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A B S T R A C T

Introduction and objectives: Thoracic aorta calcium detection is known to improve cardiovascular risk

prediction for cardiac and noncardiac events beyond traditional risk factors. We investigated the

influence of thoracic aorta morphometry on the presence and extent of aortic calcifications.

Methods: Nonenhanced computed tomography heart scans were performed in 970 asymptomatic

participants at increased cardiovascular risk. An automated algorithm estimated the geometry of the

entire thoracic aorta and quantified the aortic calcium Agatston score. A nonparametric model was used

to analyze the percentiles of calcium score by age. Logistic regression models were calculated to identify

anatomical associations with calcium levels.

Results: Calcifications were concentrated in the aortic arch and descending portions. Higher amounts of

calcium were associated with an enlarged, unfolded, less tapered and more tortuous aorta. The size of the

ascending aorta was not correlated with aortic calcium score, whereas enlargement of the descending

aorta had the strongest association: the risk of having a global calcium score > 90th percentile was 3.62

times higher (confidence interval, 2.30-5.91; P < .001) for each 2.5-mm increase in descending aorta

diameter. Vessel taper, tortuosity, unfolding and aortic arch and descending volumes were also

correlated with higher amounts of calcium.

Conclusions: Thoracic aorta calcium was predominantly found at the arch and descending aorta and was

positively associated with the size of the descending aorta and the aortic arch, but not with the size of the

ascending aorta. These findings suggest that aortic dilatation may have different mechanisms and may

consequently require different preventive strategies according to the considered segments.

� 2016 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L.U. All rights reserved.

Asociación entre el calcio de la aorta torácica y la geometrı́a de esta en una
cohorte de sujetos asintomáticos con riesgo cardiovascular aumentado

Palabras clave:

Aorta

Aterosclerosis

Calcio

Tomografı́a computarizada

R E S U M E N

Introducción y objetivos: La detección del calcio de la aorta torácica mejora la predicción del riesgo

cardiovascular, en cuanto a los eventos cardiacos y no cardiacos, respecto a la obtenida solo con los

factores de riesgo tradicionales. En este trabajo se ha investigado la influencia de la morfometrı́a de la

aorta torácica en la presencia y la magnitud de las calcificaciones aórticas.

Métodos: Se realizaron exploraciones por tomografı́a computarizada cardiaca sin contraste en

970 participantes asintomáticos con riesgo cardiovascular aumentado. Se utilizó un algoritmo

automático para estimar la geometrı́a de toda la aorta torácica y se cuantificó la puntuación de

Agatston del calcio aórtico. Se utilizó un modelo no paramétrico para analizar los percentiles de la

puntuación de calcio según la edad. Se calcularon modelos de regresión logı́stica para identificar

asociaciones anatómicas con las concentraciones de calcio.

Resultados: Las calcificaciones se concentraron en el cayado aórtico y la aorta descendente. Las mayores

cantidades de calcio se asociaron con una aorta agrandada, desplegada, con menor estrechamiento y más

tortuosa. El tamaño de la aorta ascendente no mostró correlación con la puntuación de calcio de la aorta,
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INTRODUCTION

It is important to determine the size of the thoracic aorta (TA)
because its early increase may predict future aortic aneurysms
whose frequency shows a continuous increase.1 Estimating aortic
size (ie, diameter, volume, tortuosity, tapering) is challenging
because the anatomy of the TA is complex, particularly in the aortic
arch region, which has several branches and a curvilinear
nonplanar path that bends and twists.2,3 We have recently shown
that noncontrast low dose computed tomography for coronary
artery calcium scoring allows reconstruction of the global
morphology of the TA and simultaneously detection of thoracic
aorta calcium (TAC).4–7

The Agatston TAC score is an indicator of atherosclerotic
disease8 and the opportunity to assess TA size and TAC
simultaneously may allow analysis of the participation of
atherosclerotic disease in the early dilatation of the TA according
to the considered segment. Moreover, a detailed assessment of the
association between aortic calcium and TA geometry could help to
elucidate the heterogeneous distribution of calcium deposits along
the length of the TA and help to detect vulnerable regions.9

In this study, we investigated the association of TA size with
TAC in a cohort of 970 asymptomatic participants at increased
cardiovascular risk. A detailed 3-dimensional geometric descrip-
tion of the TA and the position and size of TAC were simultaneously
analyzed with customized software using nonenhanced extended
multislice computed tomography (MSCT) scans. Logistic models
adjusted for traditional risk factors were calculated to assess the
specific role of the TA geometric variables on the presence of TAC
and its extent and spatial distribution.

