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A B S T R A C T

The present work deals with the simulation of the flow in Discrete Fracture Networks (DFN), using the mixed
formulation of the Virtual Element Method (VEM) on polygonal conforming meshes. The flexibility of the VEM
in handling polygonal meshes is used to easily generate a conforming mesh even in the case of intricate DFNs.
Mixed Virtual Elements of arbitrary polynomial accuracy are then used for the discretization of the velocity field.
The well posedness of the resulting discrete problem is shown. Numerical results on simple problems are
proposed to show convergence properties of the method with respect to known analytic solutions, whereas some
tests on fairly complex networks are also reported showing its applicability and effectiveness.

1. Introduction

Effective flow simulations in underground fractured media are
strategic in several practical contexts: protection of water resources,
geothermal applications, Oil & Gas enhanced production and geological
waste storage. All these applications share two possibly conflicting
common characteristics: a high accuracy and reliability is required,
whereas the uncertainty on the geometry and on the data demands for
a huge number of simulations in order to provide probability distribu-
tions of the target quantities.

This work considers the problem of simulating the hydraulic head
distribution in the subsoil, modeled as a Discrete Fracture Network
(DFN) [1–6], which is a randomly generated set of intersecting planar
polygons resembling the fractures in a surrounding porous medium.
DFNs are usually characterized by enormous geometrical complexities
and by the presence of a large number of fractures forming an intricate
network of intersections. Many novel numerical approaches have been
recently developed, in order to circumvent problems arising in efficient
flow simulations in realistic DFNs. One of the main difficulties consists
in the meshing process, since conventional approaches rely on the
conformity of the mesh at fracture intersections in order to enforce
suitable matching conditions. The generation of a mesh conforming to

fracture intersections might have a high computational cost, or even
fail, as a consequence of the number of geometrical constraints, and
could result in poor quality triangulations for the presence of distorted
elements. Furthermore, as already mentioned, input data for DFN
simulations are derived from probability distribution of soil properties,
thus requiring a large number of costly simulation to derive reliable
statistics on the quantity of interest.

Recently, a novel code for the simulation of the flow in DFNs with
stochastic input data was proposed in [7–9]. In [10,11] the complexity
of DFN flow simulations is tackled resorting to dimensional reduction
of the problem, removing the unknowns in the interior of the fractures
and rewriting the problems at the interfaces. In [12,13] the authors use
the eXtended Finite Element Method (XFEM) in order to allow for the
presence of interfaces in the domain not conforming to the mesh. The
XFEM is also used in [14,15]. In [16–20] the authors suggest the use of
an optimization-based approach on non-conforming meshes to avoid
any problem related to the generation of the mesh. The proposed
optimization approach also provides a scalable resolution algorithm
[21], and is used in conjunction with different discretization choices,
ranging from standard finite elements, to the XFEM, [22,23], or to the
new virtual element method [24]. Recently, techniques as the Mimetic
Finite Difference method (MFD, [25,26]) have been used for flow
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simulations in DFNs, by [27,28], as an example, and also the new
Virtual Element Method (VEM, [29–34]) was proposed, in addition to
the already mentioned reference [24], also in [35,36]. In these last two
works, in particular, the authors take advantage of the flexibility of
virtual elements to easily generate a polygonal mesh of the fracture
network that satisfies certain conformity requirements with fracture
intersections.

The use of mixed formulation in DFN simulations is a widely
common choice, for the possibility of a direct computation of the Darcy
velocity; see among others [37,12,38–42,27,28]. This improves the
accuracy for simulations in which the velocity is to be used as the
transport field of an advection-diffusion process of a passive scalar, as
in the case of the evolution of the concentration of a pollutant in the
subsoil.

In the present work, the framework proposed in [35] is extended to
the use of Mixed Virtual Elements, thus combining the reliable
meshing process used therein to the mentioned advantages of the
mixed formulation. The continuous advection-diffusion-reaction pro-
blem in a DFN is presented in mixed form, introducing suitable
matching conditions at fracture intersections for the pressure and
velocity fields. The discrete formulation with Mixed Virtual Elements of
arbitrary polynomial accuracy is then derived, and a proof of well
posedness is also provided. Numerical results on simple DFN config-
urations are first proposed, showing convergence rates of the numerical
solution to the known exact solutions. Polynomial accuracy values
ranging from k = 0 to k = 5 are considered. Afterwards, other numer-
ical tests are shown on increasingly complex networks, in order to
highlight the viability and the effectiveness of the method in dealing
with realistic DFN configurations.

The presentation follows this outline: in Section 2 we describe the
domain of interest, establish some notations and write the continuous
model that describes the hydraulic head distribution within the DFN.
In Section 3 the discrete formulation of the problem based on the
mixed VEMs on each fracture is discussed and suitable coupling
conditions at intersections are introduced. Well posedness of the
discrete problem is shown. Some notes on the implementation are
given in Section 4. Finally, in Section 5 validation tests are shown on
advection-diffusion-reaction problems written on simple domains,
together with an analysis of the performances of the method in solving
pure diffusion problems on realistic DFNs.

We use the notation ∥·∥k ω, to indicate the ωH ( )k -norm of vectors or

scalar functions, on some set ω ⊂ 2 . In the case of a vector v vv = ( , )1 2 ,
we intend, e.g., ∫ v x y v x y x yv∥ = ∥ ( ( , ) + ( , ) )d dω ω0,

2
1

2
2

2 . Moreover, the

symbol v n· σ σ denotes the jump v n v n( · ) − ( · )σ σ
+ − across a segment σ,

being nσ
+, nσ

− the unit normal vectors to σ with opposite directions. We
have that nσ is the unit normal vector to σ with one fixed orientation,
and we observe that the definition of the jump is independent from the
choice of nσ .

2. The continuous problem

The geometrical setting for the problem of interest is a Discrete
Fracture Network Ω, that is a finite set of planar polygonal fractures
intersecting in the 3D space. Each fracture in Ω is denoted by Fi, for
some index i N= {1,…, } = , whereas intersections between fractures
are called traces and indicated by Γℓ, for Lℓ={1,…, } = . We assume,
for simplicity, that each intersection occurs between exactly two
fractures, and we define, for each ℓ ∈ , i j= ( , )ℓ , with i j< , as the
ordered couple of indices of those fractures meeting at Γℓ, i.e.
Γ F F= ∩i jℓ . For each fracture Fi, i is the set of indices of those traces
that Fi shares with other fractures.

