0.41 0.41 < 0.74

Table 6   Statistical parameters of the lognormal PDF of the mass 
density P

Parameters Values

µ 6.221

σ 0.069

Mean 504.4 Kg/m3

Standard deviation 34.84 Kg/m3

Coefficient of variation 0.069

Table 7   M1: parameters used in numerical simulation

Parameters Values

Length 3 m

Nominal section 50 × 150 
mm

MOEFKS 15.889 GPa

MOESWK 13.489 GPa

Mass density 505 Kg/m3
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Fig. 7   Convergence of the mean values E[Fn] for the first three natu-
ral frequencies (model M1). Error e% from Eq. (23). 
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5.1 � First model M1

In the first model, timber knot dimensional parameters are 
modeled as random variables through the joint PMF previously 
presented. The MOE in the free knots zone of the beam and 
in the zone with knots is considered deterministic. The length 
of the weak zone is assumed equal to seven times the greater 
dimension of the knot. This feature was observed in the visual 
survey of the timber knots and their surrounding fibers. The 
data of the simulation are depicted in Table 7. These dimen-
sional parameters correspond to timber beams of structural size 
that are often used in design practice and are within the dimen-
sions of the timber beams used in the visual survey of timber 
knot parameters. MOEFKS stands for the modulus of elasticity 
of a free knots section and MOESWK for a section with knots.

A convergence study is shown in Fig. 7, where N is the 
number of independent Monte Carlo simulations that gives 
a prescribed accuracy. The adopted convergence criterion is 
the following:

where E[Fns
n ] is the mean value for the number of simula-

tions ns and E[Fns−200
n ] is the mean value for the number of 

simulations ns− 200. This criterion is adopted due to the 
simple shape of the natural frequencies PDFs.

An acceptable convergence is achieved rapidly, when N 
= 600, as can be observed in Fig. 7. Next, for this number 
of independent Monte Carlo simulations, the PDFs of the 
first three natural frequencies (f[Fn]) are obtained (Fig. 8). 
It can be seen that the shape of the three PDFs is approxi-
mately equal through the range of variation of the fre-
quency which, in turn, increases from the first to the third 
natural frequency.

In Table  8, the mean values, standard deviations, and 
coefficients of variation of f[Fn] are presented. As can be 
observed, the mean values and standard deviations increase 
from the first to the third natural frequency, while the coef-
ficients of variations remain constant for the three PDFs pre-
sented in Fig. 8. The aim of this first model M1 is to quantify 
the influence of the timber knots without taking into account 
the variability of the MOE between the beams, being the sto-
chasticity of the model originated only by the knots param-
eters. In contrast, in the design practice, the influence of the 
knots is only taken into account in the value of the selected 
MOE (Table 2) through the strength class and not in the oth-
ers features as the decrease in the second moment of area or 

(23)e% =
∣

∣

∣

∣

E[Fns
n ] − E[Fns−200

n ]
E[Fns−200

n ]

∣

∣

∣

∣

% < 0.2%

Fig. 8   PDF of the first three 
natural frequencies found with 
M1

35 36 37 38 39
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

F
1
 Hz

f[
F 1]

140 145 150 155
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
2
 Hz

f[
F 2]

320 330 340 350
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

F
3
 Hz

f[
F 3]

Table 8   Natural frequencies (M1)

Mean values, standard deviations, and coefficients of variations of 
f[Fn]

Natural frequency E[Fn] (Hz) σ [Fn] (Hz) δ[Fn] = σ [Fn]
E[Fn]

F1 37.435 0.170 0.004

F2 149.677 0.716 0.004

F3 336.707 1.576 0.004

Table 9   Natural frequencies 
(M1)

Differences between beams with knots and beams without knots

Natural frequency E [difference] (%) σ [difference] (%) Max [difference] (%)

F1 −0.792 0.516 −3.794

F2 −1.055 0.638 −3.847

F3 −1.249 0.708 −4.369
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the local reduction in the MOE derived from the knot pres-
ence. The differences between the timber beam without 
knots and the same beam with knots are shown in Table 9. 
The mean values and the standard deviations exhibit a small 
increase from the first to the third natural frequency, and the 
maximum difference obtained is depicted in the third column 
for the first three natural frequencies.  The natural vibration 
frequencies of the timber beam without knots and with uni-
form deterministic mechanical properties were calculated 
from the following expression:

where ρ is the mass density, a is the beam cross section, e is 
the modulus of elasticity (MOE), i is the second moment of 
area of the beam cross section (Table 7), and n is the num-
ber of the natural frequency.