METHODS

Study Participants

Study participants (n = 970) were recruited over 2 years from
September 2009.4 We included all consecutive patients at risk for
cardiovascular disease who underwent a noncontrast MSCT scan as
part of a cardiovascular risk stratification program. This scan was
performed as part of dual screening: a) estimation of calcified
coronary atherosclerosis burden, and b) detection of early aortic
dilatation in all TA sites including the ascending aorta, aortic arch
and descending aorta. Informed consent was obtained from all

individual participants included in the study. The participants had
at least 1 traditional risk factor (hypercholesterolemia in 82%,
hypertension in 49%, current smoking in 20% and diabetes in 9%).
None of the participants had present or a past history of
cardiovascular disease. The Framingham risk score calculated in
all participants after recalibration for the French population was
less than 20% at 10 years.10 In accordance with the current
guidelines,11 we stratified the participants’ risk of atherosclerotic
cardiovascular disease by means of noncontrast low-dose MSCT
for coronary artery calcium measurement. An extended scan was
used to cover the entire TA for TAC assessment.4 Brachial blood
pressure was determined as the mean of 3 measurements using a
sphygmomanometer with the patient in the supine position
following a 10-min rest. Hypertension was defined as blood
pressure of 140/90 mmHg or above, or use of antihypertensive
medication. Total and high-density lipoprotein blood cholesterol
and triglyceride concentrations were measured after a 14-hour
fast, and low-density lipoprotein concentrations were calculated
with the Friedewald formula or, when this formula could not be
used, were measured directly. Hypercholesterolemia was deter-
mined by fasting low-density lipoprotein cholesterol above 3.3
mmol/L or by the presence of low-density lipoprotein-lowering
drug therapy. Blood glucose was measured after an overnight
fast and diabetes was determined by fasting blood glucose
of 7 mmol/L or above, or by the presence of antidiabetic
medication.

The retrospective analysis of personal health data of study
participants was authorized by the CNIL (Commission nationale de

l’informatique et des libertés) and was in accordance with the
Declaration of Helsinki.

Image Acquisition

Aortic imaging was obtained with noncontrast cardiac 64-slice
MSCT (Light-speed VCT, GE Health care; Milwaukee, Wisconsin,
United States) during the acquisition done to quantify coronary
artery calcium as reported elsewhere.4 The measurements were
done with 2.5-mm axial slices, 120 kVp, 250-mA tube current, 250-
ms exposure time, and a 250-mm field of view. Images were
acquired with prospective-electrocardiogram gating at 60% of the
R-R interval in the craniocaudal direction from the top of the aortic
arch to the level of the diaphragm. The effective radiation dose
assessed in a representative subgroup of 200 participants using
this extended scan length was 1.23 � 0.14 mSv.6 Scans were
exported as DICOM (Digital Imaging and Communication in Medi-
cine) files and were analyzed using a customized software designed in
our laboratory that estimated the TA geometry in 3 dimensions6 and
calculated the size and position of the TA calcifications.4 Thoracic
aortic size and calcium were measured by the same expert, blinded to
clinical parameters. Further details can be found in previous
reports.4–6
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mientras que el tamaño de la aorta descendente es el parámetro que mostró mayor asociación: el riesgo

de tener una puntuación de calcio global superior al percentil 90 fue 3,62 veces (intervalo de confianza,

2,30-5,91; p < 0,001) mayor por cada 2,5 mm de aumento del diámetro de la aorta descendente. La

reducción gradual del diámetro, la tortuosidad, el despliegue y los volúmenes del cayado aórtico y la

aorta descendente estaban correlacionados con mayor cantidad de calcio.

Conclusiones: Las calcificaciones se hallaron predominantemente en el cayado aórtico y la aorta

descendente y mostraron asociación positiva con el tamaño de la aorta descendente y el cayado aórtico,

pero no con el tamaño de la aorta ascendente. Estas observaciones indican que la dilatación aórtica puede

tener mecanismos diferentes y, por consiguiente, requiere estrategias preventivas distintas según el

segmento considerado.

