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EXISTENCE OF OPTIMAL SUBSPACES IN REFLEXIVE
BANACH SPACES
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Abstract. Given a finite set Y in a reflexive Banach space F and a family
C of closed subspaces of F , we study the problem of finding a subspace V0

in C that best approximates the data Y in the sense that
∑

f∈Y d(f, V0) =
minV ∈C

∑
f∈Y d(f, V ), where d is the distance function on F . In this paper,

we give necessary conditions and sufficient conditions over C for which such
a best approximation exists. In particular, when F has finite dimension a
characterization on C is given.

1. Introduction

Let (F, ‖·‖) be a reflexive Banach space and let C be a family of closed subspaces
of F . Given a finite set Y ⊂ F , we consider the problem to find V0 ∈ C minimizing

E(Y, V ) :=
∑
f∈Y

d(f, V ), (1.1)

over V ∈ C, where d(g, V ) = inf
h∈V

‖g − h‖.
Kolmogorov was the first to address this type of questions in [10]. This problem

recently regained attention due to its connection to signal processing (see for
instance [1]-[4]). In [1], the authors introduced the following definition when F
is a Hilbert space.

Definition 1.1. A family of subspaces C of a Banach space F has the Minimum
Subspace Approximation Property (MSAP) if for every finite subset Y ⊂ F there
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exists an element V ∈ C that minimizes (1.1). Such an element will be called an
optimal subspace.

There are some cases for which it is known that the MSAP is satisfied. In [1, 9]
the authors established that C = {V ⊂ F : dim(V ) ≤ m} satisfies MSAP for
F = Cd and F = L2(Rd). For this family and a broad class of normed spaces,
results in [6, 7] imply that C satisfies the MSAP.

Necessary and sufficient conditions on the family C of closed subspaces in a
separable Hilbert space such that C satisfies MSAP were given in [4]. The technic
used there consisted to identify C with the set of maps I − P , where I is the
identity map and P is the orthogonal projection on V ∈ C. In this way, using
the weak operator topology, the problem was to characterize MSAP in terms of
a compactness property.

In this paper we give a generalization of this approach to any reflexive Banach
spaces, replacing orthogonal projections by any metric selection. In Section 4,
we obtain several sufficient conditions for MSAP in terms of the weak operator
topology. Here, we introduce the concept of contact set, which generalize the set
of contact half-spaces introduced in [4]. In Section 5, we get a necessary condition
for MSAP in terms of the strong operator topology. Further, in finite dimensional
spaces we characterize families of subspaces C with MSAP.

2. Definitions and notations

In this section we give some definitions and notations necessary to develop this
paper.

A map T : F → F , is called bounded if there exists a constant K such that
‖T (h)‖ ≤ K‖h‖ for all h ∈ F . We denote B(F ) the set of all bounded maps. As
usual, if T ∈ B(F ) we define the norm of T by

‖T‖ = sup

{
‖T (h)‖
‖h‖

: h ∈ F, h 6= 0

}
.

Clearly, (B(F ), ‖ · ‖) is a normed space.
An element v ∈ V ⊂ F is called a best approximant of f ∈ F from V if

d(f, v) = d(f, V ). As F is reflexive, then any closed subspace V is proximinal,
i.e., for all f ∈ F there exists a best approximant of f from V (see [12], p. 99).
We recall that a metric selection P on V is any map from F onto V for which
P (f) is a best approximant to f from V (see [11], p. 25).

Now, the above problem can be reformulated in terms of certain maps in

B1(F ) := {T ∈ B(F ) : ‖T‖ ≤ 1}.
In fact, let I be the identity map on F and V ∈ C. We consider

ΓV := {Q ∈ B(F ) : Q = I − P with P a metric selection on V } ⊂ B1(F ) (2.1)

and
π(C) := {Q ∈ ΓV : V ∈ C}.

