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numerical analysis is carried out using Monte Carlo tech-
niques for simulations. Some unexpected features, such 
as multimodality of the PDFs, are observed. The struc-
tural model seems to be more sensitive to the cable tension 
uncertainty than to the beam stiffness.

Keywords  Cable–beam structure · Non-linear models · 
Uncertainty quantification · PDF multimodality

1  Introduction

Guyed towers are frequently employed in Structural 
Engineering. The structure is set with a designed uniform 
tension in the cable that may be modified during the ser-
vice life for different causes. The consequences of the 
change of parameters are diverse. For instance, a tele-
communication guyed tower with guy tensions below the 
prescribed value can experiment operational difficulties 
due to the communication requirements. In effect, some 
signal transmission systems (e.g., point to point) are 
efficient within certain azimuth or zenithal motion toler-
ances. Then, any significant change in the motion of the 
tower at positions where the antennas and ancillaries are 
set causes the interruption in the signal transmission or 
a deterioration on the quality. Also, the structural behav-
ior can be affected and failure may occur by fatigue. 
The beam stiffness can be a variable value as well. For 
example, in the case of guyed towers, various compa-
nies can share the use of the same supporting structure to 
install their antennas. In most of the cases, this situation 
requires the retrofit of the mast and one of the strategies 
consists in the partial reinforcement of the lattice mast 
legs. However, due to the construction procedures, the 
effective stiffness of the reinforced mast is not easy to 

Abstract  Cable-stayed bridges and guyed towers are 
examples of structures extensively used in Civil Engineer-
ing. The uniform tension in the cable may change during 
service life due to various causes. Thus, uncertainty stud-
ies appear desirable to provide information about the effect 
of the parameter variations on the structure dynamics. The 
non-linear dynamic behavior of a cable-beam system, as a 
simplified model of a guyed structure, is studied. The beam 
behavior is assumed linear, while the cable is modeled with 
non-linear equations accounting for the extensibility and 
an initial deformed state. The deterministic equations are 
linearized about the reference configuration and then fre-
quencies and modes are calculated. The modes are later 
used to construct a reduced order model. The non-linear 
equations are discretized by finite elements with a Galerkin 
procedure. Afterwards, a stochastic model is stated with the 
cable tension and beam stiffness assumed as random vari-
ables and appropriate probability density functions (PDFs) 
are derived through the Principle of Maximum Entropy. A 
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evaluate. Thus, a stochastic treatment of the mast stiff-
ness seems appropriate. The guyed structure is modeled 
by a simplified cable–beam structure. Various authors 
have reported non-linear mathematical models of this 
system. Gatulli et al. [1, 2] have reported studies with the 
statement of a model that was used to solve non-linear 
dynamics and bifurcation problems. They state the differ-
ential equations and reduce them by a static condensa-
tion of the axial degree of freedom (DOF) of the cable. 
The cable is assumed to have non-linear behavior and the 
beam linear. Wei et al. [3] use the same model to perform 
a bifurcation analysis. Lenci and Ruzziconi [4] report 
other approach to solve the dynamics of a cable–beam 
structure that models the dynamics of a footbridge. These 
authors consider the non-linearities in both the beam and 
the cable.

In the present study, Gatulli’s formulation is fol-
lowed although with major changes, especially in the 
treatment of the equations. The beam model includes 
the axial deformation and no static condensation is 
performed in the cable equation. The system of partial 
differential equations is discretized by a finite element 
approach, which are first linearized to perform a natu-
ral frequency analysis. The frequencies and mode shapes 
correspond to global modes, though in some of them 
either the cable or the beam has a more relevant partici-
pation. Some of these modes are chosen as a basis for a 
Galerkin’s projection. Thus, a non-linear, reduced order 
model is obtained which results very efficient to per-
form a stochastic study. For the sake of simplicity, two 
mode shapes are used in the reduction yielding a two-
DOF model. Two stochastic models are constructed, one 
assuming the cable tension as a random variable (RV) 
and the other one with the bending stiffness as a stochas-
tic parameter, respectively. In the first model, five differ-
ent mean values of the tension are taken with the mean 