� 2016 Sociedad Española de Cardiologı́a. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.

Abbreviations

MSCT: multislice computed tomography

TA: thoracic aorta

TAC: thoracic aorta calcium
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Aortic Size and Shape Measurements

The user started with a manual selection of 2 seed points in the
axial slices at the center of the ascending and descending aorta at
the pulmonary bifurcation level (see coronary ascending and
coronary descending in Figure 1A). Then, an automatic algorithm
extracted the central skeleton and estimated the vessel diameter at
that point, dynamically expanding and centering circles to inscribe
them inside the vessel cross-section area.6 This circle-fitting
algorithm was sequentially applied over the axial computed
tomography slices for the descending portion of the aorta and over
the oblique planes for the curvilinear part (Figure 1A). These
oblique planes were reconstructed in steps of 28 angles following a
semitoroidal path. The center point of each circle was used as a
seed point for the next estimation. A postprocessing correction was
performed to ensure that reconstructed planes remained perpen-
dicular to the true aortic centerline. The result of this process in
each patient was a list of �150 centerline points with the
corresponding diameters that approximated the cross section of
the aorta in each position.

The vessel was finally divided into ascending, arch and
descending portions delimited by 4 planes at the left main
coronary artery, the brachiocephalic and left subclavian arteries
and the coronary sinus level (Figure 1).

Twelve geometric variables were chosen to describe the TA
morphology in 3 dimensions. These variables were selected
because they properly summarized the modifications of TA size
and shape due to aging in recent reports.6,12,13

The size of the TA was assessed by measuring the mean
diameter and the volume of the ascending, arch and descending TA

segments. The description of TA shape included another 6 vari-
ables: the aortic arch width and height, aortic tortuosity
(calculated as the TA curve length divided by the straight line
distance between endpoints), aortic tapering (defined as the
difference between the mean ascending and mean descending
diameters normalized to ascending diameter) and 2 distances
(from arch center to centerline points at 458 and 1358) as shown in
Figure 1B.

Calcification Assessment

Lesions were quantified with a semi-automatic algorithm using
the Agatston score method.8 For each axial image, the algorithm
highlighted all candidate lesions of area > 1 mm2 and > 130 HU.
Subsequently, the user reviewed each axial plane to validate the
automated selection. The Agatston score was calculated for each
lesion using a weighted value assigned to the highest density of
calcification multiplied by the area. Each calcification was assigned
to the nearest aortic segment. Finally, the calcium scores were
accumulated for each segment. Global and segmental raw and log-
transformed scores were reported for each participant.

Statistical Analysis

Normally distributed continuous variables are described as
means � standard deviation (SD) and categorical variables as
frequencies (%). Thoracic arch calcium was expressed as raw values
and log-transformed values (calculated as log [score + 1]). Partici-
pants with and without TAC were compared with chi-square tests for
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Figure 1. Measurements of aortic size and shape. A: 2 seed points in the ascending and descending thoracic aorta were used for the automated segmentation
algorithm that calculated the vessel centerline. The ascending, arch and descending segments were separated by 4 oblique planes at the left main coronary artery,
brachiocephalic artery, left subclavian artery, and at the coronary sinus level. B: Right: geometric measurements used to describe the aortic shape. Aortic arch width
and height, distances from the arch center to diagonal vectors (C458 and C1358), aortic taper calculated as the percentage of descending to ascending diameter

narrowing (Ddesc/Dasc-1) � 100. Aortic tortuosity was defined as the length of the thoracic aorta centerline divided by the linear distance between extreme points.
AAH, aortic arch height; AAW, aortic arch width; BCA, brachiocephalic artery; CA, coronary ascending; CD, coronary descending; CS, coronary sinus; Dasc, ascending
diameter; Ddesc, descending diameter; LMCA, left main coronary artery; LSA, left subclavian artery; LC, length of the thoracic aorta centerline; LR, linear distance
between extreme points.
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categorical variables and student t-tests for variables with normal
distribution. The patients were divided by age and TAC percentiles
into 4 groups using nonparametric techniques.14 We followed the
article by O’Brien and Dyck15 when setting normal values in skewed
distributions. Accordingly, a model was constructed by using the log-
transformed TAC distribution as a function of age and sex. Taking the
exponential of the 50th and 90th percentiles (P50 and P90) curves of
the TAC as a function of age, participants were separated into 4 groups
of TAC level: TAC = 0, TAC > 0 and TAC < P50, TAC > P50 and TAC <