The boundary of Ω, Ω∂ is split in a Dirichlet part Γ ≠ ∅D and a
Neumann part ΓN with Ω Γ Γ∂ = ∪D N and Γ Γ∩ = ∅D N . Let us denote by
h the hydraulic head in Ω and by hi its restriction to Fi for i ∈ . Let
further Fi be subdivided in a set of sub-domains Fi j, , j N∈ {1,…, }i , such

that the traces lying on Fi are now part of the boundary of some of these
sub-domains. Then, the hydraulic head h in Ω is the solution of the
following system of equations, which, for i ∈ and j N∈ {1,…, }i reads
as:

h h γh f F
h h Γ F

h h h Γ F

b

b n

div(−K ∇ + ) + = in ,
= on ∩ ∂ ,

(−K ∇ + ) · = on ∩ ∂ ,

i i i i i i i i j

i Di Di i j

i i i i Γ Ni Ni i j

,

,

,Ni

⎧
⎨⎪

⎩⎪ (1)

where Ki is a uniformly positive definite tensor expressing the
transmissivity of fracture Fi, whereas F∂ i j, is the boundary of Fi j, , and
F∂ i is the boundary of Fi which is split in a Dirichlet part Γ Γ F= ∩ ∂Di D i
on which the value hDi is prescribed and a Neumann part Γ Γ F= ∩ ∂Ni N i .
Across ΓNi a total (diffusive and advective) flux is imposed equal to hNi.
Finally ΓNi

n is the outward unit normal vector to the Neumann
boundary.

Problems on the fractures are coupled together by natural matching
conditions expressing the continuity of h at traces and the balance of
fluxes: for all ℓ ∈ , if i j= ( , )ℓ ,

h h− = 0,i Γ j Γℓ ℓ (2)

h h

n n
∂
∂

+
∂

∂
= 0.i

Γ
i

j

Γ
j

ℓ ℓ (3)

where nΓ
i
ℓ
is the unit normal vector to Γℓ with a fixed orientation on Fi.

In order to introduce the variational formulation of problem (1), let
us set the following functional spaces: for i ∈ and j N= 1,…, i,

F F
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v v
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endowed with the following natural norms:
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in which v∥ ∥ ωℓ, denotes, as usual, the norm of function v in ωH ( )ℓ .

By defining ν :=Ki i
−1, β b:=Ki i i

−1 , i∀ ∈ , and introducing, on each
fracture Fi, i ∈ the new variables h hu b:= − K ∇ +i i i i i and for each
ℓ ∈ formally defining λ h= Γℓ ℓ

, we can recast (1) in the following
dual variational form:

Find u u u= + N0 , with u ∈0 , h ∈  and λ ∈  such that
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where uN is any function such that, being u u= ∈i N N F i, i
, it is

Γ hu · =i N Ni Ni
n

, and we have defined
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Problems (4) on the fractures are coupled by the following variational
equations, which follows from (3):

λ λ Γu{{ }} , = 0 ∀ ∈ H ( ), ∀ℓ ∈ ,Γ Γℓ ±1
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problem (4)–(7) can be re-stated as the following system of equations
on the whole network: find u u u= + N0 , with u ∈0 , h ∈  and λ ∈ 

such that
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(8)

Notice that in the above problem, h is in general discontinuous at
fracture intersections, and λ is playing the role of its trace. By classical
arguments and assumptions on the regularity of the data, (see e.g.
[43]), it can be proven that, if problem (1)–(3) is well posed, (8) has a
unique solution, which coincides with the one of (1)–(3) [43,32].

3. The discrete problem with the Mixed Virtual Element
Method

The mixed formulation for the Virtual Element Method (VEM) has
been recently presented in [30], with a followup work generalizing the
method in [32], and, due to its recent introduction, the only work
regarding its application, at the time of writing, is [44], which deals
with Stokes flow. Here, we use a Mixed VEM space to discretize the
velocity space , while the pressure and trace spaces  and  are
discretized in a standard way.

After a brief presentation of the mesh generation process proposed
for the present work, a description of the Mixed Virtual Element in the
context fo DFN flow simulation is provided. The reader is, however,
referred to [30,32] for most of the theoretical results concerning the
VEM.

3.1. Meshing process

Let i ∈ be fixed and let us consider a generic fracture Fi in Ω with
traces Γℓ, ℓ ∈ i. The local mesh on the fracture is obtained starting
from a regular triangular mesh, that is not required to be geometrically
conforming with the traces. The triangular elements of this mesh that
intersect the traces are then cut into polygons that do not cross the
traces. This process is performed independently on each of the
fractures in Ω, thus providing a polygonal mesh on each fracture that
is locally conforming to the traces, i.e. with elements that do not cross
any of the traces Γℓ, ℓ ∈ i of Fi, but instead cover them with edges of
the triangulation. A globally conforming mesh of the whole network is
finally obtained adding, on each trace Γℓ on fracture Fi the vertexes on
Γℓ of the mesh of fractures Fj, with i j, ∈ ℓ: this increases the original
number of edges of the mesh elements neighboring Γℓ, forming
polygons with flat angles at some vertexes. This discretization techni-
que is the same proposed in [35] and exploits the flexibility of virtual
elements in handling arbitrary polygonal elements. An example is
proposed in Fig. 1, where two intersecting fractures are shown. The
shadowed regions on both fractures represent the original triangles
that are subsequently cut into polygons. The trace segment is pro-
longed up to meeting the first edge in the mesh and new polygons are
created not crossing the prolonged segment. The numbers in some of
the new elements on Fi represent the number of edges of the new
polygonal mesh elements, whereas the red dots indicate mesh vertexes
on the trace, shared by the two fractures. It can be noticed that in most
cases a red dot corresponds to a polygon vertex with a flat angle.

