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External validation indexes allow similarities between two clustering solutions to be quantified. With 

classical external indexes, it is possible to quantify how similar two disjoint clustering solutions are, 

where each object can only belong to a single cluster. However, in practical applications, it is common for 

an object to have more than one label, thereby belonging to overlapped clusters; for example, subjects 

that belong to multiple communities in social networks. In this study, we propose a new index based 

on an intuitive probabilistic approach that is applicable to overlapped clusters. Given that recently there 

has been a remarkable increase in the analysis of data with naturally overlapped clusters, this new index 

allows to comparing clustering algorithms correctly. After presenting the new index, experiments with 

artificial and real datasets are shown and analyzed. Results over a real social network are also presented 

and discussed. The results indicate that the new index can correctly measure the similarity between two 

partitions of the dataset when there are different levels of overlap in the analyzed clusters. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Clustering algorithms take a dataset as input and, through a

on–supervised process, partition the data into a set of clusters

r groups. A cluster can be defined as a group of objects that are

imilar given a relative measure and that are dissimilar to objects

rouped in others clusters ( Skillicorn, 2007; Xu & Wunsch, 2008 ).

he application of clustering algorithms always returns a solution,

ven when there is not a clear structure in the data. Therefore, a

eliable mechanism for measuring similarities between partitions

s desirable to detect which ones are, for example, more stable

hen several solutions are considered. 

Furthermore, in current practice, most information that is cre-

ted through social networks, news tags, collaboration networks

nd other Internet media, is naturally overlapped. As a result, over-

apped solutions are expected to be found in the analysis of such

ype of data. An index for measuring similarities between these

artitions would therefore be a valuable tool to study them. Re-

ently, with the spread of social and collaboration networks, the

se of clustering with overlapping properties has increased and

ew algorithms have been proposed ( Alvari, Hashemi, & Hamzeh,

013; Amelio & Pizzuti, 2014; Chakraborty, 2015; Gopalan & Blei,

013; Gossen, Kotzyba, & Nürnberger, 2014; Wang et al., 2014; Xie,

elley, & Szymanski, 2013 ). 
∗ Corresponding author. 
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Two types of validation measures can be used for measuring

imilarities between clustering solutions: internal and external. The

rst type of metrics measures attributes taken from the data itself

nd the clusters formed, such as data compactness and separabil-

ty. The second one makes a comparison between clustering solu-

ions, taking one as a reference and comparing it with other group-

ngs ( Halkidi, Batistakis, & Vazirgiannis, 2001; Handl, Knowles, &

ell, 2005 ). Considering external metrics only, three types of mea-

ures are available: pair counting measures, set matching mea-

ures, and information theory measures. One of the most used and

idely known pair counting measure is the Fowlkes-Mallows in-

ex (FM), which works with the frequency of pairs of patterns

ound in two clustering solutions that are being compared ( Ben-

ur & Guyon, 2003; Fowlkes & Mallows, 1983 ). A representative

et matching measure is the Maximum Match ( Meil ̆a & Hecker-

an, 2001 ), which analyses the most similar clusters from both so-

utions and counts the elements in common in such paired groups.

inally, regarding measures based on information theory, Normal-

zed Mutual Information is extensively used and works by quanti-

ying the information shared between both solutions, through the

oncept of entropy ( Meil ̆a, 2007; Vinh, Epps, & Bailey, 2010 ). How-

ver, none of these metrics was designed for evaluating similarities

etween solutions when overlapped clusters are considered. 

Lately, given the overwhelming amount of information created

hrough different social and collaboration networks, interest has

merged in clustering analysis to process such amount of data

hen there are overlapping clusters ( Amelio & Pizzuti, 2014 ). For

http://dx.doi.org/10.1016/j.eswa.2016.08.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.08.021&domain=pdf
mailto:dncampo@sinc.unl.edu.ar
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Fig. 1. This illustrative example depicts two solutions: (a) C with k = 1 , and (b) 