P90 and TAC > P90. The trend of the TA geometric characteristic
across TAC categories was compared using ANOVA (analysis of
variance) adjusted for age, sex, body-size area, and incidence of
hypertension and hypercholesterolemia. The association of TAC level
with geometric variables taken separately was examined with a
logistic regression adjusted for age, sex, body-size area, and incidence
of hypertension and hypercholesterolemia. The odds of having
increasing levels of TAC with respect to the TAC = 0 group per
1 SD increase in each geometric variable were calculated. The
association of the local TAC presence in the ascending, arch and
descending segments with the local geometric variables was also
determined with separate logistic regressions. Odds ratios per 1 SD
increase of each parameter were calculated adjusted for age, sex,
body-size area, and incidence of hypertension and hypercholesterol-
emia. All analyses were performed with JMP 8 software (SAS Institute;
Cary, North Carolina, United States).

RESULTS

The clinical characteristics of the study population, separated
by the presence and absence of TAC, are shown in Table 1. Images
of a representative patient with TAC are shown in Figure 2.

Participants with TAC were older than those without (P < .001).
Hypertension, antihypertensive therapy, hypercholesterolemia
and lipid lowering therapy were more frequent in participants
with TAC than in those without (P < .001 in all cases, except for
hypercholesterolemia in women: P < .01). Body surface area and
the frequency of diabetic and current smoking did not differ
with the presence of TAC. Risk factors did not differ between men
and women with TAC.

Differences in the presence and extent of TAC by gender are
shown in Table 2 and Figure 3. The log-transformed TAC value did
not differ between men and women in any segment, even after
adjustment for age and body surface area (Table 2). The prevalence
and log-transformed TAC score values in the ascending arch
and descending segments were globally 21%, 66% and 91% and
3.72 � 2.08, 4.66 � 1.80, and 4.57 � 1.98, respectively. The
prevalence of TAC was higher in women than in men (P < .01) but
this difference disappeared when adjusted for age and body surface
area (Figure 3). When analyzed by quartiles of age, we found a higher
percentage of younger women with TAC than men, but this difference
did not reach statistical significance.

The P90 and P50 curves of the TAC by age and sex are shown in
Figure 4. Thoracic aorta calcium exponentially increased with age
and P90 curve were similar between men and women while the
P50 curve of women was moved upwards compared with the curve
of men.

To evaluate the association between TAC and aortic morpholo-
gy, the cohort was stratified by TAC level and age, and the trend
across TAC levels are shown in Table 3. Globally, TA mean diameter
and volume increased with TAC level (P < .001). The size of the
ascending aorta did not change with TAC, whereas both the arch
and the descending segments were larger (P < .001, except for the
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Table 1
Baseline Cohort Characteristics of 970 Participants

Men Women P value*

Without TAC With TAC P value Without TAC With TAC P value

Number of patients 294 461 – 58 157 – –

Age, y 51 � 9 60 � 8 <.001 54 � 7 61 � 7 <.001 .11

Body surface area, m2 2.02 � 0.17 2.00 � 0.17 .12 1.68 � 0.16 1.71 � 0.18 .44 <.001

Hypertension, % 42 57 <.001 19 50 <.001 .11

Antihypertensive medication, % 35 52 <.001 17 47 <.001 .23

Hypercholesterolemia, % 75 86 <.001 71 88 <.01 .52

Lipid-lowering medication, % 39 63 <.001 26 55 <.001 .08

Current smoking, % 20 20 .92 28 17 .10 .38

Diabetes mellitus, % 8 10 .41 5 6 .72 .17

TAC, thoracic aorta calcium.
* Men with thoracic aorta calcium vs women with thoracic aorta calcium.

