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Abstract This paper deals with the free transverse vibration of anisotropic plates with several arbitrarily located
internal line hinges and piecewise smooth boundaries, elastically restrained against rotation and translation.
The equations of motion and the associated boundary and transition conditions are derived using Hamilton’s
principle in a rigorous framework. A new analytical manipulation based on a condensed notation is used
to compact the corresponding analytical expressions. A combination of the Ritz method and the Lagrange
multipliers method with polynomials as coordinate functions is used to obtain tables of the nondimensional
frequencies and the corresponding mode shapes, for rectangular plates with different boundary conditions and
restraint conditions in the internal line hinges. The cases not previously treated of two- and three line hinges
are particularly analyzed.

1 Introduction

Substantial literature has been devoted to the formulation, by means of the calculus of variations of boundary
value problems of mathematical physics [1–14]. Several books treated the study of isotropic and anisotropic
plates including the determination of static, buckling, and vibrations characteristics [15–21]. It is not the
intention to review the literature consequently; only some of the published papers related to the present work
will be cited. A great number of articles treated the dynamical behavior of plates with complicating effects such
as elastically restrained boundaries, presence of elastically or rigidly connected masses, variable thickness,
anisotropic material, points and lines supports, presence of holes, etc. A review of the literature has shown that
there is only a limited amount of information for the vibration of plates with line hinges. A line hinge in a plate
can be used to facilitate folding of gates and to simulate a through crack along the interior of the plate, among
other applications. Wang et al. [22] studied the buckling and vibration of plates with an internal line hinge by
using the Ritz method. Gupta and Reddy [23] presented the exact buckling loads and vibration frequencies
of orthotropic rectangular plates with an internal line hinge by employing an analytical method which applies
the Levy solution and the domain decomposition technique. Xiang and Reddy [24] provided the first-known
solutions based on the first-order shear deformation theory for vibration of rectangular plates with an internal

R. O. Grossi (B)
INIQUI-CONICET, Facultad de Ingeniería, Universidad Nacional de Salta,
Avenida Bolivia 5150, Salta, Argentina
E-mail: grossiro@unsa.edu.ar
Tel.: +54-387-4255379
Fax: +54-387-4255351

J. Raffo
Grupo de Mecánica Computacional, Facultad Regional Delta,
Universidad Tecnológica Nacional, San Martín 1171, 2804 Campana, Argentina
E-mail: jraffo@frd.utn.edu.ar

Author's personal copy



R. O. Grossi, J. Raffo

line hinge. The Lévy method and the state-space technique were employed to solve the vibration problem.
Huang et al. [25] developed a discrete method for analyzing the free vibration problem of thin and moderately
thick rectangular plates with a line hinge and various classical boundary conditions. Quintana and Grossi [26]
dealt with the study of free transverse vibrations of isotropic rectangular plates with an internal line hinge and
elastically restrained boundaries. The problem was solved employing a combination of the Ritz method and
the Lagrange multiplier method.

All of these studies have considered rectangular plates with only one free internal line hinge. However,
there is no previous study for the vibration of anisotropic plates with generally restrained piecewise smooth
boundaries and with several internal line hinges, elastically restrained against rotation and translation.

Engineers and applied mathematicians increasingly used the techniques of calculus of variations to solve
a large number of problems, and in this discipline, the “operator” δ has been assigned special properties and
handled using heuristic procedures. Commonly, the domain of definition of a functional and the space of
admissible directions of the variation of this functional are not clearly stated; thus, most of the analytical
manipulations are confusing and not mathematically precise. Grossi [27] formulated an analytical model for
the dynamic behavior of anisotropic plates, with an arbitrarily located internal line hinge and piecewise smooth
boundaries among other complicating effects. By introducing an adequate change of variables, the energies
which correspond to the different elastic restraints were handled in a rigorous framework. In the same manner,
in the present paper, a complete rigorous application of the Hamilton’s principle is developed for the derivation
of equations of motion and its associated boundary and transition conditions, for anisotropic plates with several
arbitrarily located internal line hinges and piecewise smooth boundaries, elastically restrained against rotation
and translation. Also, a methodology based on a combination of the Ritz method and the Lagrange multipliers
method with polynomials as coordinate functions is used to investigate the natural frequencies and mode
shapes. To demonstrate the validity and efficiency of the proposed algorithm, results of a convergence study
are included, several numerical examples not previously treated are presented, and some particular cases are
compared with results obtained by other authors. Tables are given for frequencies, and two-dimensional plots
for mode shapes are included.

The consideration of special characteristics such as elastically restrained piecewise smooth boundary,
variable thickness, anisotropic material and particularly several internal line hinges, leads to complicated
analytical expressions and tedious algebraic manipulations. For this reason, in this paper, a new analytical
manipulation based on a condensed notation is used. The compact analytical expressions substantially lower
the analytical effort and the amount of information.