C ′ with overlapping and k ′ = 2 . The shaded area includes the common elements 

between the overlapped clusters. 
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example, in Zhou, Liu, Zhang, Liu, and Zhang (2015) , the authors

proposed an ant-based algorithm to detect communities in net-

works, where clusters are formed by nodes that may be consid-

ered as overlapped. In Liu, Blenn, and Mieghem (2013) , the authors

developed a method for characterizing the structure of real–world

affiliation networks composed of groups of fully connected, gen-

erally overlapped communities. Also, in Alvari et al. (2013) over-

lapped clusters in social networks are studied and a framework

based on a game theory approach is proposed for detecting com-

munities. Similarly, in Gopalan and Blei (2013) , a new method

based on a Bayesian model is presented. This method enables the

detection of large overlapped communities in massive synthetic

datasets and in large–scale, real life social, biological and citation

networks. In Kalinka and Tomancak (2011) , the authors present an

R package that extends an existing algorithm for clustering, which

handles directed and weighted links between nodes in a biolog-

ical network. These networks would naturally contain nested or

overlapped links. In McGarry (2013) , data acquired from protein

networks is clustered and the results are integrated with chem-

ical databases using ontologies. Hence, based on the principle of

guilt–by–association ( Lacroix, Cottret, Thébault, & Sagot, 2008; Us-

adel et al., 2009; Wolfe, Kohane, & Butte, 2005 ), the author stud-

ies new types of cellular functions. The objects are grouped to-

gether in either overlapped or non–overlapped clusters. With an

index that enables the evaluation of overlapped clusters, the au-

thor would be able to evaluate the resulting groups, according to

the study of diseases related to diverse cellular functions. How-

ever, although there are plenty of external non-overlapped indexes

( Brun et al., 2007; Wu, Chen, Xiong, & Xie, 2009 ) and a signifi-

cant amount of research in overlapping clustering, there is a lack

of external validation indexes for assessing and comparing over-

lapped solutions. Finally, taken into account indexes for overlapped

clusters, Campo, Stegmayer, and Milone (2014) presented a prelim-

inary study about stability analyses in the context of overlapped

clusters and developed an initial index to assess overlapped solu-

tions. However, it failed to show the expected values in some basic

cases. 

In this study a novel index is presented based on an intuitive

probabilistic approach. The new index works with the probability

of finding any pair of objects in each solution and in both solu-

tions simultaneously. The behavior of the proposed index is shown

in the presence of overlapped and disjoint clusters, when two clus-

tering solutions for a same dataset are analyzed. Comparisons with

classical external indexes such as FM, Jaccard (JAC) and Adjusted

Rand Index (ARI) are performed on artificial and real datasets. Also,

a real–life case from YouTube is presented, in which classical in-

dexes fail because they show false differences when clusters be-

come more overlapped. 

The remainder of this paper is organized as follows.

Section 2 presents a detailed analysis of the new index and

an explanation of its factors. Section 3 describes the experi-

ments performed with artificial and real datasets, and with a

particular social network, and discusses the results obtained.

Finally, conclusions are drawn and future research is suggested in

Section 4 . 

2. A probabilistic approach for designing the new index 

In this section, we introduce a new index for evaluating over-

lapped clustering solutions. First, notation and basic definitions are

outlined. Next, a probabilistic approach for analyzing and designing

the proposed index is presented, as well as an application exam-

ple. The new index is also compared with some classical indexes

to show its advantages when measuring overlapped solutions. 

Given a set S = { s 1 , . . . , s N } , which is comprised of N objects,

a clustering algorithm partitions them into a collection of subsets
 = { c 1 , . . . , c k } called clusters. The union of clusters in such parti-

ion forms a covering of the original set of objects: ∪ 

k 
i =1 

c i = S. Simi-

arly, another algorithm or an equivalent one with different param-

ters over the same dataset could generate an alternative partition

f k ′ clusters: C ′ = { c ′ 1 , . . . , c ′ k ′ } . Since each individual object could

e grouped into more than one cluster, it is important to note that

he number of elements in the clusters could be greater than or

qual to N . For example, two clustering solutions are depicted in

ig. 1 : C with k = 1 and C ′ with k ′ = 2 . In Fig. 1 .a), the solution

s composed of a single cluster, c 1 , that groups all of the objects

ogether. In Fig. 1 .b) there are two clusters. Cluster c ′ 
1 

groups all

bjects and c ′ 2 groups all but one. In this scenario, both clusters

f C ′ share N − 1 objects and are said to be overlapped . Given that

very pair of objects that exists in one solution could be found in

he other one, and vice versa, a similarity value close to 1 should

e expected if an external index is applied. However, the values

btained by classical indexes such as FM, ARI and JAC are 0.692,

.238 and 0.478, respectively. 