After the generation of the globally conforming mesh, each trace Γℓ,
ℓ ∈ is split by mesh vertices into ne

Γℓ segments, each denoted by σt
ℓ,

t n= 1, …, e
Γℓ. In order to ease the presentation of the method it is

convenient to assume that to each segment σt
ℓ correspond two identical

mesh edges on each fracture, thus having, in the global conforming
mesh, a total of four copies of each trace edge, with their own outward
unit normal vector. An example is shown in Fig. 2, where a generic
fracture Fi in Ω is shown, with a single trace Γ1 perpendicular to the

Fig. 1. Detail of the VEM conforming mesh at two intersecting fractures. (For
interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

Fig. 2. Schematic of the mesh on a selected fracture with the degrees of freedom of the
discrete spaces for Virtual Elements of order k = 1. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article.)
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horizontal boundary edges, and passing through their midpoints. As
shown, the original trace segment σ Γ≡1

1
1 generates two mesh edges,

e i
1
1, ,+ and e i

1
1, ,− each endowed with an outward unit normal vector, n+,

n−, with opposite direction.
Let us denote by δ i, the mesh obtained in such a way on each

fracture, δ i, being the set of its edges, and we also set = ∪δ δ i∈ , and
= ∪δ i δ i∈ , . For each mesh element E ∈ δ, we set x y( , )E E to be the

barycenter of E, and hE to be the diameter of E.

3.2. Virtual spaces

Let i ∈ and E ∈ δ i, . The local VEM space for the velocity variable
on each element E is

E E
v v n

v v
= { ∈ H(div, E): · ∈ (e) ∀e ∈ ∂E,

div( ) ∈ ( ), and rot( ) ∈ ( )},
δ i
E

δ δ e k

δ k δ k

,

−1

 

  (9)

in which ω( )k is the space of polynomials of maximum order k, and
e E⊂ ∂ is one of the edges of the boundary of E, and ne is the unit
outward normal vector to edge e. The condition on the rotor in (9) is
required to fix the dimension of δ i

E
, . The global discrete space on each

element E is then:

Ev v:={ ∈ : ∈ ∀ ∈ }.δ i δ i δ E δ i
E

δ i, , ,   (10)

We remark that functions in δ i, have a continuous normal component

in sub-fractures, whereas we have in general v n⟦ · ⟧ ≠ 0δ i Γ
i

, ℓ , ∀ ℓ ∈ i.

There are many choices for the degrees of freedom (DOFs) of functions
in δ i, , see, e.g. [30,32,45]. In order to describe the DOFs used for the
present work, let us introduce the following set of scaled monomials on
each mesh element E, that span the space E( )k of dimension
n k k= ( + 1)( + 2)/2k :

E m x y
x x y y

h
α α α k( ) = ( , ) =

( − ) ( − )
, = + ≤ .k α

E
α

E
α

E
α α+ 1 2

1 2

1 2


⎧⎨⎩
⎫⎬⎭

Then let us introduce also the space

E E p p Ep p∇ ( ) := { ∈ [ ( )] : = ∇ for some ∈ ( )}.k k k+1
2

+1  

This space has dimension n − 1k+1 . Moreover, let E(∇ ( ))k+1
⊥ be the

EL ( )2 orthogonal complement of E∇ ( )k+1 in E( ( ))k
2 , so that

E E E( ( )) = (∇ ( )) ⊕ (∇ ( )) .k k k
2

+1 +1
⊥  

We remark that, in what follows, the space E(∇ ( ))k+1
⊥ could be

replaced by any other space E(∇ ( ))k+1
⋆ satisfying

E E E(∇ ( )) ⊕ (∇ ( )) = ( ( ))k k k+1 +1
⋆ 2   . The space E(∇ ( ))k+1

⊥ is here used
only for presentation purposes, whereas for the implementation of the
method the choice described in [46] is used, which is computationally
less expensive.

The dimension of the space E(∇ ( ))k+1
⊥ is

E E E

n n k k k k

k k

dim[(∇ ( )) ] = dim[( ( )) ] − dim [∇ ( )]

= 2 − + 1 = 2 ( + 1)( + 2)
2

− ( + 2)( + 3)
2

= ( + 2)( − 1)
2

+ 1,

k k k

k k

+1
⊥ 2

+1

+1

  

from which we deduce that E(∇ ( ))k+1
⊥ is not empty when k ≥ 1. The

space E∇ ( )k+1 is spanned by

E E m m E mm m∇ ( ) := { ∈ [ ( )] : = ∇ for some ∈ ( ), ≠ 1},k k k+1
2

+1  

whose orthogonal component in E[ ( )]k
2 is denoted by E(∇ ( ))k+1

⊥ .
As degrees of freedom on δ i

E
, we choose, v∀ ∈δ δ i, ,

• the value of v n·δ e at k + 1 internal points on e, for each edge e E⊂ ∂ ;

• if k ≥ 1, the n − 1k products v m( , )δ E for all Em ∈ ∇ ( )k ;

• if k ≥ 1, the k k( + 2)( − 1)/2 + 1 products v m( , )δ E
⊥ for all

Em ∈ (∇ ( ))k+1
⊥ ;

thus leading to the following number of degrees of freedom, n E
dof for a

polygonal element E ∈ δ with ne
E vertices:

• if k = 0, n n=E
e
E

dof ;

• if k ≥ 1, n k n k k= ( + 1) + ( + 2)E
e
E

dof .

A schematic of the degrees of freedom for the discrete VEM space is
reported in Fig. 2, in the case of a polynomial accuracy k = 1. According
to the selected polynomial accuracy, two degrees of freedom are
associated to each mesh edge and are marked with red dots and a
consecutive numbering (the location of the DOFs in the picture is only
indicative). Two DOFs are associated to each copy of the edge lying on
the trace and we remark that this allows for a velocity solution with
discontinuous normal component across the traces of each fracture.
The set of DOFs for the velocity is completed by the two moments with
respect to the monomials in E∇ ( )1 , denoted with a star shaped blue
marker inside the element, and the moment with respect to E(∇ ( ))2

⊥ ,
marked with green squares inside the element.

When building the global velocity space δ i, on each fracture Fi,
continuity of the normal component of v ∈δ δ i, is enforced across each
mesh element edge that does not lie on any of the traces Γℓ, ℓ ∈ i,
thus allowing jumps of the normal component of the velocity across
fracture intersections both on each fracture and across intersecting
fractures.