This paper is organized in the following way. In Sect. 2, a rigorous treatment of techniques of the calculus
of variations to obtain the governing differential equations and the boundary conditions is presented. In Sect. 3,
the transition conditions at the line hinges are determined. In Sect. 4, a combination of the Ritz method and
the Lagrange multipliers method is used for the determination of frequencies and mode shapes of rectangular
anisotropic plates. Verifications and numerical applications are also included. Finally, Sect. 5 contains the
conclusions of this paper.

2 The variation of the energy functional

Let us consider an anisotropic plate that in the equilibrium position covers the two-dimensional domain G,
with piecewise smooth boundary ∂G elastically restrained against rotation and translation. The plate has N −1
intermediate line hinges elastically restrained against rotation and translation, as it is shown in Fig. 1. In order
to analyze the transverse displacements of the system under study, we suppose that the vertical position of the
plate at any time t is described by the function w = w(x, t), where x = (x1, x2) ∈ Ḡ, Ḡ = G ∪ ∂G and that
the domain G is divided by the lines �(ck ), k = 1, 2, . . . , N −1, into N parts G(k) with boundaries ∂G(k), (see
Fig. 1). Different rigidities and mass density of the anisotropic material correspond to each subdomain G(k).
The extreme points ak and bk of the lines �(ck ), k = 1, 2, . . . , N − 1, divide the boundary curve ∂G such that
(see Fig. 2):

∂G = �(1) ∪ �(2) · · · ∪ �(N ) (1)

and

�(k) = ∂G(k) − �(ck−1) − �(ck ), k = 1, 2, . . . , N , (2)
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Fig. 2 Domains and boundaries

where

�(k) = �(k,1) ∪ �(k,2), k = 1, 2, . . . , N (3)

with �(c0) = �(cN ) = �(1,2) = �(N ,2) = ∅, where equality is understood in the sense of set theory and ∅
denotes the empty set.

Let us assume that the boundary curve ∂G is described by a smooth path γ in R
2 defined in the compact

interval [0, l], where l = l(∂G) is the length of the path γ . The image of [0, l] under γ (the graph of γ ) is the
boundary curve ∂G and will be denoted by im(γ ). We also assume that the curves �(k) given by Eq. (3) are
described, respectively, by the smooth paths

γ (k,m) :
[
0, l(k,m)

]
→ R

2

with

γ (k,m)(s) =
(
γ

(k,m)
1 (s), γ (k,m)

2 (s)
)

, s ∈
[
0, l(k,m)

]
, m = 1, 2, k = 1, 2, . . . , N , (4)

where l(k,m) = l
(
�(k,m)

)
is the length of the path γ (k,m) and l(1,2) = l(N ,2) = 0. From (3) and (4), it

follows that γ (k,m) describes the arc �(k,m). For k = 2, . . . , N , in Eq. (4), s denotes the arc length mea-
sured from the point (ck−1, ak−1) of the curve �(k,1) and from the point (ck, bk) of the curve �(k,2),
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where ak−1 = γ
(k−1,1)
2 (l(k−1,1)), bk = γ

(k,2)
2 (0) (see Fig. 2). In the case of the curve �(1,1), the arc length

is measured from the point (c1, b1). The path which describes the boundary ∂G can be expressed as:

γ (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ (1,1)(s) if s ∈ [0, l(1,1)
]
,

γ (2,1)
(
s − l(1,1)

)
if s ∈ [l(1,1), l(1,1) + l(2,1)

]
,

. . .

γ (N−1,1) (s − AN−2) if s ∈ [AN−2, AN−1
]
,

γ (N ,1) (s − AN−1) if s ∈ [AN−1, AN
]
,

γ (N−1,2) (s − AN ) if s ∈ [AN , AN + B1] ,
. . .

γ (2,2) (s − AN − BN−3) if s ∈ [AN + BN−3, AN + BN−2
]
,

(5)

where

A j =
j∑

i=1

l(i,1), B j =
j∑

i=1

l(N−i,2), l =
N∑

i=1

(
l(i,1) + l(i,2)

)
.

It is well known that if f : im(β) → R is a continuous function defined on the image � of a piecewise smooth
path β : [c, d] → R

2, the curvilinear integral of f along � is given by the following:

∫

�

f (x1, x2) ds =
d∫

c

( f ◦ β) (r)
∥∥β ′(r)

∥∥ dr, (6)

where ( f ◦ β) (r) = f (β(r)) and the norm
∥∥β ′(r)

∥∥ is given by
(
β ′2

1 (r) + β ′2
2 (r)

)1/2
. In the case of a real

continuous function, f defined on the image of the path γ [given by (5)], i.e., the boundary curve ∂�, the
definition (6) when s is taken as the parameter r , leads to

∫

∂G

f (x1, x2) ds =
l∫

0

( f ◦ γ ) (s)
∥∥γ ′(s)

∥∥ ds =
l∫

0

( f ◦ γ ) (s) ds, (7)

and

∫

∂G

f (x1, x2) ds =
2∑

m=1

N∑
k=1

∫

�(k,m)

f (x1, x2) ds, (8)

where, in view of Eq. (4) and the conditions l(1,2) = l(N ,2) = 0, we have
∫

�(1,2)

f (x1, x2) ds = 0 and
∫

�(N ,2)

f (x1, x2) ds = 0.