To overcome the evident misbehavior of classical indexes when

verlapped clusters are present, a new index is proposed consid-

ring the probability that any pair of objects could be found in

 given solution or in both solutions. Consequently, consider the

luster c i of a given solution. Assuming that all of the objects have

he same chance of being grouped into any cluster, this probability

an be estimated as 

 r((s x , s y ) ∈ c i ) = 

(| c i | 
2 

)
(

N 
2 

) = 

| c i | ( | c i | − 1 ) 

N ( N − 1 ) 
, (1)

here | c i | is the number of elements in cluster c i . The numera-

or represents the number of pairs that can be found with | c i | ele-

ents. In order to normalize it, the denominator represents a sim-

lar situation where all of the objects are grouped together in a

ingle cluster; hence any possible pair could be found. 

Taking into account the previous analysis, consider the solution

 , where 

˜ p = 

∑ k 
i =1 

(| c i | 
2 

)
k 
(

N 
2 

) (2)

stimates the probability of finding a pair of elements in any clus-

er c i for all of the existing clusters k . The numerator accumulates

ll of the pairs found in each cluster. The denominator represents

 normalization factor, which acts as if all of the objects were

rouped together. The k factor considers the situation where the

verlapping is complete up to all k clusters. An identical reasoning

ould be applied to obtain a comparable expression for C ′ , 

˜ p ′ = 

∑ k ′ 
j=1 

(∣∣∣c ′ j 
∣∣∣

2 

)

k ′ 
(

N 
2 

) . (3)

he same analysis described for ˜ p and ˜ p ′ can be performed for

oth solutions together. Therefore, 
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1 In the sense of expected 0/1 values for indexes. 
r 
(
( s x , s y ) ∈ c i ∧ ( s x , s y ) ∈ c ′ j 

)

= 

(∣∣∣c i ∩ c ′ j 
∣∣∣

2 

)
(

N 
2 

) = 

∣∣c i ∩ c ′ 
j 

∣∣(∣∣c i ∩ c ′ 
j 

∣∣ − 1 

)
N ( N − 1 ) 

, (4) 

an be seen as an approximation to the probability that the pair

f data points ( s x , s y ) is present in both solutions. In this equation,

 c i ∩ c ′ 
j 
| represents the number of elements in common in clusters

 i and c ′ 
j 
. The whole expression stands for the event of drawing

wo objects that are in both clusters c i and c ′ 
j 
. 

Now suppose that the same analysis is made for every possible

airing between clusters of C and C ′ . The probability of finding ( s x ,

 y ) in both solutions can be estimated as 

˜ 
 = 

∑ k 
i =1 

∑ k ′ 
j=1 

(| c i ∩ c ′ j | 
2 

)
(

N 
2 

)
max (n,n ′ ) 

N 
min (k, k ′ ) 

, (5) 

here n and n ′ represent the number of objects that can be

ounted in solutions C and C ′ , respectively, considering every over-

ap. For example, in Fig. 1 .a), n = 6 , and in Fig. 1 .b), n ′ = 11 . Sim-

larly to ˜ p and ˜ p ′ , the numerator of (5) counts all of the effective

airs of objects that can be found in both solutions simultaneously.

he denominator acts once again as a normalization term. It basi-

ally covers the extreme scenario where all of the objects are clus-

ered together several times. Just as in (2) and (3) , 
(

N 
2 

)
counts the

umber of pairs that can be arranged given all N objects. Since

here could be overlaps in both solutions, the given number of

airs should be multiplied by a factor. On the one hand, there

ould be as many overlaps as k in C and k ′ in C ′ . On the other

and, it was found that the matching between clusters of both so-

utions produces at most min ( k, k ′ ) pairs of clusters in the com-

arison. Finally, max ( n, n ′ )/ N is the average number of objects that

an be found considering overlaps. 

With these elements in mind, the new index for overlapped

lusters ( OC ) could be defined as the ratio between the probabil-

ty of finding two items grouped together in both solutions and

he maximum probability of finding them in one of the given so-

utions. That is, 

C = 

˜ t 

max ( ̃  p , ˜ p ′ ) . (6) 

or the example in Fig. 1 , the new index produces the follow-

ng values. When (2) is applied to the solution in Fig. 1 .a), ˜ p = 1

s obtained. Then, using (3) in Fig. 1 .b), ˜ p ′ = 0 . 833 , and using

5) , ˜ t = 0 . 909 . Finally, when (6) is employed the new index is

C = 0 . 909 / max (1 , 0 . 833) = 0 . 909 . The same experiment was per-

ormed using 10 0 0 objects and the values obtained for FM, ARI and

AC were 0.707, 1.20 0 and 0.50 0, respectively, whereas OC = 0 . 999 .

hese examples show that the proposed index obtains an intu-

tively expected similarity between similar solutions with over-

apped clusters, given that the probability of finding two objects

rouped together in any of them tends effectively to 1. 