chosen within the range suggested by the standards 
ANSI/TIA-222-G [5] and CIRSOC 306 [6]. On the other 
hand, only one set of the bending stiffness RV (i.e., one 
mean value of the bending stiffness) is assumed in the 
second stochastic model. In order to select the probabil-
ity density functions (PDF), the Principle of Maximum 
Entropy (PME) (Shannon [7]) is applied in each case. 
The PME states that, subjected to known constrains, the 
PDF which best represents the current state of knowl-
edge is the one with largest entropy. Uncertainty prop-
agation simulations are done with the two stochastic 
models. In the two cases, a gamma PDF is derived for 
both the cable tension and the bending stiffness. After 
an appropriate number of Monte Carlo simulations, the 
data is processed with statistical tools. Some plots of 
deterministic and stochastic responses are presented. An 
unexpected result is found when analyzing the PDF of 
the maximum displacements. In effect, multimodality is 
present for some of the tension cases. A similar result 
was obtained by the authors and co-workers in rather 
different problems [8, 9].

2 � Analytical model of the non‑linear cable‑stayed 
beam

In order to analyze the dynamic characteristics and the 
uncertainty propagation on a cable-beam coupled system, 
a model consisting of a beam and a cable (Fig. 1) is stud-
ied. The cable is modeled neglecting the bending, torsional, 
and shear stiffnesses. In addition, the beam and cable are 
considered homogeneous and the system is constrained to 
oscillate in a plane.

Under the assumption of a small sag D to length Lc ratio 
(i.e., D/Lc < 0.1), the static equilibrium configuration 
can be approximated by a parabolic function in the cable 

Fig. 1   Cable-stayed beam 
geometry and local coordinates. 
a static configuration;  
b dynamic configuration
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domain, while the beam static deflection is assumed to be 
negligible. With respect to this reference configuration, 
and assuming an Euler–Bernoulli model of the beam, the 
actual plane configuration of the system at an instant t is 
completely described by the cable and beam displacement 
components Uc(Xc, t), Vc(Xc, t) and Vb(Xb, t), Ub(Xb, t), 
respectively, depicted in Fig. 1b.

The classical extended Hamilton’s principle [10] is used 
to derive the non-linear equations of motion which govern 
the model dynamics and result in the following system

with the following set of geometric and mechanical bound-
ary conditions:

The spacial and time derivatives are, respectively, denoted 
as (∗)′ = d(∗)/dxc and ˙(∗) = d(∗)/dt, the beam and 
cable mass per unit length are mb and mc, respectively, 
EI = EbIb is the beam flexural stiffness, EAc = EcAc and 
EAb = EbAb are the cable and beam axial stiffness, respec-
tively, H is the mean static tension in the cable, Yc is the 
initial configuration of the cable and, due the hypothesis 
of small sag to span ratio, Yc(xc) = 4D

(

xc/Lc − (xc/Lc)
2
)

,  
ǫc = Uc + Y ′

cV
′
c + 1/2V ′2

c  is the expression of the cable 
elongation, Fvb(t, xb), Fub(t, xb), Fvc(t, xc) and Fuc(t, xc) are 
the external force components (along the directions corre-
sponding to the DOFs indicated by the subscripts), and θ 
is defined in Fig.1a. Usually in cable-stayed structures, the 
beam and the cable materials are assumed to have different 

Vb : mbV̈b + cbV̇b + EIV ′′′′
b = Fvb(t, xb)

Ub : mbÜb + cbU̇b + EAbU
′′
b = Fub(t, xb)

(1)Vc : mcV̈c + ccV̇c −

[

HV
′
c + EAc

(

Y
′
c + V

′
c

)

ǫc

]′
= Fvc (t, xc)

Uc : mcÜc +
[

EAcǫc
]′
= Fuc(t, xc)

Uc(Lc) = Vc(Lc) = 0

Vb(Lb) = V ′
b(Lb) = Ub(Lb) = 0

(2)EIV ′′
b (0) = 0

Vb(0) = −Uc(0) cos θ + Vc(0) sin θ

Ub(0) = Uc(0) sin θ + Vc(0) cos θ

EIV ′′′
b (0)+

(

EAcǫ + H
)

cos θ

+

[

EAcǫ
(

y′c(0)+ V ′
c(0)

)

+ HV ′
c(0)

]

sin θ = 0
.

viscous behavior. The model accounts separately for the 
beam and cable transverse damping per unit length, cb and 
cc, respectively; here an estimate of the system damping is 
assumed with the conventional values ci = 0.01(2miω1),  
with i = c, b, and ω1, the first natural frequency of the 
system.