The additive property (8) will prove be valuable in the definitions of functions and functionals over ∂�, since
they can be set-up independently in each �(k) and by using Eq. (4). Thus, we assume that the rotational rigidities
of the elastic restraints along the boundary and the line hinges are, respectively, given by the functions

r (k,m)
R : im(γ (k,m)) → R, m = 1, 2, k = 1, 2, . . . , N , (9a)

r (ck )
R : im(γ (ck)) → R, k = 1, 2, . . . , N − 1, (9b)

where γ (ck) is the path which describes the line �(ck). In the same manner, the translational rigidities are,
respectively, given by the functions

r (k,m)
T : im(γ (k,m)) → R, m = 1, 2, k = 1, 2, . . . , N , (10a)

r (ck )
T : im(γ (ck)) → R, k = 1, 2, . . . , N − 1. (10b)
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It is obvious that

r (1,2)
R = r (N ,2)

R = r (1,2)
T = r (N ,2)

T ≡ 0. (11)

The presence of several complicating effects [particularly the existence of N − 1 line hinges which requires
a careful analysis similar to the developed procedure to obtain the path which describes the boundary ∂G by
Eq. (5)] leads to complicated analytical expressions and tedious algebraic manipulations. In order to obtain a
compact analytical scheme for the derivation of the boundary value problem which describes the dynamical
behavior of the mechanical system, we consider the following new procedure for the manipulation of derivatives
introduced in [28].

Let us consider the following notation: Cn(S) denotes the set of all real functions u : S → R that have
continuous partial derivatives of order n and Cn

(
S̄
)

denotes the set of all u ∈ Cn (S) for which all partial
derivatives of order n can be extended continuously to the closure S̄ of S. Consider the well-known notation

Dαu (x̄) = ∂ |α|u (x̄)

∂xα1
1 ∂xα2

2 ∂xα3
3

, (12)

where u : A → R, u ∈ C |α| (A) , A ⊂ R
3, and x̄ = (x1, x2, x3). The vector α = (α1, α2, α3) is a

multi-index whose coordinates are non-negative integers and |α| is the sum |α| =∑3
i=1 αi . In the case of the

described plate, we consider a sufficiently smooth function v : A → R, defined on A = G × [0, T ] for some
fixed time T > 0, with x = (x1, x2) ∈ G, x3 = t, G ⊂ R

2.
A new compact notation is generated if we introduce the following multi-indices:

α(1) = (2, 0, 0) , α(2) = (0, 2, 0) , α(3) = (1, 1, 0) , α(4) = (0, 0, 2) ,

1(i) = (δ1i , δ2i , δ3i ) , i = 1, 2, 3,
(13)

where δ j i is the Kronecker delta, δ j i = 1 if j = i and δ j i = 0 if j 
= i . The use of (12)–(13) leads to

D1(i)
v(x, t) = ∂v

∂xi
(x, t) , i = 1, 2, D1(3)

v (x, t) = ∂v

∂t
(x, t) ,

Dα(i)
v (x, t) = ∂2v

∂x2
i

(x, t) , i = 1, 2,

Dα(3)

v (x, t) = ∂2v

∂x1∂x2
(x, t) , Dα(4)

v (x, t) = ∂2v

∂t2 (x, t) .

(14)

The multi-indices (13) verify the following algebraic rules [28]:

1(i) + 1(i) = α(i), 1(3−i) + 1(i) = α(3), ∀i ∈ {1, 2} , 1(3) + 1(3) = α(4). (15)

These rules will probe be valuable in the algebraic manipulation of the variation of the energy functional. An
essential step to compact analytical expressions is the derivation of formulae needed to transform the terms
which involves derivatives of variations. Let us suppose that

S(k)
i : A → R, v : A → R, A = G × [0, T ] , S(k)

i (•, t) , v (•, t) ∈ C2(Ḡ),

n(k)
i : ∂�(k) → R, i ∈ {1, 2} , k ∈ {1, 2, . . . , N } .
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Then, the following formulas are valid:
∫

G(k)

S(k)
i (x, t)Dα(i)

v(x, t)dx =
∫

∂G(k)

[
S(k)

i (x, t)
(

D1(i)
v(x, t)

)
n(k)

i (x)

−
(

D1(i)
S(k)

i (x, t)
)

v (x, t) n(k)
i (x)

]
ds +

∫

G(k)

(
Dα(i)

S(k)
i (x, t)

)
v (x, t) dx, i = 1, 2, (16)

∫

G(k)

S(k)
3 (x, t) Dα(3)

v (x, t) dx = 1

2

2∑
i=1

⎧⎪⎨
⎪⎩

∫

∂G(k)