The FM index tries to reflect the similarity of the two evaluated

olutions considering the probability of randomly finding a pair of

bjects together, for each or both solutions at the same time. The

roblem is that it does not consider the existence of a pair of ob-

ects more than once, when the objects are overlapped in several

lusters. With respect to ARI, the behavior with overlapped clus-

ers is inconsistent. It fails to narrow the index score below 1. This

ehavior is observed because ARI is a corrected–for–chance ver-

ion of the Rand Index, in which an expected value is substracted

n both the numerator and denominator. In practical applications,

hen overlapped clusters are present, such adjustment could pro-

uce values either below 0 or above 1. As is the case with the FM

ndex, the Jaccard index, is the result of the ratio between a count
f objects found in both solutions over the objects found in any

f both solutions. As a result, the index does neither consider the

verlapping situation nor counts the occurrences of repeated pairs

f objects. This is why it is expected to fail in an overlapping sce-

ario. Finally, the proposed index was carefully designed consid-

ring the overlap in the solutions and non–overlapping situations,

hich is an aspect that has not been considered in the design of

he other indexes. 

. Experimental results and discussion 

In this section, we present the results of the application of FM,

RI, JAC and the new OC index. First, a set of artificial examples

f extreme 1 situations is given. Next, tests are shown in which the

verlap is gradually introduced. These examples show the behav-

or of the new index compared with standard measures in trivial

ases. Then, the application of the index in several real datasets is

escribed. Finally, the application of the OC index for the analysis

f social network data is presented. 

.1. Performance with artificial datasets 

The first set of tests was performed over artificial clustering sit-

ations, where some extreme cases are analyzed. Also, examples

ith a gradual degree of overlap are given. The three tables in this

ubsection present basic tests that can help to better understand

he behavior of the indexes under different types of overlap. In

able 1 , the first column enumerates the examples given. Columns

 and 3 depict the solutions that are compared. Finally, columns

 − 7 show the values for FM, ARI, JAC and OC , respectively. All of

he examples in Table 1 have six data points that were clustered

hrough one to six clusters. 

Examples I and II show a pair of identical solutions with differ-

nt configurations. In Example I, there is only one cluster in each

olution, and every pair of objects that can be found in one clus-

er can also be found in the other one. In Example II, there are

wo clusters in each solution, and every pair of objects found in

ne cluster can also be found in a cluster from the other solution.

n all of these cases, a value of 1.00 is expected, since the com-

lete equivalence of both solutions is evident. In fact, all of the

ndexes can detect such situation, except for ARI, which produces

o value at all in Example I. This is because the expected and max-

mum values of the denominator in the definition of ARI ( Hubert

 Arabie, 1985 ) are equal and a division by zero is returned. The

ast two examples in Table 1 present situations where no similar-

ty between both solutions exists. In Example III, none of the pos-

ible pairs of objects found in solution C can be found in solution

 

′ . In Example IV, both solutions cannot form any pair of objects

t all since each data point is in a different cluster. In this case,

 value of 0.00 is expected for each example because no pairs of

ata could be found in the first and second solutions simultane-

sly. Once again, the only index that disagrees with this intuition

s ARI in Example III. In this case, the numerator of the index is de-

ned as a difference between an observed and an expected value.

herefore, a negative score is computed when the observed value

s lower than the expected one. In addition, in Example IV, ARI and

AC present a division by zero since no pairs are formed at all, and

he indexes cannot provide a value. The results show clearly that

he proposed index can measure basic situations without overlap. 

The examples in Table 2 represent several scenarios with grad-

al overlap. The table has the same columns as in the previous

ase and all of the examples given in it have six data points clus-

ered. Solutions labeled with C are always identical (the reference
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Table 1 

Index results for extreme artificial examples. 