Figure 2. Axial computed tomography images of ascending (A), arch (B) and descending (C) thoracic aorta portions in a representative patient with aortic
calcifications (arrows).
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arch diameter: P < .05). The aortic shape also differed by TAC level.
In participants with more TAC, the arch was wider (P < .01),
distances to C458 and C1358 points were longer (P < .01), the whole
TA was more tortuous (P < .001) and showed less taper (P < .001).
Table 4 shows the risk of having a global calcium score < P50,
between P50 and P90 and > P90 for 1 SD increase in each geometric
variable. Odds ratios were calculated with respect to participants
with TAC= 0, independently of traditional risk factors. Geometric
variables were sorted by decreasing odds of having TAC and by TAC
levels. The only 2 geometric variables associated with greater odds
of belonging to the less calcified group (0 < TAC < P50) were

descending diameter (P < .05) and aortic taper (P < .05). Another
4 variables increased the odds of belonging to the P50 < TAC < P90
group: arch and descending volume (P < .001 and P < .05,
respectively), total TA volume (P < .05) and tortuosity (P < .05).
Finally, 5 additional geometric variables were associated with
greater odds of belonging to the most calcified group (TAC > P90):
mean diameter, arch diameter, arch width, and distance to C458
and C1358 (P < .01 in all cases). Descending mean diameter and
aortic taper were strongly associated with TAC in the 3 groups, ie,
the odds of belonging to the TAC > P90 group increased 3.62-fold
for 1 SD increase of the descending diameter, whereas a 1 SD
increase of taper reduced the odds by 0.60.

The odds of having TAC for each TA segment is shown in
Figure 5. Greater odds of having TAC in all segments was associated
with a larger descending TA mean diameter and volume.
Additionally, the odds of having TAC in the ascending segment
increased with less aortic taper. The TAC in the aortic arch was
associated with mean diameter and total volume, arch volume,
arch width, and distances to C458 and C1358. Similar associations
were found for descending segments, adding arch diameter and
tapering but excluding distance to C1358. The ascending TA size,
the arch height and TA tortuosity were not associated with the
presence of TAC in any segment.

DISCUSSION

To the best of our knowledge, this is the first study that has
analyzed the calcifications and the geometry of the TA simulta-
neously to investigate the association of vessel morphology with
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Table 2
Extent and Distribution of Calcium in Patients With Thoracic Aorta Calcium

Men with TAC (n = 461) Women with TAC (n = 157) P value

Whole TA

Log-transformed TAC 5.11 � 1.91 5.24 � 1.78 .47

Ascending aorta

TACAsc > 0, % 23 18 .21

Log-transformed TACAsc 3.72 � 2.00 3.75 � 2.37 .31

Aortic arch

TACArch > 0, % 67 62 .27

Log-transformed TACArch 4.60 � 1.82 4.87 � 1.74 .79

Descending aorta

TACDesc > 0, % 92 93 .56

Log-transformed TACDesc 4.58 � 2.01 4.55 � 1.86 .89

Arch, aortic arch; Asc, ascending; Desc, descending; TA, thoracic aorta; TAC, thoracic aorta calcium.

Men
P < .01

73%

47%

56%

63%

74%
77%

92% 93%

33%

All subjects Q1 (31-51 years) Q2 (51-57 years) Q3 (57-63 years)

Age quartile

Q4 (63-83 years)

61%

Women

Figure 3. Prevalence of thoracic aorta calcium in men and women by quartiles
of age. Q1, quartile 1; Q2, quartile 2; Q3, quartile 3; Q4, quartile 4.
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Figure 4. Nonparametric model of thoracic aorta calcium level as a function of age. Curves of the 50th and 90th percentiles are shown for men and women. TAC,
thoracic aorta calcium.
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the presence and extent of TAC. Both calcification and geometry
were accurately assessed in 3 dimensions and in the entire TA in a
cohort of 970 participants at increased cardiovascular risk using
MSCT images. Several TA geometric variables were associated with
the presence, extent, and location of TA calcifications, indepen-
dently of age, sex, and traditional risk factors. The main finding of
our study with clinical implications is that dilatation of the
descending aorta-with a consequent reduction in aortic taper was
strongly associated with higher odds of finding TAC, whereas the
size of the ascending portion was not related to TAC.