As in the case of the primal VEM formulation, the shape functions
in the local VEM space are not explicitly known in general except for
their DOFs, and thus computability of operators on the VEM functions
is one of the key aspects in the VEM framework. Let us observe that the
divergence of each VEM function can be exactly computed, by means of
the set of DOFs. Indeed, since Evdiv( ) ∈ ( )δ E k , we can exactly compute
its components in the basis E( )k since, by Green's formula we have:

m m m m Ev v v n(div( ), ) = − ( , ∇ ) + ( · , ) ∀ ∈ ( ),δ E δ E δ e E k∂  (11)

and the right-hand side is computable using the first two sets of degrees
of freedom. Having computed vdiv( )δ , we can also compute the
component-wise EL ( )2 -projection of v ∈δ δi

E on the space of polyno-
mials of order k: Π E: → [ ( )]k δi

E
k

0 2  , defined by

Π Ev m v m m( ) = ( , ) ∀ ∈ [ ( )] .k δ E δ E k
0 2

The right-hand side of this latter equation can be computed observing
that, for any given Em ∈ ( )k , we can decompose m m m= +∇ ⊥, where

Em ∈ ∇ ( )k
∇

+1 and Em ∈ (∇ ( ))k
⊥

+1
⊥ . Let m E∈ ( )k+1 be such that

m m∇ = ∇; then

m

m m

v m v m v m v v m

v v n v m

( , ) = ( , ) + ( , ) = ( , ∇ ) + ( , ) =

= − (div( ), ) + ( · , ) + ( , ) ,
δ E δ E δ E δ E δ E

δ E δ E E δ E

∇ ⊥ ⊥

∂ ∂
⊥

and all terms on the last line are computable knowing vdiv( )δ and the
first and last set of degrees of freedom of vδ.

Concerning the pressure variable, we define the set of DOFs on each
mesh element E as the nk moments with respect to the monomial basis

E( )k , and the global discrete space for the pressure is

q q i N= : ∈ , = 1,…,δ δ δ F δ i,
i

 
⎧⎨⎩

⎫⎬⎭, with

q F q E E:= ∈ L ( ): ∈ ( ) ∀ ∈ .δ i δ i δ E k δ i,
2

, 
⎧⎨⎩

⎫⎬⎭
Note that no requirements of continuity are made for this space.

Let us now call μ ξ n= = 1,…,δ ξ
Γℓ

,
ℓ

dof
ℓ

⎧⎨⎩
⎫⎬⎭ the set of the degrees of

freedom introduced on all the (duplicated) mesh edges e ∈ δ lying on
trace Γℓ, ℓ ∈ , and then let us set the space δ as:

= ⋃ .δ
ℓ∈

ℓ

M.F. Benedetto et al. Finite Elements in Analysis and Design 134 (2017) 55–67

58



3.3. Mixed VEM discrete formulation

Let us fix i ∈ and let us define

a b: × → , : × →δi δ i δ i δ i δ i δ i, , , , ,     

such that, v w∀ , ∈δ δ δ i, , q ∈δ δ i, :

∑a νΠ Π S I Π I Πw v w v w v( , ) := ( , ) + (( − ) , ( − ) ),δ i δ δ
E

k δ k δ E
E

k δ k δ,
∈

0 0 0 0

δ i, (12)

∑b q q β Πv v( , ) := ( , · ) ,δ i δ δ
E

δ k δ E,
∈

0

δ i, (13)

where S : × →E
δ i δ i, ,   is a bilinear form such that v∀ ∈δ δ i, :

α α α a S α a Πv v v v v v v∃ *,
* > 0: * ( , ) ≤ ( , ) ≤ * ( , ) ∀ ∈ ker ,i

E
δ δ

E
δ δ i

E
δ δ δ k

0

in which a (·, ·)i
E is the restriction of the bilinear form a (·, ·)i to element

E ⊂ δ i, . Then, setting v w∀ , ∈δ δ δ , and q ∈δ δ

∑ ∑a a b q b qw v w v v v( , ) := , , ( , ) := , ,δ δ δ
i

δ i δ F δ F δ δ δ
i

δ i δ F δ F
∈

,
∈

,i i i i

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

we write the following discrete problem: find u ∈δ δ0  , h ∈δ δ , λ ∈δ δ

such that:

a b h d h g λ
h a

d q c h q f q d q q
g μ g μ μ

u v v v v
v n u v v

u u
u u

( , ) − ( , ) − ( , ) + ( , )
= − ( , · ) − ( , ) ∀ ∈ ,

( , ) + ( , ) = ( , ) − ( , ) ∀ ∈ ,
( , ) = − ( , ) ∀ ∈ .

δ δ δ δ δ δ δ δ δ δ

δD δ Γ δ δN δ δ δ

δ δ δ δ δ δN δ δ δ

δ δ δ δN δ δ

0

0

0

D






⎧
⎨
⎪⎪

⎩
⎪⎪

(14)

3.4. Well-posedness of the discrete problem

In order to prove the well posedness of (14), let us observe that
according to the definition of the space δ an inf-sup condition holds
for the operator g: × ↦δ δ  . Indeed we have:

μ
g μ

v
v

v
∀ ∈ , ∃ * ∈ :

( , *)
* = 1δ δ δ δ
δ δ

δ δ

 
 (15)

choosing v*δ as the basis function of the VEM space corresponding to
the degree of freedom μδ, and recalling that basis functions in δ have
discontinuous normal components across the traces on each fracture.

Then we place ourselves in the space g= ∩ ker( )δ δ , having the
same local approximation properties of δ , and we re-write (14) as: find
u ∈δ δ0 , h ∈δ δ such that:

a b h d h
g μ h a

d q c h q f q d q q

u v v v
u v n u v v

u u

( , ) − ( , ) − ( , )
= ( , ) − ( , · ) − ( , ) ∀ ∈ ,

( , ) + ( , ) = ( , ) − ( , ) ∀ ∈ ,

δ δ δ δ δ δ δ δ

δ δN δD δ Γ δ δN δ δ δ

δ δ δ δ δ δN δ δ δ

0

0

D



⎧
⎨⎪

⎩⎪

whose well-posedness is proven in [32].