Solutions Indexes 

C C ′ FM ARI JAC OC 

I 1 .0 0 0 — 1 .0 0 0 1 .0 0 0 

II 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 

III 0 .0 0 0 -0 .250 0 .0 0 0 0 .0 0 0 

IV 0 .0 0 0 — — 0 .0 0 0 

Table 2 

Index results for some gradually overlapped artificial examples. 

Solutions Indexes 

C C ′ FM ARI JAC OC 

I 0 .632 0 .0 0 0 0 .400 0 .400 

II 0 .665 -2 .186 0 .442 0 .514 

III 0 .695 2 .347 0 .483 0 .650 

IV 0 .721 1 .4 4 4 0 .520 0 .800 

V 0 .700 1 .324 0 .489 0 .840 

VI 0 .692 1 .238 0 .478 0 .909 

VII 0 .692 1 .179 0 .478 1 .0 0 0 
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s

solution) and all of the objects are always grouped into a single

cluster c 1 . Solutions named C ′ have two clusters that are incremen-

tally overlapped between them, ranging from no overlap in Exam-

ple I to a full double overlap in Example VII. For instance, in Exam-

ple II the element 3 appears in both clusters of C ′ , but a repeated

pair is not generated. In this case, three new pairs arise from the

interaction between object 3 and each object from cluster c ′ 
2 
, and
he proposed index can identify such situation. By contrast, in Ex-

mples III to VII the increasing overlapping effect allows repeated

airs to be produced. Such pairs are formed by objects that belong

o both clusters. For example, the pair formed by objects 2 and

 can be found in both clusters c ′ 1 and c ′ 2 . Thus, given the slowly

ncreasing overlap in examples I to IV, all of the indexes but ARI

how a corresponding incremental behavior. 
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Table 3 

Index results for some extremely overlapped artificial examples. 

Solutions Indexes 

C C ′ FM ARI JAC OC 

I 0 .692 1 .179 0 .478 1 .0 0 0 

II 0 .001 1 .0 0 0 0 .001 1 .0 0 0 

III 0 .692 1 .238 0 .478 0 .909 

IV 0 .707 1 .200 0 .500 0 .999 
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2 http://archive.ics.uci.edu/ml/datasets/ . 
Hence, since there is more overlap, more pairs of objects from

olution C can be found in C ′ , with some extra repeated pairs due

o the overlap itself. It is expected that, while one solution in-

reases its overlapped clusters, the index tends to raise its value

s there are more matchings between solutions. In Example IV and

uccessive ones, all of the possible pairs of objects among six data

oints can be actually found in both solutions, in addition to some

epeated ones in C ′ . Classical indexes (FM and JAC) increase up to

xample V, where they begin to decrease. However, it is expected

hat the indexes continue to rise given the increasing overlap. The

RI once again shows disagreeing values in these examples. As ex-

lained earlier for Table 1 , ARI might produce negative values in

ertain cases. By contrast, as the overlap progresses and duplicated

airs of points are found more frequently, the OC index follows

his behavior with a monotonic increasing value through all of the

ast examples, achieving the top 1.00 score when a perfect overlap

f both clusters exists. 

Finally, Table 3 presents more extreme situations. The structure

f this table is the same as the previous ones. In the first example,

olution C is composed of a single cluster with all of the objects

ontained in it. By contrast, solution C ′ has two overlapped clus-

ers with all of the objects grouped together. The proposed index

hows a complete equivalence between both solutions since any

air of objects can be found in them. None of the other indexes

resent this similarity. In the second example, something similar

ccurs but with more overlapped clusters. Solution C has 999 com-

lete overlaps and solution C ′ has 10 0 0. Once again, OC and this

ime ARI present a complete equivalence, while others decrease to

lmost zero. These cases demonstrate that the proposed index does

ot change as the overlap increases with a high number. The index

aintains a value of 1.00 under any number of complete overlaps,

hich is the expected behavior since the pairs of objects are main-

ained through the overlaps. Other indexes fail to show this and

heir values decrease with higher overlaps. 