It is difficult to determine if the loss of aortic taper is the cause
or the consequence of higher levels of TAC. Generally, calcifications
were mostly concentrated in the arch and descending aortic
segments4,16,17 and geometry might help to explain this heteroge-
neous distribution. While nonoscillatory shear stress is thought to
facilitate the formation of fatty infiltrations and cholesterol-rich
plaques, calcifications are formed in locations where low shear
stress but rapid stress fluctuations are observed.18,19 Aortic

narrowing stabilizes blood flow and delays the attenuation of
the helical flow,3 whereas aortic taper accelerates the flow velocity
into the descending region, avoiding flow stagnation and plaque
formation.9 In addition, the influence of the helical flow pattern
was suggested to suppress areas of flow stagnation so as to prevent
the accumulation of lipids, in particular along the ascending and
arch segments.3 On the other hand, as the atherosclerotic process
begins earlier in the descending aorta,20 the enlargement of the
descending TA may be interpreted as a compensatory mechanism
to counteract vessel stiffening and progression of lumen steno-
sis.21,22 From one perspective, the TA geometry has a direct
influence on blood flow velocity profiles, producing predisposed
sites for calcification. However, TAC can also be seen as the
expression of an arteriosclerotic disorder that actually produces a
geometric deformation. Unfortunately, the nonenhanced MSCT
technique cannot differentiate between vascular calcification
within the intima (in the context of atherosclerotic plaques)
and/or within the media (associated with arteriosclerosis21),
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Table 3
Comparison of Thoracic Aorta Geometric Characteristics Across Different Levels of Thoracic Aorta Calcium

TA size and shape variables All

(n = 970)

TAC = 0

(n = 352)

0 < TAC � P50

(n = 142)

P50 < TAC � P90

(n = 382)

TAC > P90

(n = 94)

P value

Mean diameter, cm 2.92 � 0.27 2.84 � 0.25 2.93 � 0.26 2.98 � 0.27 3.06 � 0.28 <.001

Total volume, mL 160 � 41 145 � 33 156 � 41 168 � 40 183 � 48 <.001

Ascending diameter, cm 3.32 � 0.36 3.23 � 0.34 3.31 � 0.32 3.38 � 0.38 3.43 � 0.36 .61

Ascending volume, mL 53 � 15 49 � 14 52 � 14 55 � 15 58 � 16 .34

Arch diameter, cm 2.87 � 2.27 2.78 � 0.24 2.90 � 0.26 2.92 � 0.27 2.99 � 0.29 <.05

Arch volume, mL 20 � 7 18 � 5 20 � 7 21 � 7 23 � 8 <.001

Descending diameter, cm 2.57 � 0.25 2.47 � 0.22 2.57 � 0.26 2.62 � 0.23 2.72 � 0.25 <.001

Descending Volume, mL 87 � 24 78 � 19 86 � 24 92 � 23 102 � 29 <.001

Arch width, cm 7.82 � 1.14 7.43 � 0.97 7.80 � 1.06 8.04 � 1.18 8.36 � 1.29 <.01

Arch height, cm 5.40 � 1.14 5.23 � 1.09 5.27 � 1.15 5.53 � 1.17 5.71 � 1.06 .17

Tortuosity, % 264 � 30 254 � 28 266 � 29 270 � 28 273 � 33 <.001

Aortic taper, % 24 � 7 25 � 7 24 � 7 24 � 7 22 � 6 <.001

Center to C458, cm 4.19 � 0.58 4.03 � 0.51 4.15 � 0.58 4.30 � 0.58 4.42 � 0.63 <.01

Center to C1358, cm 4.37 � 0.66 4.17 � 0.62 4.31 � 0.63 4.49 � 0.64 4.69 � 0.70 <.01

P50, 50th percentil; P90, 90th percentil; TA, thoracic aorta; TAC, thoracic aorta calcium.

Adjusted for age, sex, body surface area, hypertension, and hypercholesterolemia.