The values of the constants for the problem are given in 
Tables 1 and 2. The values of Ib and H are denoted with the 
“mean” subindex since they will be the reference param-
eters in the uncertainty study. Five values of the mean 
cable tension will be studied within the range reported in 
Table 2.

3 � Reduced order model (ROM)

A reduced order model (ROM) is desirable to have an 
efficient tool that permits the uncertainty quantifica-
tion. This reduction is done balancing two goals, a small 
dimension of the model and the main dynamic features 
retained. To achieve such a model, a Galerkin projection 
is formulated with the modal information obtained from 
a finite element discretization of the above-stated differ-
ential system.

3.1 � Variational formulation

To introduce the variational formulation of the differential 
system of Eq. 1, let us define V as the set of (time depend-
ent) basis functions and � as the set of weight functions. 
These sets must be selected from the space of functions 
with square integrable spatial derivatives which satisfy the 
essential boundary conditions defined in Eq. 2. The weak 
formulation consists in the projection of the space of func-
tions V, which are solutions of the Eq.  1, into the space 
of functions �, satisfying the following equation (i.e., the 
weak form):

Table 1   Values of the constants for Eqs. (1, 2) (beam)

Lb  (m) Eb  (N/m2) Ibmean
 (m4) Ab (m2) mb (kg)

10 2.1× 1011 3× 10−6 5× 10−5 39.25

Table 2   Values of the constants for Eqs. (1, 2) (cable)

Lc  (m) Ec (N/m2) Ac (m2) mc (kg) Hmean (N) θ (degree)

10.77 1.56× 1011 3.44× 10−5 0.27 2800–5780 53.39
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(3)

M
(

V̈ ,φ
)

+ C
(

V̇ ,φ
)

+KL

(

V ,φ
)

+KNL

(

V ,φ
)

= F
(

V ,φ
)

+ BC
,

where M, C, F  are the mass, damping, and external force 
operators, respectively, while KL and KNL are the linear and 
non-linear stiffness operators and BC are the boundary opera-
tors. The variational forms of these quantities are written next:

Fig. 2   Global modes and frequencies of the linearized cable-stayed beam

Author's personal copy



311J Braz. Soc. Mech. Sci. Eng. (2016) 38:307–316	

1 3

PH is the horizontal component of the cable pretension 
force, and it is involved in the beam second order effect 
(decrease of beam stiffness due to axial load).

After a convenient linearization, the normal mode shapes 
of the system were taken as the base for the construction of 
the ROM. Due the difficulty to solve analytically the eigen-
value problem of the system (1, 2), an ad hoc linear finite 
element discretization was carried out. The beam was dis-
cretized with five standard 6-DOF beam elements and the 
cable with ten 6-DOF (3-node) prestressed cable elements. 
Figure  2 depicts the first normal—global—modes of the 
structure.

3.2 � Reduced order model formulation

The non-linear continuous cable–beam system governed 
by Eqs.  (1–2) is reduced to a 2-DOF system through a 
Galerkin discretization. Both local and global modes, 
found from the previous FEM eigenvalue analysis, can 
be distinguished. In the first ones, only one of the sub-
structures is involved (either the cable or the beam). On 
the contrary, the global modes are related with the whole 
structure (both the cable and the beam). Here, the first 
two global modes (modes 1 and 3, Fig.  2) are selected 
in order to introduce more information in the ROM. The 
displacements have been expressed in terms of the modal 
space basis as v = �q, where the displacement vector 
v = {Vb(xb, t),Ub(xb, t),Vc(xc, t),Uc(xc, t)}

T, the modal 

(4)

M
(

V̈ ,φ
)

=

∫

lb

0

mb

(

V̈bφb + Übφb
)

dxb

+

∫

lc

0

mc

(

V̈cφc + Ücφc
)

dxc

C
(

V̇ ,φ
)