Example III is exactly the same as Example VI from Table 2 . In

olution C , a complete overlap is observed among all of the objects,

hile solution C ′ contains one cluster with a complete overlap and

ne cluster that groups all of the objects but one. The proposed

ndex shows a value relatively close to 1.00. This is because almost

ll of the pairs formed in solution C can be found twice in solution

 

′ , but a few others can be found only once. This is consistent with

he fact that not all of the pairs have the same proportion of ap-

earance in the second solution, and the OC index can reflect this

rregular situation. 
Finally, Example IV takes the previous example to the limit,

here solution C has a thousand objects grouped all together in

ne cluster. Solution C ′ has cluster c ′ 1 , which groups all of the ob-

ects, and c ′ 
2 
, which groups all but one. In the last two examples

III and IV), solution C has one cluster with all of the elements

rouped together. By contrast, solution C ′ contains two clusters:

n the first one, all of the elements are grouped together, but in

he second one all of the elements but one are grouped. The dif-

erence between Examples III and IV is that the number of ele-

ents considered in the latter tends to be high. As demonstrated

y these two experiments, the OC index accurately reflects the fact

hat all pairs of data can be found in both solutions, obtaining a

elue close to 1.00, as expected. Other indexes fail when an almost

omplete overlap is presented. Our proposed index tends to obtain

 maximum score when the number of elements is relatively high.

.2. Benchmarking with real datasets 

Four well–known databases 2 were used for performing the

xperiments on real datasets: Iris, Wine, Yeast and Glass

 Lichman, 2013 ). The Iris dataset has four attributes and 150 pat-

erns distributed in three classes of 50 patterns each ( Fisher, 1936 ).

nly one of the three classes is linearly separable from the oth-

rs, which have many patterns that are very close in the attribute

pace. The Wine dataset represents the measure and analysis of 13

hemical attributes of an Italian wine taken from different vine-

ards. This dataset of 178 patterns is distributed in three groups: A,

 and C, with 59, 71 and 48 patterns each, respectively. The Yeast

ataset is based on a study of yeast and it is intended to deter-

ine the location of its proteins in the cell. It has 1484 patterns

istributed in 10 groups with 463, 429, 244, 163, 51, 44, 37, 30, 20

nd 5 elements each, and 8 attributes have been measured. Finally,

he Glass dataset has 9 attributes and 214 patterns distributed in 7

roups. These datasets are freely available for general purpose use,

nd they are widely used in the academic community. They were

elected for their small size and adequacy for the detailed analysis

f the proposed measure. 

A self–organizing map (SOM) ( Kohonen, 1998 ) was used for

lustering the data. Given that several neurons in a region of the

ap may be considered as a single group, incrementally over-

apped clusters can be easily analyzed with different levels of

http://archive.ics.uci.edu/ml/datasets/
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Table 4 

Results for FM, ARI, JAC and OC indexes using Iris, Wine, Yeast and Glass databases. The reference solutions C have 4 

or 25 clusters and zero overlap ( V n = 0 ). Solutions C ′ have 25 and 100 clusters, taking V n = 0 and V n = 1 . 

clusters in C and C ′ FM ARI JAC OC 

V n = 0 V n = 1 V n = 0 V n = 1 V n = 0 V n = 1 V n = 0 V n = 1 

Iris k = 4 vs k ′ = 25 0 .33 0 .30 0 .16 4 .26 0 .14 0 .10 0 .14 0 .38 

k = 4 vs k ′ = 100 0 .17 0 .16 0 .03 −0 .66 0 .03 0 .03 0 .03 0 .11 

k = 25 vs k ′ = 100 0 .33 0 .23 0 .23 −0 .34 0 .14 0 .09 0 .14 0 .37 

Wine k = 4 vs k ′ = 25 0 .40 0 .32 0 .23 9 .33 0 .17 0 .12 0 .17 0 .48 

k = 4 vs k ′ = 100 0 .19 0 .18 0 .06 −0 .52 0 .04 0 .04 0 .04 0 .14 

k = 25 vs k ′ = 100 0 .34 0 .23 0 .26 −0 .24 0 .15 0 .10 0 .17 0 .39 

Yeast k = 4 vs k ′ = 25 0 .32 0 .23 0 .15 6 .61 0 .13 0 .08 0 .13 0 .35 

k = 4 vs k ′ = 100 0 .16 0 .14 0 .04 −0 .58 0 .03 0 .03 0 .03 0 .11 

k = 25 vs k ′ = 100 0 .29 0 .18 0 .21 −0 .30 0 .13 0 .07 0 .14 0 .33 

Glass k = 4 vs k ′ = 25 0 .33 0 .27 0 .10 3 .77 0 .11 0 .08 0 .11 0 .30 

k = 4 vs k ′ = 100 0 .15 0 .14 0 .02 −0 .75 0 .02 0 .02 0 .02 0 .09 

k = 25 vs k ′ = 100 0 .38 0 .24 0 .28 −0 .36 0 .17 0 .09 0 .18 0 .43 
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neighborhood between neurons. To process the datasets, each map