Table 4
Probability of Having Increasing Levels of Thoracic Aorta Calcium per 1 Standard Deviation Increase in the Values of Geometric Variables

Geometric variables 0 < TAC � P50 (n = 142)

OR (95CI%)

P50 < TAC � P90 (n = 382)

OR (95CI%)

TAC > P90 (n = 94)

OR (95CI%)

Descending diameter, cm 1.48 (1.06,2.08)a 1.68 (1.29,2.20)b 3.62 (2.30,5.91)b

Aortic taper, % 0.78 (0.61,0.98)a 0.73 (0.61,0.87)b 0.60 (0.44,0.80)b

Arch volume, mL 1.32 (0.99,1.76) 1.35 (1.09,1.68)c 1.78 (1.27,2.53)b

Descending volume, mL 1.17 (0.84,1.64) 1.38 (1.07,1.80)a 2.67 (1.78,4.11)b

Total volume, mL 1.12 (0.80,1.56) 1.29 (1.01,1.67)a 2.18 (1.47,3.30)b

Tortuosity, % 0.98 (0.76,1.26) 1.24 (1.02,1.52)a 1.35 (1.01,1.81)a

Mean diameter, cm 1.16 (0.84,1.61) 1.18 (0.94,1.49) 1.85 (1.26,2.769)c

Arch width, cm 1.12 (0.80,1.58) 1.24 (0.98,1.59) 1.74 (1.20,2.57)c

Arch diameter, cm 1.32 (0.99,1.78) 1.12 (0.90,1.39) 1.67 (1.18,2.41)c

Center to C458, cm 1.01 (0.75,1.34) 1.18 (0.95,1.48) 1.62 (1.15,2.29)c

Center to C1358, cm 0.85 (0.64,1.12) 1.10 (0.89,1.35) 1.58 (1.16,2.16)c

Arch height, cm 0.86 (0.68,1.09) 1.02 (0.86,1.22) 1.23 (0.93,1.62)

Ascending diameter, cm 0.93 (0.70,1.24) 0.99 (0.81,1.21) 1.15 (0.83,1.61)

Ascending volume, mL 0.91 (0.68,1.20) 1.01 (0.83,1.21) 1.14 (0.84,1.54)

95%CI, 95% confidence interval; OR, odds ratio; P50, 50th percentil; P90, 90th percentil; TAC, thoracic aorta calcium.

The logistic regression was adjusted for age, sex, body-size area, and the presence of hypertension and hypercholesterolemia.
a P < .05.
b P < .001.
c P <. 01.
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although both seem involved in TAC detection.23 Medial calcifica-
tions are an indicator of aortic wall disease that may weaken the
resistance of the aortic wall to tensile stresses and mechanical forces,
promoting a chronic aortic dilatation. As the size increases, a vicious
enlargement circle might be triggered. Although it was suggested
that atherosclerosis may play a minor role in aortic dilatation with
respect to aging and other risk factors,20 its influence should not be
neglected because the effects are concentrated in the distal portion
of the TA where: a) half of all TA aneurysms occur, and
b) endovascular stent grafting is quickly becoming the preferred
choice of treatment.24 Briefly, aortic geometry probably influences
the location of intimal calcifications whereas medial calcifications
could be more associated with aortic stiffening and might be
responsible for descending TA dilatation as a compensatory
mechanism. The cross-sectional nature of our study does not
permit conclusions to be drawn on the cause-effect relationship.

When the TA geometry was analyzed as a function of increasing
levels of TAC, several geometric variables were progressively
involved in calcium accumulation, independently of age, sex, and
traditional risk factors (Table 4). Interestingly, the descending
aorta dilatation and loss of tapering were the first anatomic
variables that changed in patients with small amounts of calcium,
and could indicate the first steps in aortic atherosclerotic disease.
Morphological and functional analyses should be complemented
to improve the prediction of acute cardiovascular diseases.25

Vascular calcifications were found to correlate to artery wall forces
for different vascular beds26 and to increased TA stiffness.27 These
encouraging results indicate that the strategy of identifying
geometrical and functional risk factors to better understand the
mechanisms of atherosclerosis should persist.

Sex differences in the presence and extent of calcification in the
aorta are not entirely clear.28 We did not find significant
differences in TAC between men and women when adjusted for
age and body-size area, although higher scores were seen in
women (Table 2, Figures 3 and 4). Allison et al29 identified the
proximal TA as the only vascular bed where the prevalence of
calcification was higher in younger women (< 50 years) compared
with men. Other studies found a higher prevalence of TAC in
women for all ages28,30 but contradictory results were also

reported.31 The aortic arch was reported as a vulnerable site for
calcification among women4,32 and might explain the global
tendency reported in our study. There is good evidence that the
development of osteoporosis in women, as a metabolic bone
calcium process, can also help to explain this higher prevalence.33

Limitations

Our study had some limitations. First, as previously mentioned,
discerning between TAC and TA morphology as the exposure or the
outcome could not be elucidated from this cross-sectional study.
Second, the participants were at risk for cardiovascular disease and
therefore the results cannot be extrapolated to the general
population. Third, the radiation dose required by our enlarged
field of measurement in order to incorporate the aortic arch was
slightly greater than the radiation dose when measuring TAC
during traditional coronary artery calcium detection.