Due to the stochastic variation of the mechanical proper-
ties of the beam in each section, the first three natural modes 
of vibration are represented by three stochastic processes 
parametrized by the position in the beam span �n(w, x). 
After the finite element calculation is performed, the shape 
vibration modes are obtained for all the MC realizations. 
Then, a statistical analysis permits to obtain the mean of 
the modes and other quantities such as the histograms. In 
Fig. 9, the stochastic process �n(w, x) is presented for the 

(24)fn =
n2π

2L2

√

ei

ρa

first three natural frequencies through the histograms of �n 
at three different points along the beam span.

In Table 10, the mean values and standard deviations of 
each histogram of Fig. 9 are presented. As can be observed, 
the mean values and standard deviations vary with the 
mode order and the point of the beam at which they have 
been obtained.

This proposed model M1 considers a variability differ-
ent to the usual approach employed in the design practice. 
Although small, some statistical variations of the frequen-
cies are observed.

5.2 � Second model M2

In the second model, timber knots are modeled as in M1. 
Additionally, the MOE in the zones without knots of the 
beam and in the zones with knots is modeled with the PDF 
presented in Sect. 4 (Table 4). The condition imposed to the 
values of the random variables that represent the MOEFKS 
and MOESWK is MOEFKS > MOESWK. Furthermore, the 
values of the MOESWK are independent random variables. 
The length of the weak zone was assumed equal to seven 
times the greater dimension of the knot, similar to M1. The 
variability of the mass density between timber beams is 
introduced by the PDF presented before (Eq. 22).

Fig. 9   Histograms of the 
natural shape vibration modes 
at three points of the beam span 
using M1
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Table 10   Mean values and standard deviation of the natural shape 
vibration modes at three points of the beam span using M1

Statistic x = 0.75 m x = 1.5 m x = 2.25 m

E[�1] −0.701 −0.991 −0.701

σ [�1] 0.0022 0.0011 0.0021

E[�2] −0.981 8.44 e-04 0.981

σ [�2] 0.0028 0.0056 0.0029

E[�3] −0.681 0.965 −0.683

σ [�3] 0.0061 0.0036 0.0053
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Fig. 10   Convergence of the mean values E[Fn] for the first three nat-
ural frequencies (model M2)
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The simulation data are depicted in Table 7. A conver-
gence study is shown in Fig.  10, where N is the number 
of independent Monte Carlo simulations that gives a pre-
scribed accuracy. The criterion of convergence adopted in 
this model is the same as in M1, Eq.  (23).

An acceptable convergence is observed after N = 1800. 
Features analogous to M1 are viewed in Fig. 11 (cf. Fig. 8), 
though the skewness is slightly different.

In Table  11, the mean values, standard deviations, and 
coefficients of variation of f[Fn] are presented. Again, the 
behavior of the mean and standard deviation is similar to 
M1. A distinct feature is that the standard deviation and the 
coefficient of variation increase with respect to M1. This 

could be justified by the inclusion of MOE and density 
uncertainties in M2.

In Fig.  12, the stochastic process �n(w, x) is presented 
for the first three natural frequencies through the histo-
grams of �n at three points of the beam span. In compari-
son with M1 (Cf. Fig. 9), the shapes of the histograms are 
different, influenced by the uncertainties of the MOE and 
the mass density introduced in M2. A larger dispersion is 
apparent.