was trained with different numbers of neurons (clusters). All of

the experiments were performed with a rectangular topology, grid

shape, principal component analysis initialization and training iter-

ations set to 100 epochs. To consider overlap between clusters, the

topological closeness between neurons in the map has been taken

into account with a Von Neumann neighborhood. When it is equal

to zero ( V n = 0 ), each neuron represents a single cluster. When

 n = 1 is considered, each neuron and its four adjacent neighbor-

ing neurons (north, south, east and west) are considered as part of

the same cluster. Thus, when V n = 1 is used, each neuron and its

neighbors may overlap between them, and some patterns are asso-

ciated with more than one cluster. This is how overlapped clusters

are formed in a SOM. 

Table 4 presents the results obtained over the real datasets.

The table is divided as follows: column 1 contains the name of

each dataset, column 2 shows the number of clusters considered

for C and C ′ , and columns 3 − 6 present the values obtained for

each experiment and for each index. The last four columns are di-

vided into values with and without overlap ( V n = 0 and V n = 1 )

in the solution C ′ . Six different experiments were performed for

each dataset: k = 4 vs. k ′ = 25 , k = 4 vs. k ′ = 100 and k = 25 vs.

k ′ = 100 . This is with V n = 0 and V n = 1 for solution C ′ . In all of the

cases, no overlap was considered for the reference solution C . For

the Iris dataset, a decrease is observed in the FM index, not only

when k = 4 and k ′ change from 25 to 100, but also when overlap

( V n = 1 ) is considered. The ARI produces a value over 1.00 when

overlap is considered in the experiment k = 4 vs. k ′ = 25 . The op-

posite behavior is observed when other sizes of clusters are con-

sidered and overlap is taken into account, showing values below

0. The JAC index exhibits a similar behavior to the FM index: it

decreases when overlap is considered and when more clusters are

taken into consideration in solution C ′ . Finally, the OC index de-

creases when a higher number of clusters is considered in C ′ , but

increases when overlapped clusters are analyzed. This is an ex-

pected behavior since it is consistent with the fact that, when over-

lapped clusters are used, the probability of finding more matching

pairs of points between solutions is higher. 

The analyses for Wine, Yeast and Glass datasets are very sim-

ilar to the previous one. In these experiments, the values of FM

and JAC indexes decrease when a higher number of clusters is

considered. This is also the case when overlap is taken into ac-

count. The ARI shows exactly the same behavior as in the previ-

ous dataset. With respect to the OC index, a remarkable increase

is observed when overlapped clusters are analyzed. However, it de-

creases when solution C ′ has more clusters. 

Fig. 2 presents the results of the experiment where the refer-

ence solution C have k = 4 and V = 0 , and the C ′ solutions has
n i
 = 100 and either V n = 0 or V n = 1 . For all of the datasets, when

he overlap increases, classical indexes show a notable decrement,

hile the proposed index shows an increment. This behavior is

onsistent with the intuition that, given the existence of over-

apped clusters, it should be more likely to find a pair of objects

n common in both solutions. 

In these experiments, an increment is observed in all of the in-

exes but ARI when the number of clusters of C is close to the

umber of clusters of C ′ . This is due to the data dispersion in C ′ :
hen there are more clusters, the data patterns are spread through

ore neurons, thereby reducing the value of the index. This is ob-

erved when the experiment k = 25 vs. k ′ = 100 is analyzed. In the

ase of FM and JAC, the scores also decrease when overlap is con-

idered, while the proposed index always shows an increment for

 n = 1 with respect to V n = 0 . This is because the classical indexes

o not handle overlapped clusters properly, whereas OC does. With

his in mind, should be noted that when there are overlapped clus-

ers, both FM and JAC indexes do not count the matchings be-

ween groups appropriately. This explains why FM and JAC barely

ecrease, and OC hardly increases with overlap. 

In summary, with artificial or real datasets, the proposed index

s effective for assessing clustering solutions in which there can be

verlapped clusters. Moreover, OC shows reliable and confident re-

ults with extreme overlapping cases, thus enabling a better under-

tanding and comparison of the outcome of clustering algorithms. 