[
S(k)

3 (x, t)
(

D1(3−i)
v (x, t)

)
n(k)

i (x)

−
(

D1(i)
S(k)

3 (x, t)
)

v (x, t) n(k)
3−i (x)

]
ds
}

+
∫

G(k)

(
Dα(3)

S(k)
3 (x, t)

)
v (x, t) dx, (17)

where n(k)
i denotes the i-th component of the outward unit normal �n(k) to the boundary ∂�(k). The demonstra-

tions of (16) and (17) are a direct consequence of the proposition 2 of Grossi [28].
Hamilton’s principle requires that between times t0 and t1, at which the positions of the mechanical system

are known, it should execute a motion which makes stationary the functional

F(w) =
t1∫

t0

(EK − ED) dt,

on the space of admissible functions, where EK denotes the kinetic energy and ED the total potential energy.
From the well-known expressions of the kinetic and potential energies of the mechanical system under study,
it follows that the energy functional is given by

F (w) = 1

2

t1∫

t0

⎧⎪⎨
⎪⎩

N∑
k=1

⎡
⎢⎣
∫

G(k)

⎛
⎝(ρh)(k)

(
∂w

∂t

)2

− C (k)
11

(
∂2w

∂x2
1

)2

− 2C (k)
12

∂2w

∂x2
1

∂2w

∂x2
2

− C (k)
22

(
∂2w

∂x2
2

)2

− 4
∂2w

∂x1∂x2

(
C (k)

16
∂2w

∂x2
1

+ C (k)
26

∂2w

∂x2
2

)

− 4C (k)
66

(
∂2w

∂x1∂x2

)2
)

dx −
2∑

m=1

∫

�(k,m)

(
r (k,m)

T w2 + r (k,m)
R

(
∂w

∂ �n(k,m)

)2
)

ds

−
∫

�(ck )

(
r (ck )

T w2 + r (ck )
R

(
[∂w/∂x1]ck

)2)ds

⎤
⎥⎦

⎫⎪⎬
⎪⎭

dt, (18)

where w(x, t) is given by w(k)(x, t) when x ∈ G(k); (ρh)(k) is the mass density, and C (k)
i j = C (k)

i j (x) are

the rigidities of the anisotropic material [18], which correspond to the subdomain G(k); ∂w/∂ �n(k,m) is the
directional derivative of w with respect to the outward normal unit vector �n(k,m) to the curve �(k,m), and
finally, the symbol [∂w/∂x1]ck

denotes the difference of lateral derivatives
[

∂w

∂x1

]

ck

= ∂w

∂x1

(
c+

k , x2, t
)− ∂w

∂x1

(
c−

k , x2, t
)
. (19)

Since the number of line hinges is N − 1, it is necessary to adopt r (cN )
R = r (cN )

T ≡ 0 in Eq. (18), and in view
of conditions (11), we have the following:

∫

�(1,2)

(•)ds =
∫

�(N ,2)

(•)ds =
∫

�(cN )

(•)ds = 0.
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The definition of the variation of F at w in the direction v is given by

δF (w; v) = dF

dε
(w + εv)

∣∣∣∣
ε=0

, (20)

and the condition of stationary functional requires that

δF (w; v) = 0, ∀v ∈ Da, (21)

where Da is the space of admissible directions at w for the domain D of this functional. In order to make
the mathematical developments required by the application of the techniques of the calculus of variations, we
assume the following:

(ρh)(k) ∈ C
(

Ḡ(k)
)

, C (k)
i j ∈ C2

(
Ḡ(k)

)
, w (x, •) ∈ C2 [t0, t1] , w (•, t) ∈ C

(
Ḡ
)
,

w (•, t)|Ḡ(k) ∈ C4
(

Ḡ(k)
)

, Ḡ(k) = G(k) ∪ ∂G(k), k = 1, 2, . . . , N .

It must be noted that as a consequence of the presence of the line hinges, the derivative ∂w/∂x1 and the
corresponding derivatives of greater order do not necessarily exist in the domain G, so it is necessary to
impose the conditions w (•, t)|Ḡ(k) ∈ C4

(
Ḡ(k)

)
, k = 1, 2, . . . , N .

In view of all these observations and since Hamilton’s principle requires that at times t0 and t1 the positions
are known, the space D is given by

D =
{
w;w (x, •) ∈ C2 [t0, t1] , w (•, t) ∈ C

(
Ḡ
)
, w (•, t)|Ḡ(k) ∈ C4

(
Ḡ(k)

)
,

k = 1, . . . , N , w(x, t0), w (x, t1) prescribed
}
. (22)

The only admissible directions v at w ∈ D are those for which w + εv ∈ D for all sufficiently small ε and
δF(w; v) exists. In consequence, and in view of (22), v is an admissible direction at w for D if, and only if,
v ∈ Da where

Da = {
v; v (x, •) ∈ C2 [t0, t1] , v (•, t) ∈ C

(
Ḡ
)
, v (•, t)|Ḡ(k) ∈ C4

(
Ḡ(k)