4. Implementation

This section is aimed at proving practical details of the algorithm,
from the discretization strategy to the assembly of matrices that have to
be computed.

For every fracture Fi, with i ∈ , let us denote by n i
v
dof, the number

of DOFs for the velocity space and n i
p
dof, the number of DOFs for the

pressure space on fracture Fi and let n n n:= +i i
v

i
p

dof, dof, dof, . It is also
n n= ∑v

i i
v

dof ∈ dof, and n n= ∑p
i i

p
dof ∈ dof, defined as the total number of

DOFs throughout the whole network for the velocity and pressure
spaces, respectively. We collect the degrees of freedom for the velocity
space in a vector u ∈ n v

dof , and the degrees of freedom for the pressure
in a vector h ∈ n p

dof .
Let us introduce matrix A ∈i

n n×i
v

i
v

dof, dof, defined as

φ φA a( ) = ( , )i jk δi i k i j, ,

representing the discrete operator aδ i, on each fracture Fi, i = 1,…,N,

defined as in (12), and in which φi j, , j n= 1,…, i
i
dof, are the VEM basis

functions of the finite-dimensional discrete space δ i, for the velocity on
Fi. The computation of the projection operator is as in (11), whereas
the stabilization term S v w( , )E

δ δ , for v w, ∈δ δ δ i, is defined as the
euclidean scalar product of the degrees of freedom of v w,δ δ multiplied
by a factor ν h ν x y:= ( , )E

E E E
2 . Furthermore, being χ ∈i k δ i, , , for

k n= 1,…, i
p
dof, , the basis functions of the finite-dimensional space for

the pressure variable on Fi, we denote by:

B b φ χ C c χ χ D d φ χ( ) = , ( ) = , ( ) = ,i jk δ i i k i j i jk i i k i j i jk i i k i j, , , , , , ,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

the matrices associated with the bilinear forms bδ i, in (13), ci in (5) and
di in (6), respectively. It is then possible to write an independent saddle
point problem on each fracture Fi of the network, expressing the
advection diffusion problem on each fracture and corresponding to the
first two equations in (14). The structure of the saddle point matrix
K ∈i

n n×i idof, dof, , i ∈ is:

K
A B D

D C
=

− −
.i

i i i

i i
⊤

⎡
⎣⎢⎢

⎤
⎦⎥⎥ (16)

We then construct column vectors f ∈i
n idof, , i ∈ , as the vector of

load values and boundary condition terms. Assembling matrices on the
whole DFN we have:

K

K
K

K

f

f

f

=

0 ⋯ 0
0 ⋯ ⋮
⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯

and = ⋮
⋮ .

N N

1

2

1
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

We remark that matrices Ki are singular for fractures Fi, i ∈ with
pure Neumann boundary conditions, the uniqueness of the solution
deriving from the matching among all the fractures on the network, which
is given by the last equation in (14), not yet enforced here.

To this end, let us recall that each trace Γℓ, ℓ ∈ is given by the
union of segments σt

ℓ, t n= 1,…, e
Γℓ. To each segment σt

ℓ of Γℓ four mesh
edges are associated, denoted by e e e e{ , , , }:= ⊂t

i
t

i
t

j
t

j
δ t δ

ℓ, ,+ ℓ, ,− ℓ, ,+ ℓ, ,−
,

ℓ , with
i j, ∈ ℓ and the + or − sign is chosen depending if the mesh edge
belongs to the element on the right or left side of σt

ℓ, respectively, after
fixing an orientation for σt

ℓ on Fi and Fj, independently. On a trace Γℓ,
for a given polynomial accuracy k, we associate k + 1 DOFs to each
edge e ∈t

i
δ t

ℓ, ,⋆
,

ℓ , with⋆=+ or− and we denote by ut ξ
i

,
ℓ, ,⋆, ξ k= 1,…, + 1

each of these DOFs. It is possible to introduce a function κ, such that,
for ℓ ∈ , i ∈ ℓ, ⋆ ∈ { + , − }, t n= 1,…, e

Γℓ, and ξ k= 1,…, + 1, the
number κ t ξ i n(ℓ, , , , ⋆) ⊂ 1,…, v

dof corresponds to the index of the
degree of freedom ut ξ

i
,
ℓ, ,⋆ in the global numbering. For each trace Γℓ,

for each t n= 1,…, e
Γℓ it is possible to write k + 1 conditions enforcing

the balance of the normal component of the velocity at fracture
intersections, by simply setting to zero the sum of the basis functions
on the edges in δ t,

ℓ as follows: for ξ k= 1, …, + 1:

Λ u = 0,t ξℓ, ,

being Λ ∈t ξ
n

ℓ, ,
v
dof defined as:

( )Λ
κ κ κ κ

:=
0 ⋯ 1 ⋯ 1 ⋯ 1 ⋯ 1 ⋯0t ξℓ, ,

1 2 3 4

and, for i j, ∈ ℓ, κ( )ϱ ϱ=1,…,4 is the ordered set of the values:

κ t ξ i κ t ξ i κ t ξ j κ t ξ j{ (ℓ, , , , + ), (ℓ, , , , − ), (ℓ, , , , + ), (ℓ, , , , − )}.

Then it is possible to collect column-wise row vectors Λ t ξℓ, , for

ℓ ∈ , t n= 1,…, e
Γℓ, and ξ k= 1,…, + 1 as to form matrix

Λ ∈ k n n(( +1)∑ )×e
Γ v

ℓ∈
ℓ

dof , and then matrix Λ 0= [ , ]pL , with

0 ∈p
n n×p p
dof dof being the null matrix. Finally, if we let λ be the vector

of values of the Lagrange multipliers of the system, and setting
s u h= [ , ]⊤ ⊤⊤ we have that the final linear system corresponding to the
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discrete problem (14) is:

λ
K

O
s f

0= .
⊤L

L

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ (17)

This type of system is in the standard form that arises when applying
domain decomposition methods. We refer the reader to [47–50].

5. Numerical results

Let us now show some numerical tests performed on networks of
increasing complexity. Approximation spaces with polynomial accuracy
up to order k = 5 are considered: the mixed discrete VEM space is used
for the space of the velocity and the space of element-wise polynomials
of the same order is used for the pressure space.