If Q ∈ ΓV , then ‖Q(f)‖ = d(f, V ) ≤ ‖f‖, f ∈ F , so we can write E(Y, V ) in
(1.1) as

E(Y, V ) = φY (Q), (2.2)
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where φY : B(F ) → R is defined by

φY (T ) =
∑
f∈Y

‖T (f)‖, T ∈ B(F ). (2.3)

The original problem is reduced to find T0 ∈ π(C) minimizing (2.3) over π(C).
Since we are looking for problems of existence of minimizers, compactness in

some topology will be of great help. For this purpose we introduce the weak
operator topology (wot) and the strong operator topology (sot) in B(F ). We
denote F ′ the dual of F .

Definition 2.1. Given a net Tα ∈ B(F ) and T ∈ B(F ), we say that

(a) Tα wot-converges to T if and only if Tα(h) weakly converges to T (h), for all
h ∈ F (i.e. ϕ(Tα(h)) → ϕ(T (h)), for all h ∈ F , ϕ ∈ F ′).

(b) Tα sot-converges to T if and only if Tα(h) strongly converges to T (h), for all
h ∈ F (i.e. ‖Tα(h)− T (h)‖ → 0, for all h ∈ F ).

Clearly, the sot is stronger than the wot. We observe that B(F ) is a Hausdorff
topological space with respect to each of these topologies.

3. Compactness of the unit ball

It is well known that the unit ball of the space of all linear continuous operators
from F to F is wot-compact when F is reflexive (see [8], p. 512). In this section,
we show that if F is reflexive, B1(F ) also is wot-compact.

Let (X, τ) be a topological space and let G : X → B(F ) be a function. For
each ϕ ∈ F ′ and h ∈ F , we consider the function Hϕ,h : X → R defined by
Hϕ,h(x) = ϕ (G(x)(h)).

Lemma 3.1. If Hϕ,h is a continuous function for all ϕ ∈ F ′, h ∈ F , then
G : (X, τ) → (B(F ),wot) is a continuous function.

Proof. Let {xα} be a net in X such that xα → x ∈ X. Given h ∈ F , by hypothesis
we have Hϕ,h(xα) → Hϕ,h(x) for all ϕ ∈ F ′, so G(xα)(h) weakly converges to
G(x)(h). As h is arbitrary, G(xα) wot-converges to G(x). �

Let Z = RF ′×F . For w ∈ Z, we write wϕ,f = w(ϕ, f), ϕ ∈ F ′, f ∈ F . Let
τπ be the product topology on Z, induced by the Euclidean topology in R. Set
Γ : B(F ) → Z defined by Γ(T )ϕ,f = ϕ(T (f)).

Lemma 3.2. The function Γ : (B1(F ),wot) → (Γ(B1(F )), τπ) is a homeomor-
phism.

Proof. Clearly, Γ is a continuous function. On the other hand, if Γ(T1) = Γ(T2),
T1, T2 ∈ B(F ), then T1 = T2. In fact, if T1(f) 6= T2(f) for some f ∈ F , the Hahn–
Banach Theorem implies there exists ϕ ∈ F ′ such that ϕ(T1(f)) 6= ϕ(T2(f)), a
contradiction. Finally, by Lemma 3.1 the inverse function of Γ is continuous.
This finishes the proof. �

Theorem 3.3. B1(F ) is wot-compact.
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Proof. By Lemma 3.2, it will be sufficient to prove that Γ(B1(F )) is a τπ-compact
set. If T ∈ B1(F ), |Γ(T )ϕ,f | ≤ ‖ϕ‖‖f‖ for all ϕ ∈ F ′, f ∈ F . In addition, Γ(T )ϕ,f
is a linear function in the variable ϕ, for any f fix. So,

Γ(B1(F )) ⊂{w ∈ Z : |wϕ,f | ≤ ‖ϕ‖‖f‖, wϕ+ψ,f = wϕ,f + wψ,f ,

wλϕ,f = λwϕ,f , for all ϕ, ψ ∈ F ′, f ∈ F, λ ∈ R} =: D
(3.1)