)
,

k = 1, . . . , N , v (x, t0) = v (x, t1) = 0,∀x ∈ Ḡ
}
. (23)

Performing the corresponding analytical developments by using the compact notation in Eq. (20), we have

δF (w; v)

=
t1∫

t0

⎧⎪⎨
⎪⎩

N∑
k=1

⎡
⎢⎣
∫

G(k)

(
(ρh)(k)

(
D1(3)

w
) (

D1(3)

v
)

−
3∑

i=1

S(k)
i Dα(i)

v

)
dx

−
2∑

m=1

∫

�(k,m)

(
r (k,m)

T wv + r (k,m)
R

∂w

∂ �n(k,m)

∂v

∂ �n(k,m)

)
ds

−
∫

�(ck )

(
r (ck )

T wv + r (ck )
R [∂w/∂x1]ck

[∂v/∂x1]ck

)
ds

⎤
⎥⎦

⎫⎪⎬
⎪⎭

dt, (24)

where

S(k)
i =

3∑
j=1

A(k)
i j (x) Dα( j)

w (x, t) , (25)
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with the coefficients A(k)
i j as elements of the symmetric matrix

A =

⎛
⎜⎜⎝

C (k)
11 C (k)

12 2C (k)
16

C (k)
12 C (k)

22 2C (k)
26

2C (k)
16 2C (k)

26 4C (k)
66

⎞
⎟⎟⎠ . (26)

It is convenient from now on to introduce a change of variables in order to deal with the points which
correspond to the curves �(k). Let us consider the new variables (y1, y2) where y1 is a distance measured from
the boundary and along the normal to ∂G and y2 is the arc length measured from the point (c1, b1) of the
boundary ∂G, (see Fig. 2). This problem has been addressed in [27].

The mentioned change of variables transforms w = w(x, t) into w̃ = w̃(y, t) with y = (y1, y2). It also
transforms v into ṽ and leads to the following relation between the original derivatives D1(i)

v (i.e. ∂v/∂xi )

and the new ones D1(i)
ṽ (i.e. ∂ṽ/∂yi ):

D1(i)
v =

(
D1(1)

ṽ
)

ñ(k)
i + (−1)i

(
D1(2)

ṽ
)

ñ(k)
3−i , i = 1, 2, in ∂G(k). (27)

Integrating by parts with respect to t the first term of (24) and applying the conditions

v (x, t0) = v (x, t1) = 0, ∀x ∈ Ḡ,

imposed in (23), we obtain

t1∫

t0

∫

G(k)

(ρh)(k)
(

D1(3)

w
) (

D1(3)

v
)

dxdt =
∫

G(k)

(ρh)(k)
(

D1(3)

w
)

v

∣∣∣∣∣∣∣

t1

t0

dx

−
t1∫

t0

∫

G(k)

(ρh)(k)
(

D1(3)
(

D1(3)

w
))

vdxdt = −
t1∫

t0

∫

G(k)

(ρh)(k)
(

Dα(4)

w
)

vdxdt, (28)

where the last algebraic rule from (15) has been applied.
To transform the terms S(k)

i Dα(i)
v of (24), the formulae (16)–(17) and the change of variables described

above must be employed. This procedure and (28) lead to

δF (w; v)

= −
t1∫

t0

⎧⎪⎨
⎪⎩

N∑
k=1

⎡
⎢⎣
∫

G(k)

(
(ρh)(k)

(
Dα(4)

w
)

+
3∑

i=1

(
Dα(i)

S(k)
i

))
vdx

+
∫

∂G(k)

(
2∑

i=1

(
S(k)

i n(k)
i

(
D1(i)

v
)

−
(

D1(i)
S(k)

i

)
n(k)

i v

+ 0.5
(

S(k)
3 n(k)

i

(
D1(3−i)

v
)

−
(

D1(i)
S(k)

3

)
n(k)

3−iv
))

ds

+
2∑

m=1

⎛
⎜⎝

l(k,m)∫

0

r̃ (k,m)
T (0, y2) w̃ (0, y2, t) ṽ (0, y2, t) dy2

+
l(k,m)∫

0

r̃ (k,m)
R (0, y2) D1(1)

w̃ (0, y2, t) D1(1)

ṽ (0, y2, t) dy2

⎞
⎟⎠

+
∫

�(ck )

(
r (ck )

T wv + r (ck )
R [∂w/∂x1]ck

[∂v/∂x1]ck

)
ds

⎤
⎥⎦

⎫⎪⎬
⎪⎭

dt, (29)
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where

r̃ (1,2)
R = r̃ (N ,2)

R = r (cN )
R = r̃ (1,2)

T = r̃ (N ,2)
T = r (cN )

T ≡ 0.