The first two considered problems take into account simple net-
works of up to three fractures, for which an analytic solution is known,
and convergence curves are presented to compare the obtained
convergence rates with the optimal ones reported in [32].
Subsequently some simulations on more complex DFNs are proposed,
aimed at showing the applicability of the method, and also to provide
some qualitative insight on the behaviour of the method.

5.1. Benchmark problems

As a first example, a 3 fracture, 3 trace network is analyzed, labeled
BP1. The domain is the same as the one in [35], and is shown in Fig. 3.
Here an advection-diffusion-reaction problem is considered, with non
constant coefficients and it is solved in mixed formulation.

The computational domain Ω is given by the union of fractures F1,
F2 and F3, defined as follows:

F x y z x y z
F x y z y z x
F x y z z x y

= {( , , ) ∈ : − 1 ≤ ≤ 1, − 1 ≤ ≤ 1, = 0},
= {( , , ) ∈ : − 1 ≤ ≤ 1, − 1 ≤ ≤ 1, = 0},
= {( , , ) ∈ : − 1 ≤ ≤ 0, − 1 ≤ ≤ 1, = 0},

1
3

2
3

3
3







with three intersections:

Γ x y z x y z
Γ x y z y z x
Γ x y z z x y

= {( , , ) ∈ : − 1 ≤ ≤ 1, = 0, = 0},
= {( , , ) ∈ : − 1 ≤ ≤ 1, = 0, = 0},
= {( , , ) ∈ : − 1 ≤ ≤ 0, = 0, = 0}.

1
3

2
3

3
3







Introducing a fracture-local reference system x y( , ) we define, on each
fracture Fi, i = 1,…, 3:

x y
y x y

x y x
x y x y y

γ x y x y
b

K ( , ) =
1 + − /2
− /2 1 +

,

( , ) = ( − , − 1),
( , ) = + ,

i

i

i

2

2

3

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

and the problem is formulated as in (1), being the load terms fi,
i = 1, …, 3 such that the exact solution on each fracture is:

h x y x x x y y y
h y z y y y z z z
h z x z z z x x x

( , ) = | |(1 + )(1 − ) (1 + )(1 − ),
( , ) = (1 + )(1 − )| |(1 + )(1 − ),
( , ) = (1 + )(1 − ) (1 + )(1 − ),

1

2

3

which is shown in Fig. 3 interpolated on an example mesh, with
coloring proportional to the hydraulic head values. The problem is
solved on meshes with a number of degrees of freedom ranging from
about 1×102 to about 6×104 and the following error norms are
considered to evaluate accuracy of the numerical solution:

∑

∑

∑

h h h

Πu u u

u u u

= − ,

= − ,

(∇ · ) = ∇·( − ) .

E
δ E

E
k δ E

E
δ E

err
∈

2

1
2

err
∈

0 2

1
2

err
∈

2

1
2

δ

δ

δ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Fig. 4 shows convergence rates of the above quantities against the
number of DOFs when the computational mesh is refined. The various
considered polynomial accuracy orders, ranging from k = 0 to k = 5 are
reported in different plots. In all cases the expected convergence rates
are obtained, with some instances of superconvergence for the pressure
variable for coarser meshes. Fig. 5 displays, instead, convergence
curves of herr, uerr and u(∇· )err against DOF numbers when the
polynomial accuracy order is increased from k = 0 to k = 5. Four
different fixed geometrical meshes are reported. In all cases it is
possible to observe exponential convergence rates.

The second benchmark problem, labeled BP2, revisits a 2 fracture
DFN, also studied in [35]. This problem is interesting as it allows us to
test the method when applied to geometrical configurations with the
presence of a trace ending in the interior of some fracture, which causes
a loss of regularity in the solution, also away from the traces. The
computational domain Ω F F= ∪1 2 is displayed in Fig. 6, and the two
fractures, F1 and F2 are defined as:

F x y z x y z
F x y z x z y

= {( , , ) ∈ : − 1 ≤ ≤ 1, − 1 ≤ ≤ 1, = 0},
= {( , , ) ∈ : − 1 ≤ ≤ 0, − 1 ≤ ≤ 1, = 0},

1
3

2
3





intersecting in the trace Γ x y z y z x= {( , , ) ∈ : = 0, = 0 and − 1 ≤ ≤ 0}3 ,
whose tip is in the interior of F1.

The problem is as follows:

h f F Γ
h f F Γ

h Ω Γ

h z z π Γ

−Δ = in ⧹ ,
−Δ = in ⧹ ,

= 0 on ∂ ⧹ *,

= ( − )cos( /4) on *,
D

D

1 1

2 2

2 4

⎧

⎨
⎪⎪

⎩
⎪⎪

being Γ*D the portion of the boundary of Ω with a non-null Dirichlet
boundary condition, as shown in Fig. 6. The forcing terms fi, i = 1,2 are
such that the exact solution for this problem is:

h x y z x y x y x y

h x y z z x z x z x

( , , ) = −cos 1
2
arctan2( , ) ( − 1)( − 1)( + ),

( , , ) = cos 1
2
arctan2( , ) ( − 1)( − 1)( + ),

1
2 2 2 2

2
2 2 2 2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

where x yarctan2( , ) is the inverse tangent function with 2 arguments,
that returns the appropriate quadrant of the angle whose tangent is y x/ .
We remark that the regularity of the solution is such that h F Γ∈ H ( ⧹ )1

2
1

but h F Γ∉ H ( ⧹ )1
3

1 . The exact solution is reported in Fig. 6, where the
coloring is proportional to the hydraulic head, and an example mesh is
also shown. The computed numerical solution hδ is reported inFig. 3. BP1: spatial distribution of fractures.
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Fig. 7(a)-(b) for orders of polynomial accuracy k = 0 and k = 2,
respectively, on fracture F1. A finer mesh is used for the lower order
approximation in order to have a similar number of DOFs for the two
reported solutions (3109 and 3071 DOFs respectively).