Next, we will prove that the inclusion in (3.1) is an equality.
Let w ∈ D and f ∈ F . We consider the function χ : F ′ → R defined by
χ(ϕ) = wϕ,f . As |χ(ϕ)| ≤ ‖ϕ‖‖f‖, χ is a continuous function. Clearly, χ is
linear, so χ ∈ F ′′. As F is reflexive, there exists an element T (f) ∈ F such that
χ(ϕ) = ϕ(T (f)), ϕ ∈ F ′. We observe that T ∈ B1(F ). In fact, |ϕ(T (f))| ≤
‖ϕ‖‖f‖, ϕ ∈ F ′, i.e.,

∣∣∣ ϕ
‖ϕ‖ (T (f))

∣∣∣ ≤ ‖f‖, ϕ ∈ F ′, ϕ 6= 0. It is well known (see [5],

p. 4) that
‖T (f)‖ = max {|ψ(T (f))| : ‖ψ‖ ≤ 1, ψ ∈ F ′} ,

thus ‖T (f)‖ ≤ ‖f‖. Since by definition of Γ, Γ(T ) = w, we get Γ(B1(F )) = D.
By Tihonov Theorem, the set

K1 : = {w ∈ Z : |wϕ,f | ≤ ‖ϕ‖‖f‖ for all ϕ ∈ F ′, f ∈ F}

=
∏

ϕ∈F ′,f∈F

[−‖ϕ‖‖f‖, ‖ϕ‖‖f‖]

is compact. On the other hand, for f ∈ F , the set

K2,f := {w ∈ Z : wϕ,f is a linear function respect to ϕ}

=
⋂

ϕ,ψ∈F ′

{w ∈ Z : wϕ+ψ,f − wϕ,f − wψ,f = 0}

∩
⋂

ϕ∈F ′,λ∈R

{w ∈ Z : wλϕ,f − λwϕ,f = 0}

is τπ-closed, because it is an intersection of τπ-closed sets. Finally, Γ(B1(F )) =
K1 ∩

⋂
f∈F K2,f is τπ-closed and consequently it is τπ-compact. �

4. Sufficient conditions for MSAP

In this section we give sufficient conditions for MSAP on families C of closed
subspaces in a reflexive Banach space.

Lemma 4.1. For each finite set Y ⊂ F , the function φY : (B(F ),wot) → R,
defined in (2.3), is convex and lower semicontinuous.

Proof. Since the norm function is convex, φY is a convex function. Let Tα, T ∈
B(F ) be such that Tα wot-converges to T . Since Tα(f) weakly converges to T (f)
for all f ∈ Y and the norm is a lower weak semicontinuous function, we have
‖T (f)‖ ≤ lim inf

α
‖Tα(f)‖. So, φY is lower semicontinuous. �

Let (X, τ) be a Hausdorff topological space, let φ : X → R be lower semicontin-
uous function, and let K be a compact subset of X. By Weierstrass Theorem it is
well known that φ achieves its infimum over K. Since (B(F ),wot) is a Hausdorff
topological space, the next theorem follows from Theorem 3.3 and Lemma 4.1.
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Theorem 4.2. Let Y ⊂ F be a finite set and M⊂ B1(F ). If M is wot-closed,
then the function φY achieves its infimum over M. Consequently, if π(C) is
wot-closed, then C satisfies MSAP.

It is not necessary that π(C) is wot-closed to get MSAP, as it shows the
following example given in ([4], p. 369).

Example 4.3. Let F be the Hilbert space R3 and C = {span{e1, e2}}∪{span{e3+
c e2} : c ∈ R}. This family C has MSAP, but π(C) is not wot-closed.

With the purpose to obtain another result over families which satisfy MSAP,
we need to introduce the following sets. Given k ∈ N and a family C of closed
subspaces, let

π(C)∗ := {Q ∈ ΓV : ∃ W ∈ C, V ⊂ Wand V is a closed subspace},
where ΓV was defined in (2.1), and let

π(C)∗k := {Q ∈ ΓV : ∃ W ∈ C, V ⊂ Wand dim(V ) ≤ k} ⊂ π(C)∗.