From Eqs. (2)–(3), we have the following:

∂G(k) = �(k,1) ∪ �(k,2) ∪ �(ck−1) ∪ �(ck ), when k = 2, . . . , N − 1,

∂G(1) = �(1,1) ∪ �(c1) and ∂G(N ) = �(N ,1) ∪ �(cN−1),

and in consequence, in Eq. (29), it is possible to write (see Fig. 2)

N∑
k=1

∫

∂G(k)

S(k)ds

=
N∑

k=1

⎛
⎜⎝

2∑
m=1

∫

�(k,m)

S(k,m)ds +
∫

�(ck−1)

S(k)ds +
∫

�(ck )

S(k)ds

⎞
⎟⎠ (30)

where
∫

�(1,2)

S(1,2)ds =
∫

�(N ,2)

S(N ,2)ds =
∫

�
(c0 )

S(1)ds =
∫

�(cN )

S(N )ds = 0,

and

S(k) =
2∑

i=1

[
S(k)

i n(k)
i

(
D1(i)

v
)
−
(

D1(i)
S(k)

i

)
n(k)

i v+0.5
(

S(k)
3 n(k)

i

(
D1(3−i)

v
)
−
(

D1(i)
S(k)

3

)
n(k)

3−iv
)]

. (31)

It must be noted that S(k,m) denotes the expression S(k) when n(k)
i is replaced by n(k,m)

i . The compact notation
has the following useful property which allows an adequate collection of terms, [28]:

2∑
i=1

(
D1(3−i)

v
)

n(k,m)
i =

2∑
i=1

(
D1(i)

v
)

n(k,m)
3−i ,

then from Eq. (31), the expression of S(k,m) is given by

S(k,m) =
2∑

i=1

[(
S(k)

i n(k,m)
i + 0.5S(k)

3 n(k,m)
3−i

)
D1(i)

v −
((

D1(i)
S(k)

i

)
n(k,m)

i + 0.5
(

D1(i)
S(k)

3

)
n(k,m)

3−i

)
v
]
. (32)

Now, if the line integrals along �(k,m) are replaced by the corresponding ordinary integrals according to (7)
and the new variables (y1, y2), we have the following:

∫

�(k,m)

S(k,m)ds =
l(k,m)∫

0

S̃(k,m) (0, y2, t) dy2.

The expression of the derivatives D1(i)
v in Eq. (32) can be expressed in the new variables (y1, y2) by using

Eqs. (27), and then, when the boundary ∂G is smooth, the Eq. (29) reduces to

δF (w; v)

= −
t1∫

t0

⎧⎪⎨
⎪⎩

N∑
k=1

⎡
⎢⎣
∫

G(k)

(
(ρh)(k)

(
Dα(4)

w
)

+
3∑

i=1

(
Dα(i)

S(k)
i

))
vdx
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+
2∑

m=1

l(k,m)∫

0

(
H̃ (k,m) + r̃ (k,m)

T w̃ṽ + r̃ (k,m)
R D1(1)

w̃D1(1)

ṽ
)

dy2

+
∫

�(ck−1)

S(k)dx2+
∫

�(ck )

S(k)dx2 +
∫

�(ck )

(
r (ck )

T wv + r (ck )
R [∂w/∂x1]ck

[∂v/∂x1]ck

)
ds

⎤
⎥⎦

⎫⎪⎬
⎪⎭

dt, (33)

where H̃ (k,m) is obtained by the following procedure. Let us consider

H (k) = Q(k) D1(1)

v + R(k)D1(2)

v − P(k)v (34)

and

H̃ (k) = Q̃(k) D1(1)

ṽ + R̃(k)D1(2)

ṽ − P̃(k)ṽ, (35)

where the expressions of P̃(k), Q̃(k), and R̃(k) is obtained by introducing the new variables (y1, y2), respectively,
in

P(k) =
2∑

i=1

[(
D1(i)

S(k)
i

)
n(k)

i + 0.5
(

D1(i)
S(k)

3

)
n(k)

3−i

]
, (36)

Q(k) =
2∑

i=1

[
S(k)

i

(
n(k)

i

)2 + 0.5S(k)
3 n(k)

i n(k)
3−i

]
(37)

and

R(k) =
2∑

i=1

[
(−1)i

(
S(k)

i n(k)
i n(k)

3−i + 0.5S(k)
3

(
n(k)

3−i

)2
)]

. (38)

Finally, the expressions of P̃(k,m), Q̃(k,m), and R̃(k,m), needed in H̃ (k,m), are obtained by replacing ñ(k)
i by

ñ(k,m)
i and ñ(k)

3−i by ñ(k,m)
3−i , respectively, in P̃(k), Q̃(k) and R̃(k). The integration by parts

l(k,m)∫

0

(
R̃(k,m) D1(2)

ṽ
)

dy2 = R̃(k,m)ṽ

∣∣∣
l(k,m)

0
−

l(k,m)∫

0

(
D1(2)

R̃(k,m)
)

ṽdy2 (39)

transforms Eq. (33) into

δF(w; v) = −
t1∫

t0

⎧
⎪⎨
⎪⎩

N∑
k=1

⎡
⎢⎣
∫

G(k)