Convergence rates against DOFs for approximation spaces of
polynomial accuracy of orders from 0 to 5 are shown in Table 1,
whereas convergence curves for the error norms herr, uerr and u(∇ · )err

against DOF numbers for increasing polynomial order k = 0, …, 5 are
displayed in Fig. 8, for four different fixed polygonal meshes. As
expected, given the low regularity of the solution, convergence rates
for the error in the pressure variable does not improve increasing the
accuracy of the approximation space from order 2 onward, whereas the
convergence rates concerning the velocity field and its divergence do
not improve from approximation orders k = 1 and k = 0 onward,

Fig. 4. BP1: convergence curves of the computed error norms against the number of DOFs at refining the mesh.
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respectively. It can be noticed that in practical DFN configurations, a
high regularity of the solution should not be expected due to the
presence of traces ending in the interior of the fractures.

5.2. DFN simulations

This subsection is devoted to the description of results obtained
applying the method to the study of bigger networks. Throughout this

Fig. 5. BP1: convergence curves of the computed error norms against the number of DOFs at increasing values of the polynomial accuracy on four meshes.

Fig. 6. BP2: spatial distribution of fractures.

Fig. 7. BP2: discrete solutions for fracture 1 and orders k = 0 and k = 2 on two different
geometrical meshes with approximately the same number of DOFs.
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subsection a maximum level of polynomial accuracy k = 2 is used. At
first, a small-sized 6 fracture and 6 trace DFN is considered, labeled
DFN6. Despite its simplicity, it serves to give a clear description on how
the method performs, and the insight it provides can be easily carried
over to more complex problems. The geometrical domain Ω for this
experiment is shown in Fig. 9, along with an example computed
solution in which the grading colors are proportional to hydraulic
head values. The Laplace problem in mixed form is solved in Ω and,
with reference to Fig. 9, a unitary Neumann boundary condition is
imposed on the edge marked with ΓN1 on F1 (also called source
fracture), whereas a zero Dirichlet boundary condition is imposed on
the edge marked by ΓD5 on F5 (the sink fracture). All other fracture
edges are insulated. Three different meshes are considered, as detailed
in Table 2, in which the mesh parameter δ corresponds to the
maximum element diameter of the original triangular mesh.

The results reported in Figs. 10–12 are obtained on the finest mesh
considered. Fig. 10 displays the velocity field on fracture F2 for a
solution with a polynomial accuracy k = 1; the velocity fields obtained
for values of k = 0 and k = 2 are practically indistinguishable. Fracture

Table 1
BP2: experimental convergence rates against DOF number.

Order herr uerr u(∇· )err

0 0.5210 0.5144 0.5015
1 1.0376 0.9989 0.6021
2 1.5171 1.1006 0.5135
3 1.5540 1.1569 0.5550
4 1.4054 1.1267 0.5329
5 1.4794 1.1592 0.4907

Fig. 8. BP2: convergence curves of the computed error norms against the number of DOFs at increasing values of the polynomial accuracy on four meshes.

Fig. 9. DFN6: spatial geometry with source(F1) and sink (F5) fracture.

Table 2
DFN6: number of DOFs for the considered mesh parameters δ and polynomial accuracy
levels k.

Order Mesh

δ = 1.09 δ = 0.70 δ = 0.26

0 975 2039 8458
1 3190 6798 29,304
2 6335 13,597 59,441
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F2 has four traces Γℓ, ℓ = 1, …, 4 given by the intersections of F2 with
fractures F1, F3, F4 and F6, respectively. As expected, flow enters F2

through trace Γ1 that is shared by F2 and the source fracture, and leaves
the fracture through traces Γ2 and Γ4. Trace Γ3 connects F2 to F4, which
is an insulated fracture: indeed it can be seen that there is both flux
entering trace Γ4 and leaving it, with a net balance of zero flux (see the
following Table 4). Figs. 11(a)-(c) show the solution hδ on fracture F2

for the three different polynomial accuracy values. It can be noticed
that pressure head values are quite similar among the three pictures
and, even though there is no condition for pressure head continuity
imposed by problem formulation (the functions in the pressure space
are discontinuous across mesh elements), the solutions for orders 1
and 2 nevertheless exhibit a practically continuous behavior.

We introduce a quantity Δh defined as:

∑Δ
L

h h= 1 ∥ − ∥h i j
2

2
ℓ∈

av, ,ℓ av, ,ℓ 0
2

with i j, ∈ ℓ, and L is the number of traces in the network. The
quantity h iav, ,ℓ is the average of the discrete pressure on the two sides of
trace Γℓ on fracture Fi, for i ∈ , ℓ ∈ i, and thus Δh is a measure of
how discontinuous the pressure head is in the obtained solution across
the traces, averaged by the number of traces. Since the discrete solution
is discontinuous across each mesh edge, it is not possible to attain a
zero value for Δh, but it is expected that its value decreases when the
approximation space is increased. The obtained values of Δh are shown
in Table 3 for the various meshes and the different orders of accuracy k.
It can be seen that, as expected, the quantity Δh decreases both when
the mesh is refined and when the order of polynomial accuracy is
increased, showing a desired converging behavior towards a solution
that is continuous at the traces.

In Fig. 12 the flux along trace Γ F F= ∩4 2 6 is presented for the finest
mesh (δ = 0.26), with a comparison among the different accuracy

Fig. 11. DFN6: solution hδ on fracture F2 for orders 0 to 2, δ = 0.26.

Fig. 12. DFN6: normal velocity on the trace Γ4 for orders 0 to 2, δ = 0.26.

Table 3
DFN6: values of Δh for the various considered meshes and polynomial accuracy orders.

Order Mesh

δ = 1.09 δ = 0.70 δ = 0.26

0 5.2 × 10−1 2.9 × 10−1 1.1 × 10−1

1 1.4 × 10−1 9.4 × 10−2 2.5 × 10−2

2 9.5 × 10−2 5.5 × 10−2 1.4 × 10−2

Fig. 10. DFN6: velocity field on fracture F2, δ = 0.26, k = 1.
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orders. In all cases the approximations are similar and, as expected,
second order elements are able to better reproduce details in the flux
function, such as larger variations over small distances, while lower
order elements are capable at capturing the mean value of the flux
exchange. Practically the same net flux is obtained when integrating the
complete profile in all cases.