.3. Social networking application 

This subsection describes the experiments performed over a

eal dataset taken from a social network. The results of the appli-

ation of the proposed measure over the YouTube dataset are ana-

yzed and discussed ( Yang & Leskovec, 2013 ). YouYube is a video–

haring social network. Users can create groups or communities to

hare their videos, and other users can join them. This dataset cap-

ures the relation of a group of users of the social network through

ommunities. The dataset is comprised of communities that are

efined as groups of two or more users who share similar inter-

sts. Each community, which is considered as a cluster of users, is

escribed in the dataset as a list of user IDs. One user may be-

ong to one or more communities. When a user belongs to several

ommunities, those communities are said to be overlapped. The

evel of overlap of a community depends on how many of its par-

icipants also belong to other communities. The resulting dataset,

fter preprocessing and removing communities with less than 10

sers, contains 37,038 users and 2087 communities. Communities

ith less than 10 users showed an almost non–existent overlap-

ing behavior, which would affect the focus and interpretability of

ndexes when overlap is tested. 
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Fig. 2. Bar plots of FM, ARI, JAC and OC indexes for Iris, Wine, Yeast and Glass databases. The reference solutions C have 25 clusters and zero overlap ( V n = 0 ). Solutions C ′ 
have 100 clusters with V n = 0 (gray diagonal striped bars) and V n = 1 (black bars). 

Fig. 3. Boxplot of FM and OC indexes for the social network (YouTube) dataset. The dashed line corresponds to the FM index and the continuous one, to the OC index. 

 

t  

f  

m  

m  

s  

fi  

l  

o  

a  

E  

t  

s  

i  

l  

d

 

1  
The experiment performed over this dataset involved sorting

he groups C j by their degree of overlap. Solution C ′ 
j 

was taken

rom solution C j with different levels of perturbation. Random

odifications were applied and users were added to random com-

unities. The original dataset was then divided into several sub-

ets. Since the communities are arranged by levels of overlap, the

rst subset of 35 communities has zero overlap. Each of the fol-

owing subsets considered in this study represents a different level

f increasing overlap. Communities are grouped into subsets with
 similar level of overlap until no more communities are available.

ach subset has at least three times the number of communities as

he first one (with zero overlap) in order to ensure that all of the

olutions have a minimum number of elements for calculating the

ndexes. The last subset includes the communities with a higher

evel of overlap. Therefore, the original dataset was divided into 17

isjoint subsets ranging from zero to the maximum overlap. 

Fig. 3 shows boxplots for the FM and OC indexes for a

0% random perturbation of users within communities. Each box
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corresponds to the median of 20 runs over the corresponding sub-

set of the dataset. The abscissa axis shows the increasing level of

overlap of each subset from zero (subset labeled 1) to the max-

imum overlap (subset labeled 17). Communities with no overlap

reach similar values, for both indexes, between 0.8 and 0.9. As the

overlap increases, a remarkable decrease is observed in the FM

index, reaching values barely upon 0.1 when the overlap is very

high. The values obtained by the OC index are more stable when

the overlap increases, thereby demonstrating the capability of OC 
to be immune to the overlap. Moreover, with a higher overlap in

the subsets, the FM curve falls in a fluctuating manner. By con-

trast, the OC curve shows a smooth behavior, maintaining high val-

ues. Therefore, we conclude that the proposed index is effective for

measuring similarities in real scenarios where there are overlapped

clusters. Furthermore, the OC index exhibits a more stable behav-

ior than classical measures such as FM, irrespective of the presence

of overlap between subsets. 

4. Conclusions and future work 

In this study, we proposed a new index ( OC ) for comparing so-

lutions that may have a certain degree of overlap. The proposed

index was designed from an intuitive probabilistic approach and

was then compared with classical approaches, such as Fowlkes-

Mallows, Adjusted Rand and Jaccard indexes. For simple artificial

examples, these indexes showed unexpected behaviors, while a

more reliable situation was observed with the OC index. Experi-

ments performed with benchmark datasets and real data from a

social network confirmed these findings. On the one hand, clas-

sical indexes tended to show fewer similarities between solutions

as the overlap increased. On the other hand, the proposed index

was immune to the overlap and performed accurately, showing the

level of similarity between clustering solutions. It should be noted

that the OC index also performed well when there was no overlap.

Thus, the proposed index can be applied to any type of solution,

regardless of the presence of overlapped clusters. 

In future research, we will perform experiments using the pro-

posed index in order to analyze the stability of clustering solutions

with any degree of overlap. 
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