Finally, our findings have some clinical implications. At first, the
mechanisms of early dilatation of the TA may be different between
descending aorta and aortic arch and ascending aorta. Indeed,
assuming that TAC is an indicator of atherosclerotic disease, the
association of TAC with dilatation of the descending aorta and aortic
arch is in favor of mechanisms of atherosclerosis-related aortic
dilatation. Our analysis confirms the concept that TA disease is
divided into 2 entities: the ascending segment is nonarteriosclerotic
in contrast with the descending segment where arterioathero-
sclerosis is abundant.1 On the other hand, the absence of an
association of TAC with dilatation of the ascending aorta suggests
that the latter may be not be mainly linked to atherosclerosis and
might depend on other mechanisms. Among them, genetic diseases
of the ascending aortic wall with respect to valve malformation play
a major role in the development of aneurysms of the ascending TA.
Secondly, our findings also have implications about therapeutic
interventions to slow or prevent aortic dilatation toward future
aneurysms. The atherosclerotic nature of descending aorta dilata-
tion suggests that conventional antiatherosclerotic interventions
based on aggressive correction of traditional risk factors are
important. The therapeutic prevention of ascending aorta dilatation
is unclear due to its lack of direct association with atherosclerotic
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Figure 5. Probability (odds ratio [95% confidence interval]) of having calcifications in the ascending, arch and descending thoracic aorta segments for 1 standard
deviation increase in each geometric variable. Arch, aortic arch; Asc, ascending; Arch, aortic arch; Desc, descending; TAC, thoracic aorta calcium. aP < .01.
bP < .001. cP < .05.
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asintomáticos con riesgo cardiovascular aumentado. Rev Esp Cardiol. 2016. http://dx.doi.org/10.1016/j.recesp.2016.01.037

http://dx.doi.org/10.1016/j.recesp.2016.01.037


disease. The current recommendations suggest the use of beta-
blocking medication to prevent progression toward aneurysms,
probably because this type of drug may modify the blood flow
velocity patterns involved in this aortic segment and attenuate the
systolic impact on the aortic wall. All of these clinical implications,
however, need to be confirmed by further studies.

CONCLUSIONS

In this study, we showed that TA calcification was associated
with TA geometry, independently of age, sex, body surface area, and
traditional risk factors. Possible relationships between TA geometry
and vascular calcification should be analyzed in terms of blood flow
patterns and compensatory biomechanical mechanisms within the
artery wall. Thoracic aorta calcium was positively correlated to the
size of the descending aorta and of the aortic arch, but not to the size
of the ascending aorta. This suggests that TA dilatation may have
different mechanisms and consequently different preventive
strategies according to the observed segments.
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WHAT IS KNOWN ABOUT THE TOPIC?

- Calcium deposits in arteries are a sign of atherosclerosis

and have been associated with a higher risk of mortality

and cardiovascular events.

- Calcifications in the coronary arteries and TA can be

accurately assessed using cardiac computed tomogra-

phy scans, but the aortic arch is usually excluded.

- The TAC and measurement has been recognized to

improve cardiovascular risk prediction beyond tradi-

tional risk factors.

- The TAC has been associated with coronary, cerebral and

peripheral vascular disease but the role of geometry on

the presence and the extent of calcifications is less well

known.

WHAT DOES THIS STUDY ADD?

- The TAC and detailed aortic 3-dimensional geometry

were simultaneously assessed using low-dose none-

nhanced computed tomography images and including

the aortic arch.

- Several aortic geometrical variables were associated

with the presence, extent and location of calcifications,

independently of age, sex, and traditional risk factors.

- The TAC was positively related to the size of the

descending aorta and aortic arch, but not to the size of

the ascending aorta.

- The TA dilatation may have different mechanisms and

consequently different preventive strategies according

to the segments considered.
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