Table 4 details the flux exchange in fractures and traces for the
finest considered mesh and a polynomial accuracy k = 0: rows
correspond to traces, whereas columns to fractures. The last row
contains the sum of all the incoming and outgoing flux for each
fracture, while the last column shows, for each trace, the balance in flux
exchange between the two fractures that share the trace. An almost
exact flux balance is obtained, both within fractures and in trace
exchanges, for all orders of accuracy. The incoming flux from fracture
F1 is perfectly balanced with the outgoing flux in F5: fracture F1 acts as
a source that provides a total flux of 5.3174 to the system from the
Neumann edge (negative values represent flux leaving the fracture
through the traces), which leaves the system at fracture F5 with a
practical 0 unbalance reported in the bottom-right cell of the table. All
other fractures show an almost null net flow, which agrees with the
homogeneous Neumann boundary condition. As already mentioned,
the flux exchange in trace T3 is almost zero since fracture F4 is neither a
source nor a sink fracture and since it has only one intersection with
another fracture (F2).

According to the previous analysis it can be concluded that the
mixed formulation shows a very high accuracy when computing flux
exchange between fractures. The flux balance is almost exact for any
order of accuracy of the method. Low order elements also show a very
good performance with much less computational demand.

The last proposed example considers a larger network consisting of
134 fractures and 604 traces that more closely resembles a real
network. This problem is labeled DFN134 and its geometry is shown

in Fig. 13. In this network there is a wider range of fracture sizes and it
has fractures intersecting at varying angles that originate several
geometrical difficulties such as almost parallel and very close traces,
small angles, small edges and badly shaped elements. Boundary
conditions are imposed, with a homogeneous Dirichlet boundary
condition on one edge of a sink fracture (labeled Si in the picture)
and three prescribed incoming flux values of 100, 200 and 200 on one
edge of three different source fractures (So in the picture). The Laplace
problem is solved in mixed form with approximation spaces of orders
0, 1 and 2 on four different meshes, as detailed in Table 5.

An example solution on the whole network is shown in Fig. 13, in
which the coloring is proportional to hδ values. In Fig. 14 results for hδ
and orders k = 0, 1, 2 for a selected fracture are presented on the mesh
with δ = 3.68, whereas the velocity field is shown in Fig. 15 on the same
mesh and a order k = 2. There are 18 traces present in the fracture
generating a complex geometry that nevertheless is handled smoothly by
the Virtual Element discretization. In Table 6 the quantity Δh is reported
for the various meshes and orders of accuracy considered, showing again a
clear convergent trend towards a solution continuous at the traces, when
either the mesh is refined or the polynomial accuracy is increased. In
Table 7 results for flux balance are presented, on the mesh with δ = 3.68

Fig. 13. DFN134: spatial geometry.

Table 5
DFN134: Number of DOFs for the considered meshes and polynomial accuracy values.

Order Mesh

δ = 11.34 δ = 8.09 δ = 5.95 δ = 3.68

0 43,630 53,080 65,149 98,353
1 125,020 153,764 190,742 295,594
2 234,730 290,151 361,668 567,001

Table 4
DFN6: flux data and flux mismatches across traces (last column) and flux balance on fractures (last row) for order k = 0, δ = 0.26.

F1 F2 F3 F4 F5 F6 Balance

Γ1 −5.3174 5.3174 0 0 0 0 0
Γ2 0 −3.4141 3.4141 0 0 0 0
Γ3 0 6.5e–12 0 −6.5e–12 0 0 −6.9e–17
Γ4 0 −1.9032 0 0 0 1.9032 −4.4e–16
Γ5 0 0 −5.3174 0 5.3174 0 8.9e–16
Γ6 0 0 1.9032 0 0 −1.9032 0
Balance −5.3174 4.7e-10 4.4e–16 −6.5e-12 5.3174 1.7e-11 4.4e-16
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and for various polynomial accuracy levels. It can be seen that the right
order of magnitude of the flux at the traces is seized already with the
lowest order of accuracy. The flux balance results for all orders show again
a perfect match between the total incoming flow through the source
fractures (equal to a total flux of 400, given by the boundary conditions)
and the flux entering the sink fracture through its traces, with a mismatch
near to the machine-error order of magnitude.

6. Conclusions

In the present work a numerical method for the resolution of the
advection-diffusion-reaction problem in mixed form in network of
fractures is proposed. The method exploits the flexibility of virtual
elements in handling almost general polygonal meshes to easily
generate a conforming mesh of the network. Suitable approximation
spaces are introduced, and the well posedness of the resulting
numerical scheme is shown.

Benchmark problems are proposed on simple networks with known
analytic solutions, showing optimal convergence properties for the
method for discrete spaces of increasing polynomial accuracy ranging
from 0 to 5. Qualitative results on more complex networks show good
approximation performances already for the lower polynomial accuracy
levels. The direct computation of the velocity variable allows for a very
accurate description of the flux, which is of paramount importance in
view of the use of such velocity field as an input for simulations of
dispersion phenomena.

Table 7
DFN134: flux entering the sink fracture through its traces for various polynomial
accuracy levels, δ = 3.68.

Local trace Order 0 Order 1 Order 2

Γ1 7.7695 8.7141 7.9296
Γ2 22.6830 22.7356 22.6577
Γ3 44.1668 45.9451 41.8777
Γ4 20.9764 25.6750 31.8235
Γ5 4.2227 3.3396 3.0034
Γ6 1.2128 1.1298 1.5661
Γ7 141.0733 142.6016 142.8069
Γ8 97.4382 90.4480 89.2446
Γ9 43.0454 45.2085 44.6129
Γ10 17.4119 14.2027 14.4776
Balance 400.0000 400.0000 400.0000

Table 6
DFN134: values ofΔh for the various considered meshes and polynomial accuracy orders.

Order Mesh

δ = 11.34 δ = 8.09 δ = 5.95 δ = 3.68

0 1.81 1.44 1.15 0.83
1 1.01 0.70 0.54 0.32
2 0.67 0.45 0.42 0.22

Fig. 15. DFN134: velocity field for the 134 fracture network on a selected fracture with
order 2, δ = 3.68.

Fig. 14. DFN134: solution hδ for a selected fracture for different various of polynomial accuracy and δ = 3.68.
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