=

∫

lb

0

cb

(

V̇bφb

+ U̇bφb
)

dxb +

∫

lc

0

cc

(

V̇cφc + U̇cφc
)

dxc

F
(

V ,φ
)

=

∫

lb

0

(

FUb
φb + FVb

φb
)

dxb

+

∫

lc

0

(

FVcφc + FUc
φc
)

dxc

KL

(

V ,φ
)

=

∫

lb

0

(

EIbV
′′
b
φ′′
b
− PHV

′
b
φ′
b
+ EAbU

′
b
φ′
b

)

dxb

+

∫

lc

0

(

HV
′
c
φ′
c
+ EAcU

′
c
φ′
c

)

dxc

KNL

(

V ,φ
)

=

∫

lc

0

EAc

[

(

Y
′
c
+ V

′
c

)(

U
′
c
+ Y

′
V
′
c
+

V
′2
c

2

)

φ′
c

+
(

Y
′
c
V
′
c
+

V
′2
c

2

)

φ′
c

]

dxc

BC =

[

HV
′
c
+ EAc

(

Y
′
c
+ V

′
c

)(

U
′
c
+ Y

′
c
V
′
c
+ V

′2
c
/2
)

]

φc|
lc

0

+ EAc

(

U
′
c
+ Y

′
c
V
′
c
+ V

′2
c
/2
)

φc|
lc

0 + EIbV
′′′
b
φb|

lb

0

− EIbV
′′
b
φ′
b
|
lb

0 + PHV
′
b
φb|

lb

0 + EAbU
′
b
φb|

lb

0

matrix � = [φ1| φ2] whose components are the eigenfunc-
tions φi = {φbvi(xb),φbui(xb),φvci(xc),φuci(xc)}

T , and the 
modal amplitude vector q = {q1(t), q2(t)}

T. After impos-
ing the stationarity of the associated Hamiltonian, the 
following non-linear ordinary differential equations are 
obtained:

The coefficients of the above equations are included in the 
Appendix.

A ROM is a useful tool to reduce drastically the com-
puting time. This feature is potentially attractive to perform 
an uncertainty quantification analysis. For instance, it took 
30 min of CPU to simulate the non-linear system obtained 
from the finite element discretization by the Galerkin pro-
cedure, while the simulation of the ROM took 4 min, using 
the same computer.

4 � Uncertainty quantifications

Uncertainty quantifications with two stochastic parameters 
are now performed with the above-stated non-linear ROM. 
The initial tension of the cable (H) and the second area 
moment of the cross section (Ib, proportional to the beam 
stiffness EIb) are the random parameters under considera-
tion. Monte Carlo simulations are carried out taking H and 
Ib as RV separately. Five cases of mean initial pretension 
(Hmean) are taken into account while a single value of mean 
beam stiffness (Ibmean) is considered. For each study, the 
PDF is chosen by means of the PME. Further interpreta-
tions of this principle can be found in [11, 12]. The PME 
states that, subjected to known constraints, the PDF which 
best represents the current state of knowledge is the one 
with largest entropy S. The measure of uncertainty of a RV 
X is defined by the following expression:

in which fX stands for the PDF of X and D is its domain. It 
is possible to demonstrate that the application of the PME 
under the constraints of positiveness and bounded second 
moment, leads to a gamma PDF. Both the cable tension and 
the bending stiffness fulfill these conditions.

A gamma distribution with parameters a and b 
(

µX = ab ;  
σ 2
X = ab2

)

 is given by the next expression:

(5)























m1q̈1 + a1q̇1 + c1q1 + c2q2 + c12q1q2 + c11q
2
1

+c22q
2
2 + c211q

2
1q2 + c122q1q

2
2 + c111q

3
1 + c222q

3
2

= p1 cos(ωt)m2q̈2 + a2q̇2 + d1q1 + d2q2
+d12q1q2 + d11q

2
1 + d22q

2
2 + d211q

2
1q2 + d122q1q

2
2

+d111q
3
1 + d222q

3
2 = p2 cos(ωt)

.