The mean values and standard deviation of each histo-
gram corresponding to Fig.  12 are presented in Table  12. 
Similarly to M1, the mean values and standard deviations 
vary with the mode order and the point of the beam.

5.3 � Numerical simulation of an experimental test

In this section, a comparison between numerical and exper-
imental results of the first natural frequency is presented. 
Experimental data, obtained by means of the test repre-
sented in Fig.  13, are reported by Piter  [15]. Fifty sawn 
beams of Argentinean Eucalyptus grandis, with a nominal 
section of 50 x 150 mm and length of 3 m, were employed. 
The fundamental frequency of vibration was obtained 

Fig. 11   PDF of the first three 
natural frequencies found with 
M2
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Table 11   Natural frequencies (M2)

  Mean values, standard deviations, and coefficients of variations of 
f[Fn]

Natural frequency E [Fn] (Hz) σ [Fn] (Hz) δ [Fn] = σ [Fn]
E[Fn]

F1 41.658 2.425 0.058

F2 166.678 9.772 0.058

F3 375.065 21.782 0.058

Fig. 12   Histograms of the 
natural shape vibration modes 
at three points of the beam span 
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mechanically exciting the beams through an impact at one 
end and placing the sensor at the center of the body, in the 
anti-nodal position. A piezoelectric accelerometer-type 
Vibrator PZ-10, a oscilloscope-type Fluke 123 Scopem-
eter 20 MHz, and a software that permits the identification 
of the fundamental frequency through a Fourier transform 
of the harmonic spectrum were employed in the test. The 
tested beams belong to the strength classes presented in 
Table 13, according to IRAM 9662-2 [11].

A numerical study was carried out. The timber beams 
were discretized with 100 beams elements and 1800 
independent Monte Carlo simulations. In Fig. 14, a com-
parison between numerical and experimental PDF and 
cumulative distribution function (CDF) of the first natu-
ral frequency is shown. The results correspond to differ-
ent weak zone lengths. The numerically found CDF dif-
fers from the experimental curve in the lower part (under 
50 % ) of the plot. Also, a good prediction of the upper 
percentile values of the experimental CDF of the F1 is 
obtained with the length of the weak zone equal to seven 
times the knot dimension. In Table 14, the numerical and 
experimental results for different lengths of the weak zone 
are presented and compared. These results show a good 
prediction of the mean value of the first natural frequency, 
but the standard deviations present a lower value in the 
numerical models.

Table 12   Mean values and standard deviation of the natural shape 
vibration modes at three points of the beam span using M2

Statistic x = 0.75 m x = 1.5 m x = 2.25 m

E[�1] −0.633 −0.895 −0.663

σ [�1] 0.0221 0.0309 0.0226

E[�2] −0.880 −1.85 e-04 0.881

σ [�2] 0.0310 0.0127 0.0311

E[�3] −0.627 0.886 −0.626

σ [�3] 0.0251 0.0314 0.0252

Table 13   Classification of the tested beams

Strength class Number of tested beams

C1 12

C2 3

C3 35

Fig. 13   Experimental test carried out to determine the first natural 
frequency

Fig. 14   Comparison between 
numerical and experimental 
PDF and CDF of F1 for differ-
ent values of the weak zone 
length
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Table 14   First natural 
frequency

Comparison between numerical and experimental results for different values of the weak zone length

Statistic Exp. (Hz) 5 Knot dim. (Hz) 7 Knot dim. (Hz) 9 Knot dim. (Hz) 11 Knot dim. (Hz)