Lemma 4.4. Let Y ⊂ F be such that #(Y ) = k ∈ N. Then inf
Q∈π(C)

φY (Q) =

inf
T∈π(C)∗k

φY (T ).

Proof. We denote a = inf
Q∈π(C)

φY (Q) and b = inf
T∈π(C)∗k

φY (T ). By the definition of

π(C)∗k, it follows immediately that a ≤ b. Now, given W ∈ C and P a selection
metric on W , it is easy to see that if V := span{P (f) : f ∈ Y } and Q ∈ ΓV , then
Q ∈ π(C)∗k and b ≤ φY (Q) ≤ φY (I − P ). Therefore b ≤ a. �

We will need the following lemma which was proved in ([12], p. 273).

Lemma 4.5. Let F be a Banach space of dimension n. Then there exist n linearly
independent elements e1, · · · , en ∈ F and n functionals g1, · · · , gn ∈ F ′ such that
‖ek‖ = ‖gk‖ = 1, gi(ek) = 1 if i = k, and gi(ek) = 0 if i 6= k, 1 ≤ i, k ≤ n.

Consequently, for every e =
n∑
i=1

αiei ∈ F we have then |αi| ≤ ‖e‖, 1 ≤ i ≤ n.

Proposition 4.6. Let k ∈ N and D be a family of subspaces of F with dimension

at most k. If T ∈ π(D)
wot

then there exists a subspace V ⊂ F such that
dim(V ) ≤ k and (I − T )(F ) ⊂ V .

Proof. By hypothesis, there is a net {Vα} ⊂ D such that Qα = I − Pα ∈ ΓVα

wot-converges to T . As dim(Vα) ≤ k for all α, there exists a subsequence
of {Vα}, say {Vαs}, such that dim(Vαs) = r ≤ k. By Lemma 4.5, for each
s ∈ N there exists a basis {esi}ri=1 of Vαs such that ‖esi‖ = 1, and |ci| ≤ ‖g‖ for

g =
r∑
i=1

ciesi. Since ‖esi‖ = 1, there are a subsequence of {Vαs}, which we denote

in the same way, and ej ∈ F , 1 ≤ j ≤ r, such that esj weakly converges to ej,
as s → ∞ (see [5], p. 50). Set W := span{e1, . . . , er}. Given h ∈ F , we write

Pαs(h) =
r∑
i=1

csi(h)esi. It is easy to see that |csi(h)| ≤ 2‖h‖. Then there exists a

subsequence of {Vαs}, which we denote in the same way, and ci(h) ∈ R, 1 ≤ i ≤ r,
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such that lim
s→∞

csi(h) = ci(h)‖h‖. So, Pαs(h) weakly converges to
r∑
i=1

ci(h)‖h‖ei, as

s→∞, and h− T (h) =
r∑
i=1

ci(h)‖h‖ei. As h is arbitrary, (I − T )(F ) ⊂ W , with

dim(W ) ≤ r ≤ k. �

The following definition extends the concept of contact half-space introduced
in ([4], Definition 2.7).

Definition 4.7. Let E ⊂ B(F ). A set M ⊂ B(F ) will be called a contact set of
E if E ⊂M and E ∩ ∂(M) 6= ∅, where ∂ is the wot-boundary. We denote T (E)
the collection of the contact sets of E.

Given a ∈ R and a function φ : B(F ) → R, we write

Hφ,a := {T ∈ B(F ) : φ(T ) ≥ a}.

Lemma 4.8. Let E ⊂ B(F ) and let φ : (B(F ),wot) → R be a convex and
lower semicontinuous function. Then φ has a minimum a on E if and only if
Hφ,a ∈ T (E).