(
(ρh)(k)

(
Dα(4)

w
)

+
3∑

i=1

(
Dα(i)

S(k)
i

))
vdx

+
2∑

m=1

⎛
⎜⎝

l(k,m)∫

0

(
D1(1)

ṽ
(

Q̃(k,m) + r̃ (k,m)
R D1(1)

w̃
)

−
(

P̃(k,m) + D1(2)

R̃(k,m) − r̃ (k,m)
T w̃

)
ṽ
)

dy2

+ R̃(k,m)ṽ

∣∣∣
l(k,m)

0

)
+

∫

�(ck−1)

S(k)dx2+
∫

�(ck )

S(k)dx2

+
∫

�(ck )

(
r (ck )

T wv + r (ck )
R [∂w/∂x1]ck

[∂v/∂x1]ck

)
ds

⎤
⎥⎦

⎫⎪⎬
⎪⎭

dt. (40)
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According to the condition of stationary functional (21), the expression (40) must vanish for the function w
corresponding to the actual motion of the plate for all admissible directions v, and in particular for those
admissible v, (or ṽ) and D1(1)

ṽ, for which the one-dimensional integrals in (40) vanish. Then, the variation
reduces to

δF (w; v) = −
t1∫

t0

∫

G(k)

[
N∑

k=1

(
(ρh)(k)

(
Dα(4)

w
)

+
3∑

i=1

(
Dα(i)

S(k)
i

))]
vdxdt . (41)

If the fundamental lemma of the calculus of variations is applied, it is concluded that the function w must
satisfy the following differential equations:

(ρh)(k)
(

Dα(4)

w
)

+
3∑

i=1

(
Dα(i)

S(k)
i

)
= 0, ∀x ∈ G(k), t ≥ 0, k = 1, 2, . . . , N . (42)

Next, we remove the conditions for which the one-dimensional integrals in (40) vanish, and since the function
w must satisfy Eqs. (42), the functional (40) reduces to

δF (w; v) = −
t1∫

t0

⎧
⎪⎨
⎪⎩

N∑
k=1

⎡
⎢⎣

2∑
m=1

⎛
⎜⎝

l(k,m)∫

0

(
D1(1)

ṽ
(

Q̃(k,m) + r̃ (k,i)
R D1(1)

w̃
)

−
(

P̃(k,m) + D1(2)

R̃(k,m) − r̃ (k,i)
T w̃

)
ṽ
)

dy2 + R̃(k,m)ṽ

∣∣∣
l(k,m)

0

)
+
∫

�(ck−1)

S(k)dx2+
∫

�(ck )

S(k)dx2

+
∫

�(ck )

(
r (ck )

T wv + r (ck )
R [∂w/∂x1]ck

[∂v/∂x1]ck

)
ds

⎤
⎥⎦

⎫⎪⎬
⎪⎭

dt. (43)

When the boundary ∂G is smooth, using admissible directions v, for which the curvilinear integrals along
�(ck−1) and �(ck ) vanish, the condition of stationarity of (43) leads to the following natural boundary conditions:

r̃ (k,m)
R (0, y2) D1(1)

w̃ (0, y2, t) = −
2∑

i=1

(
S̃(k)

i (0, y2, t)
(

ñ(k,m)
i (0, y2)

)2

+ 0.5S̃(k)
3 (0, y2, t) ñ(k,m)

i (0, y2,) ñ(k,m)
3−i (0, y2)

)
,

y2 ∈
[
0, l(k,m)

]
, k = 1, . . . , N , m = 1, 2, (44)

r̃ (k,m)
T (0, y2) w̃ (0, y2, t) =

2∑
i=1

[(
D1(i)

S̃(k)
i (0, y2, t) + 0.5D1(3−i)

S̃(k)
3 (0, y2, t)

)
ñ(k,m)

i (0, y2)

+ D1(2)
(
(−1)i

(
S̃(k)

i (0, y2, t) ñ(k,m)
i (0, y2) ñ(k,m)

3−i (0, y2)
)

+ 0.5S̃(k)
3 (0, y2, t)

(
n(k,m)

3−i (0, y2)
)2
)]

,

y2 ∈
[
0, l(k,m)

]
, k = 1, . . . , N , m = 1, 2. (45)

When the boundary is piecewise smooth, additional corner conditions are generated as a consequence of the
terms, [27]:

R̃(k,m)ṽ

∣∣∣
l(k,m)

0
.
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3 The transition conditions at the line hinges

If we remove the conditions from which the curvilinear integrals along �(ck−1) and �(ck ) vanish and since the
function w must satisfy the natural boundary conditions (44)–(45), the functional (43) reduces to

δF (w; v)

= −
t1∫

t0

⎧⎪⎨
⎪⎩

N∑
k=1

⎡
⎢⎣
∫

�(ck−1)

S(k)dx2+
∫

�(ck )

S(k)dx2 +
∫

�(ck )

(
r (ck )

T wv + r (ck )
R [∂w/∂x1]ck

[∂v/∂x1]ck

)
ds

⎤
⎥⎦

⎫⎪⎬
⎪⎭

dt.