E[F1] 77.334 80.034 78.843 77.886 77.315

σ [F1] 5.037 3.795 3.792 3.77 3.805

Min F1 66.780 67.131 66.846 66.105 66.052

Max F1 87.600 95.915 92.510 91.133 89.128
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In order to find out the source of this disagreement, the 
95 % confidence intervals of both the experimental sample 
results and the numerical realization results are derived for 
the mean value and the standard deviation of F1 (Table 15). 
As can be observed, only the two cases with the larger 
weak zone length (9 and 11 knot dimension) fall within the 
interval of the mean value of the experimental sample. Fur-
thermore, only the last case contains the experimental mean 
value. The length of the interval is wider in the experimen-
tal case, probably due to the smaller number of samples 
and a larger standard deviation value. If a close inspection 
of the experimental samples is carried out, one is able to 
observe that the cases with larger number of defects are 
found in the lower part of the CDF plot. Due to the sim-
plicity of the numerical model herein presented, some of 
these defects (e.g., the presence of pith in 26 of the 35 C3, 
Table 13) are not taken into account giving place to more 
discrepancies. The model could be improved to consider 
other type of defects such as pith and improvements in the 
assessment of the material properties according to the knot 
size. The authors are at present working in this direction.

As an illustration, some realizations of the lengthwise 
variation of the MOE are shown in Fig. 15.

6 � Conclusions

The probability density functions (PDFs) of the first three 
natural frequencies of a timber beam with uncertain prop-
erties are obtained with numerical simulations. Also, 

histograms of the mode shapes at certain points of the beam 
along its length are reported. The stochastic analysis allows 
to obtain more information of the dynamic behavior of the 
structural component. The influence of the timber knots in 
the response is frequently disregarded. In the present study, 
its consideration derives in an improved representation of 
sawn timber structures.

Two stochastic models to account for the presence of 
knots are proposed. The first model introduces a random 
variable for the second moment of area along the beam span 
[I(x)]. This variable considers the geometric parameters of 
the knots. The modulus of elasticity (MOE) of the sections 
with and without knots, and the mass density are assumed 
deterministic. Meanwhile, in the second stochastic model, 
also the MOE and the mass density are considered with 
uncertainties. In the first model, the difference between the 
timber beam with and without knots was quantified. The 
response found with this numerical model shows the vari-
ability of the response due to the knot presence for a simple 
beam with mean values of the MOE and the mass density. 
In the design practice, the influence of the timber knots is 
only taken into account in the selection of the MOE value 
and not in the reduction in the beam cross section that affects 
the bending stiffness. The results of the second model were 
presented and discussed, and the differences with respect 
to the first model were assessed. The PDFs of the first three 
natural frequencies found with the second numerical model 
vary the shape, the mean and the standard deviation com-
pared with the PDFs found with the first numerical model. 
On the other hand, the histograms of the natural modes show 
that the variation in the mean value is small between the two 
models while that the standard deviation increases due to the 
greater uncertainty present in the second numerical model.

The model of the lengthwise variability of the MOE was 
stated starting from the weak zone approach proposed by 
other authors to study the bending strength. However, the 
model herein presented introduces the presence of knots in 
the sectional parameters and the length of the weak zone in 
a different way.

Results of numerical simulations of experimental tests 
carried out to determine the first natural frequency were 
also presented. They show that the numerical simula-
tions provide results relatively close to the ones obtained 

Table 15   Confidence intervals 
(CI) of the mean value and 
standard deviation of F1

Data  CI of µF1  CI of σF1

Lower limit (Hz) Upper limit (Hz) Lower limit (Hz) Upper limit (Hz)

Exp. 75.912 78.775 4.201 6.276

5 Knot dim. 79.858 80.209 3.675 3.923

7 Knot dim. 78.667 79.018 3.672 3.92

9 Knot dim. 77.691 78.040 3.651 3.897

11 Knot dim. 77.139 77.491 3.684 3.933
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Fig. 15   Realizations of the lengthwise variation of the MOE
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experimentally. The difference between numerical and 
experimental results might be influenced by timber defects 
which the numerical model does not include, such as the 
presence of pith. The mean and upper percentile values of 
the numerically obtained CDF are close to the experimental 
CDF. Thus, the agreement is better when the timber beams 
are of superior quality.

The stochastic models presented in the present study 
constitute a more realistic material approach, feasible to be 
applied to reliability studies of serviceability limit states of 
structural components made of Eucalyptus grandis timber.
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