(6)S
(

fX
)

= −

∫

D

fX(X)log
(

fX(X)
)

dX ,

(7)f (x) =
1

baŴ(a)
xa−1e

−x
b .
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Consequently, the variables H and Ib are distributed accord-
ing to a gamma distribution. The parameters of the distribu-
tion are found after the mean and standard deviation of the 
RVs are specified. Applications of the PME in structures 
can be seen in [13–16].

4.1 � Initial pretension force on the cable

The pretension force of the cable is, sometimes, not easy 
to measure. Also, in real structures changes in the preten-
sion values due to weather, temperature, and other actions, 
cause variations in this parameter throughout the service 
life. Thus, the propagation of this uncertainty in the struc-
tural behavior can be performed with a stochastic study. 
Here, five sets of the RV H (each with a different Hmean)  
are analyzed. The lowest value of Hmean corresponds to 
the suggested value of the Argentinian code CIRSOC 306 
[6], which results in Hmean = 2800 N. The other four val-
ues were calculated from the ANSI/TIA [5] code that pro-
poses to use values ranging from the 8 to the 15 % of the 

cable ultimate strength (σR), yielding 0.08σRAc = 3300 N, 
0.1σRAc = 4130  N, 0.12σRAc = 4950  N, and 
0.14σRAc = 5780  N. The adopted standard deviation, for 
all the cases, is σH = Hmean/5.

4.2 � Beam stiffness

The beam stiffness appears to be a fixed parameter that 
does not change along the service life of the structure. 
Then, no uncertainty quantification study would be neces-
sary. However, events, such as eventual differences between 
the design value and the real beam stiffness together with 
the possibility of reinforcement of the beam or degrada-
tion on the stiffness due to different mechanisms, make 
an uncertainty propagation study appropriate. Here, a sin-
gle case of Imean is considered, but its influence is studied 
for all the cases of Hmean. The standard deviation used for 
the gamma distribution is σIb = Ibmean/5. In what follows, 
we will refer to the bending stiffness EIb also as a random 
quantity though actually the RV is Ib.

Fig. 3   Transverse displacement 
of the beam at point xb = 4 m 
found with the deterministic 
ROM for the extreme cases of H .  
a Trajectory of displacements; 
b FFT

Author's personal copy
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4.3 � Load

In this study, a transverse load uniformly distributed on 
the beam is considered in addition to the self-weight of the 
structural components. A cosine function is employed to 

simulate dynamic load. The load magnitude F̄vb = 1700 N 
is chosen to obtain compatible maximum displacements 
with the linear beam theory used in the problem statement 
and the frequency of the excitation, ω = 2 Hz, to avoid res-
onance effects.

5 � Results

In this work, for the sake of brevity, only results of the 
beam transversal displacements are presented. All the 
results correspond to the coordinate xb = 4 m (see Fig. 1), 
the point where maximum transversal displacements occur. 
The length of the simulation is 30 s for each run. Figure 3a 
depicts a 10  s sample of the transverse displacement for 
the extreme cases of initial pretensions. Figure  3b shows 
the result of a FFT analysis of the same cases. Both results 
illustrated in Fig. 3 (and all the intermediate ones) exhibit a 
similar shape, with two main peaks, one corresponding to 
the load frequency and other one close to 0.80 Hz.

To achieve significant statistical results, a convergence 
study on the standard deviation of the displacement was 
performed to determine the minimum number of realiza-
tions of the Monte Carlo simulations. Figure  4 shows a 
typical result of the convergence study. It can be observed 

Fig. 4   Convergence of the standard deviation of the transverse dis-
placement in Monte Carlo simulations

Fig. 5   PDF of absolute maxi-
mum displacements of the beam 
at xb = 4 m with stochastic 
variable H, for each Hmean

Fig. 6   Deterministic model. 
Peak values of displacement at 
xb = 4 m versus initial preten-
sion

Author's personal copy
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that at least 2500–3000 realizations are required to achieve 
convergence of the standard deviation.