Proof. Assume a = min
T∈E

φ(T ), hence E ⊂ Hφ,a =: H. Let T0 ∈ E be such that

φ(T0) = a and T1 /∈ H. Writing Tα = αT1+(1−α)T0, 0 < α ≤ 1, we have Tα wot-
converges to T0, as α→ 0. But Tα /∈ H since φ(Tα) ≤ αφ(T1)+ (1−α)φ(T0) < a.
Then T0 ∈ ∂(H) and therefore H is a contact set of E .
Suppose H ∈ T (E), then φ(T ) ≥ a, for all T ∈ E . By assumption there exist
a net {Tα} ⊂ B(F ) \ H and T0 ∈ E such that Tα wot-converges to T0. From
the lower semicontinuity of φ we get a ≤ φ(T0) ≤ lim inf

α→0
φ(Tα) ≤ a. So, φ(T0) =

min
T∈E

φ(T ) = a. �

In the following theorem we give sufficient conditions for MSAP.

Theorem 4.9. We consider the following statements:

(a) π(C)∗ is wot-closed;
(b) π(C)∗k is wot-closed for all k ∈ N;

(c) T (π(C)∗k) = T
(
π(C)∗k

wot
)

for all k ∈ N;

(d) C satisfies MSAP.

It verifies (a) ⇒ (b) ⇒ (c) ⇒ (d).

Proof. (a) ⇒ (b). Let k ∈ N and T ∈ π(C)∗k
wot

. As π(C)∗k
wot

⊂ π(C)∗
wot

=
π(C)∗, there exist a closed subspace S of F and W ∈ C such that T ∈ ΓS and
S ⊂ W . Since (I − T )(F ) = S, Proposition 4.6 implies that dim(S) ≤ k and
consequently T ∈ π(C)∗k.
(b) ⇒ (c) is obvious.
(c) ⇒ (d). Let Y ⊂ F be a finite set and let #(Y ) = k. From Theorem 4.2 there

exists T0 ∈ π(C)∗k
wot

⊂ B1(F ) such that φY (T0) = min
T∈π(C)∗k

wot
φY (T ) =: a. From

Lemma 4.8, HφY ,a ∈ T
(
π(C)∗k

wot
)
. Since T (π(C)∗k) = T

(
π(C)∗k

wot
)
, again



OPTIMAL SUBSPACES 7

Lemma 4.8 implies that φY achieves the minimum on π(C)∗k, i.e., there exist a
subspace S of F , W ∈ C and an map Q in ΓS such that φY (Q) = a, S ⊂ W and
dim(S) ≤ k. Thus, ‖Q(f)‖ ≤ ‖Q(f)‖, f ∈ Y , where Q ∈ ΓW , and so φY (Q) ≤ a.
By Lemma 4.4 we get, φY (Q) = min

T∈π(C)
φY (T ). �

The implication (d) ⇒ (b) it is not true in general, as it shows the next example.
However, if F has finite dimension, we will prove in Theorem 5.4 that (b) and (d)
are equivalent.

Example 4.10. Let F be the Hilbert space l2(R) and m ∈ N. We consider the
family C = {V ⊂ F : V 6= 0 and dim (V ) ≤ m}. For each k ∈ N, π(C)∗k is not
wot-closed. On the contrary from ([4], Proposition 3.1), I ∈ π(C)∗k ⊂ π(C), a
contradiction. However, as it was showed in ([7], p. 92), C satisfies MSAP.

5. Necessary conditions for MSAP

In this section we give a necessary condition for MSAP on families C of closed
subspaces in a reflexive Banach space. Further, a characterization for MSAP in
finite dimensional spaces is proved.

Lemma 5.1. Let Y ⊂ F be such that #(Y ) = k ∈ N. Then

inf
Q∈π(C)∗k

φY (Q) = inf
T∈π(C)∗k

sot
φY (T ).

Proof. Since φY : (B(F ), sot) → R is a continuous function, the lemma immedi-
ately follows. �

Proposition 5.2. Let k ∈ N and D a family of subspaces of F with dimension

at most k. If T ∈ π(D)
sot

then T ∈ ΓV , where V = span{h− T (h) : h ∈ F} and
dim(V ) ≤ k.