5.1 � Initial pretension as a stochastic variable

The absolute maximum values of the transverse displace-
ment at xb = 4 m are statistically studied. Figure 5 shows 
the PDF of these maximum displacements for each case. 
The curves were numerically generated using the ksdensity 
function of MATLAB. This tool allows to approximate a 
PDF shape from the histograms through an algorithm the 
so-called kernel smoothing function estimate. For the three 
smaller values of Hmean, similar shapes with approximately 
the same deviation on the results are obtained. A particular-
ity is observed: there is a rather large separation between 
the modes of the case of Hmean = 3300  N (in red) and 
4130  N (in magenta). Multimodality is apparent on the 
cases of 4950 N (in blue ) and 5780 N (in green). There is 
a important change in the variation between the three cases 
with the smaller Hmean and the other two. Other remarkable 
point is that the difference between the cases of 4130 and 
4950 N is not only a shift of the PDF along the displace-
ment axis (as the other cases) but also a change in the same 
region, consisting in a drastic reduction of the dispersion 
and a variation to multimodality; this feature represents 
a clear qualitative change on the statistics of the absolute 
maximum values of the transversal displacement which can 
be regarded as a stochastic bifurcation.

Figure 6 shows a deterministic plot and depicts the local 
peak values for each realization in the range of studied ini-
tial pretensions. It shows that although only two relevant 
peaks are observed (see Fig. 3b), a rather complex plot is 
obtained. One can notice a change from three well-defined 
branches in the range 2500–4000 N to a single branch 
within 4000–4500 N and what seems to be a transition 
zone to three branches after 4500  N. The different types 
of PDF (and the behavior of the PDF when changing the 
Hmean) observed in Fig. 5 agree with the ranges of Hmean 
with distinctive patterns (three branches, one branch, or a 

Fig. 7   Stochastic model. PDF 
of peak values of displacements 
at xb = 4 m

Fig. 8   PDF of absolute maxi-
mum values of displacements at 
xb = 4 m, with Ib as a stochastic 
variable, for each Hmean

Fig. 9   PDF of absolute maximum values of displacements at xb = 4 m, 
for Hm = 3300 N, varying H (red) and EIb (black) (color figure online)

Author's personal copy
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transition region). The dynamics of the non-linear deter-
ministic problem affects directly the stochastic results. 
It must be recalled that Fig. 6 includes the plots of all the 
peaks on each realization, and the Fig. 5 contains the statis-
tics of the absolute maximum peak of each realization. 

To end with the analysis of the results with the initial 
pretension as a RV, Fig.  7 shows the PDF for the peaks 
(local maximums) of the realizations. As expected, the 
resulting PDFs have larger variability than the one observed 
in Fig.  5; all the results are multimodal and the modes 
approximately correlate with the branch or branches at the 
corresponding Hmean region of Fig. 6. That is, the range of 
the Hmean should be compared in the two figures; in Fig. 7, 
the range is given by colors and in Fig. 6 by the horizontal 
scale.

5.2 � Beam stiffness as a stochastic variable

Here, the bending stiffness is assumed stochastic and the H 
is fixed. Five cases were analyzed, assuming H = Hmean for 
the five tension cases proposed in the previous study. Fig-
ure  8 shows the PDF for the maximum displacements, at 
xb = 4 m, for each case of H. A ”gap” between the modes 
of the H = 4130 N and H = 4950 N cases is present. The 
standard deviation is drastically less than the previous study 
in which H was considered stochastic. This indicates that 
the system has a robust behavior (regarding the absolute 
maxima) to changes of the beam stiffness. In other words, 
the expected maximum value almost does not change when 
the value of beam stiffness is statistically varied. The dif-
ference on the variation found for the study varying EIb and 
varying H is depicted in Fig. 9. It can be observed that the 
PDF modes do not match. Similar conclusions are found 
for the other cases not shown here.

Figure  10 shows a deterministic plot and depicts the 
local peak values for each realization in the range of 

studied beam stiffness for each case of H. It is clear that 
the absolute maxima almost do not change when the value 
of EIb is varied, at least within the range under study. The 
general behavior and size of the peaks branches remain the 
same than those of Fig. 6 for the a, b, and c cases of Fig. 10 
and show some differences on d and e sets. An interesting 
result is that the PDF of the peaks, when EIb is considered 
stochastic is totally similar to the ones found when H is 
assumed stochastic.

6 � Conclusions

In this work, a non-linear formulation of a cable-stayed 
beam structure was presented. First, a deterministic model 
was stated and the governing system discretized via a finite 
elements method. A 2-DOF ROM of the system was then 
constructed using eigenvalue results obtained from a lin-
earization. Once calibrated, an uncertainty propagation 
using (separately) the initial pretension of the cable and 
the beam stiffness as stochastic parameters was performed 
with the ROM. The PDFs of the statistic parameters were 
chosen using the PME and a gamma PDF was obtained 
for both cases. Monte Carlo simulations were employed to 
solve the system.

The stochastic tension study considered five cases with 
different values of Hmean were analyzed. The PDFs of abso-
lute maximum displacements of the beam were studied and 
noticeable differences were found in the deviation, shapes, 
and modes. Two remarkable cases occur between the cases 
Hmean = 3300 and 4130 N a rather large “gap” is observed. 
On the other hand, there is no shift of the PDFs when 
Hmean = 4130 and 4950 N though they exhibit less disper-
sion and a change to bimodality is apparent.

A deterministic study of the variation of the peaks with 
the initial pretension was also carried out, and at least, three 

Fig. 10   Deterministic model. Peak values of displacement at xb = 4 m versus EIb
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regions with different behaviors are recognized. Also, the 
most remarkable changes in the PDF of the maximum val-
ues occur when the Hmean value changes from one zone to 
other. The PDFs of the peaks values were also studied.

When the beam stiffness was chosen as the stochastic 
parameter, the PDF of the absolute maximum displacement 
values shows a notable reduction on the dispersion with 
respect to the results obtained when H was assumed sto-
chastic. The beam stiffness seems to have less influence on 
the absolute maximum displacements in this system. The 
PDFs of peak values are analogous to the ones obtained in 
the stochastic tension study.
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Appendix

The constants of Eq. 5 are listed next. For the sake of brev-
ity, a compact notation is introduced. For instance, if one 
needs to calculate d211, then, as stated in the fourth line, 
L2 = d, and afterwards, in the sixth line, Lijkk with i = 2, 
j = 2 and k = 1 gives L2211 = d211.

mi =mb

∫ Lb

0

φ′2
bvi

+ φ′2
bui

dxb + mc

∫ Lc

0

φ′2
cvi

+ φ′2
cui
dxc

ai =cb

∫ Lb

0

φ′2
bvi

+ φ′2
bui

dxb + cc

∫ Lc

0

φ′2
cvi

+ φ′2
cui
dxc

pi =

∫ Lb

0

Pbviφbvi + Pbuiφbuidxb +

∫ Lc

0

Pcviφcvi + Pcuiφcuidxc

L1 =c, L2 = d

Likkk =
1

2
EAc

∫ Lc

0

φ′3
cvk

φ′
cvi
d(xc)

Lijkk =
3

2
EAc

∫ Lc

0

φ′2
cvk

φ′2
cvj
φ′
cvi
d(xc)

Lii =

∫ Lb

0

{

EIφ′′2
bvi

+ EAbφ
′2
bui

}

dxb +

∫ Lc

0

{

Hφ′2
cvi

+ EAcφ
′2
cui

+ 2EAcY
′
cφ

′
cui
φ′
cvi

+ 2EAcY
′2
c φ′2

cvi

}

dxc

Lij =

∫ Lc

0

EAc

(

Y ′
cφ

′
cuj
φ′
cvi

+ Y ′2
c φ′

cvj
φ′
cvi

+ φ′
cvj
φ′
cui

)

dxc

Li12 =

∫ Lc

0

{

EAc

(

3Y ′
cφ

′
cv1

φ′
cv2

φ′
cvi

+ φ′
cu1

φ′
cv2

φ′
cvi

+ φ′
cu2

φ′
cv1

φ′
cvi

+ Y ′
cφ

′
cv1

φ′
cv2

φ′
cui

)

}

dxc

Lijj =

∫ Lc

0

EAc

(

3

2
Y ′
cφ

′2
cvj
φ′
cvi

+ φ′
cvj
φ′
cuj
φ′
cvi

+
1

2
φ′2
cvj
φ′
cui

)

dxc

with i, j, k = 1, 2.
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