Proof. By hypothesis, there is a net {Vα} ⊂ D such that Qα = I − Pα ∈ ΓVα

sot-converges to T , i.e.,

lim
α
‖Qα(h)− T (h)‖ = lim

α
‖h− T (h)− Pα(h)‖ = 0, h ∈ F. (5.1)

For h ∈ F , let a = d(h, V ). There is a sequence {hn} ⊂ V such that ‖h− hn‖ <
a+ 1

n
. We write hn =

∑sn

i=1 cni(hni − T (hni)). Since

‖Qα(h)‖ = ‖h− Pα(h)‖ ≤

∥∥∥∥∥h−
sn∑
i=1

cniPα(hni)

∥∥∥∥∥ ,
from (5.1) we have

‖h− (h− T (h))‖ = lim
α
‖Qα(h)‖ ≤

∥∥∥∥∥h−
sn∑
i=1

cni(hni − T (hni))

∥∥∥∥∥
= ‖h− hn‖ < a+

1

n
.

Letting n→∞, we have ‖h− (h− T (h))‖ ≤ a. Since h− T (h) ∈ V , h− T (h) is
a best approximant to h from V . As h ∈ F is arbitrary, P = I − T is a metric
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selection on V , and T ∈ ΓV . Clearly π(D)
sot

⊂ π(D)
wot

, then T ∈ π(D)
wot

.
Proposition 4.6 implies that there exists a subspace V1 ⊂ F such that dim(V1) ≤ k
and P (F ) ⊂ V1. Now, P (F ) = V , so dim(V ) ≤ k. �

In the following theorem we give a necessary condition for MSAP.

Theorem 5.3. If C satisfies MSAP, then π(C)∗k is sot-closed for all k ∈ N.

Proof. Let k ∈ N and T0 ∈ π(C)∗k
sot

. By Proposition 5.2 we have T0 ∈ ΓV
where V = span{h − T0(h) : h ∈ F} and dim(V ) ≤ k. Let Y = {f1, . . . , fr}
be a basis of V . Since φY (T0) =

r∑
i=1

‖T0(fi)‖ = 0, from Lemmas 4.4 and 5.1,

inf
Q∈π(C)

φY (Q) = inf
T∈π(C)∗k

sot
φY (T ) = 0. As C satisfies MSAP, there is W ∈ C such

that φY (Q) = 0, with Q ∈ ΓW . Thus Y ⊂ W , and consequently V ⊂ W .
Therefore T0 ∈ π(C)∗k. �

Now, we give a characterization of families with the MSAP in finite dimensional
spaces. We remark that it generalizes ([4], Theorem 2.4).

Theorem 5.4. Let F be a normed space such that dim(F ) = n. Then C satisfies
MSAP if and only if π(C)∗n is wot-closed.

Proof. Assume C satisfies MSAP. By Theorem 5.3, π(C)∗n is sot-closed. Since
dim(F ) = n we have sot = wot. Therefore π(C)∗n is wot-closed.
Conversely, let Y ⊂ F be a finite set and suppose π(C)∗n wot-closed. From
Theorem 4.2, there exists Q ∈ π(C)∗n such that φY (Q) = min

T∈π(C)∗n
φY (T ). By

definition of π(C)∗n there exist two subspaces of F , say V and W , with V ⊂ W ,
W ∈ C, and Q ∈ ΓV . Therefore, for Q ∈ ΓW , we have φY (Q) ≤ φY (Q) ≤ φY (T ),
for all T ∈ π(C)∗n. Since π(C) ⊂ π(C)∗n, we get φY (Q) = min

T∈π(C)
φY (T ). �

As a consequence of Theorems 4.9 and 5.4 we obtain the following theorem.

Theorem 5.5. Let F be a normed space of finite dimension. Then statements
(a), (b), (c) and (d) of Theorem 4.9 are equivalents.

Acknowledgement. The authors wish to thank Universidad Nacional de Ŕıo
Cuarto and CONICET, for financial support.
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