(46)

Now, let us consider the curvilinear integrals over �(ck−1) and �(ck ). A path that describes the line �(ck ), when
it is considered as a part of ∂G(k), k = 1, 2, . . . , N − 1, is given by the parametric representation

γ (c−
k ) (x2) =

(
γ

(c−
k )

1 (x2) , γ
(c−k )

2 (x2)

)
= (ck, x2) , x2 ∈ [ak, bk] , k = 1, 2, . . . , N − 1, (47)

where ak = γ
(k+1,1)
2 (0), bk = γ

(k,2)
2 (0), (see Fig. 2). In this case, we have �n(k) = (1, 0). A path that describes

the line �(ck−1), when it is considered as a part of ∂G(k), with k = 2, . . . , N , is given by the parametric
representation

γ (c+
k−1) (x2) =

(
γ

(c+k−1)

1 (x2) , γ
(c+

k−1)

2 (x2)

)
= (ck−1, bk−1 − x2) , x2 ∈ [0, bk−1 − ak−1

]
, (48)

and �n(k−1) = (−1, 0), when k = 2, . . . , N . It must be noted that the notations γ (c+
k−1) and γ (c−

k ) clearly indicate
that for a given k, the lines �(ck−1) and �(ck ) belong to ∂G(k). If we use (47) and (48) in (46) and integrate by
parts, we obtain

δF (w; v)

=
t1∫

t0

⎧⎨
⎩

N−1∑
k=1

⎛
⎝

bk∫

ak

[((
D1(1)

S(k)
1 + D1(2)

S(k)
3

)
v
) (

c−
k , x2, t

)

−
(

S(k)
1 D1(1)

v
) (

c−
k , x2, t

)]
dx2 +

N∑
k=2

bk−1−ak−1∫

0

[
−
((

D1(1)

S(k)
1 + D1(2)

S(k)
3

)
v
) (

c+
k−1, bk−1 − x2, t

)

+
(

S(k)
1 D1(1)

v
) (

c+
k−1, bk−1 − x2, t

)]
dx2 − 0.5

N−1∑
k=1

(
S(k)

3 v
) (

c−
k , x2, t

)
∣∣∣∣∣
bk

ak

− 0.5
N∑

k=2

(
S(k)

3 v
) (

c+
k−1, bk−1 − x2, t

)∣∣bk−1−ak−1

0
−

N−1∑
k=1

bk∫

ak

(
r (ck )

T (ck, x2) w (ck, x2, t) v (ck, x2, t)

+ r (ck )
R (ck, x2)

[
D1(1)

w
]

ck

[
D1(1)

v
]

ck

)
dx2

}
dt. (49)

It is remarkable that both the integral over �(ck−1) and that over �(ck ) must be computed twice when all the
subdomains G(k) have been considered. The properties

bk−1−ak−1∫

0

S(k)
(
c+

k−1, bk−1 − x2, t
)
dx2 =

bk−1∫

ak−1

S(k)
(
c+

k−1, x2, t
)
dx2
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and

N∑
k=2

⎛
⎜⎝

bk−1∫

ak−1

S(k)
(
c+

k−1, bk−1 − x2, t
)
dx2

⎞
⎟⎠ =

N−1∑
k=1

⎛
⎝

bk∫

ak

S(k)
(
c+

k , x2, t
)
dx2

⎞
⎠

allow to collect terms, and consequently, from (49), in the manner of achieving Eqs. (44)–(45), we obtain:

r (ck )
R (ck, x2)

(
D1(1)

w
(
c+

k , x2, t
)− D1(1)

w
(
c−

k , x2, t
)) = S(k)

1

(
c−

k , x2, t
)

= S(k)
1

(
c+

k , x2, t
)
, x2 ∈ [ak, bk] , 1 ≤ k ≤ N − 1, (50)

r (ck )
T (ck, x2) w (ck, x2, t) =

(
D1(1)

S(k)
1 + D1(2)

S(k)
3

) (
c−

k , x2, t
)

−
(

D1(1)

S(k)
1 + D1(2)

S(k)
3

) (
c+

k , x2, t
)
, x2 ∈ [ak, bk] , 1 ≤ k ≤ N − 1. (51)

Since the domain of definition of the problem is G, and this is an open set in R
2, given by G =⋃N

k=1 G(k) ∪⋃N−1
k=1 �(ck ) with boundary ∂G given by Eq. (1), only the Eqs. (44)–(45) correspond to the boundary conditions.

All the points of the lines �(ck ) with 1 ≤ k ≤ N − 1 are interior points of G, and the equations formulated
on each �(ck ) can be called transition conditions. Then, Eqs. (50)–(51) correspond to the transition conditions
of the problem. Since w (•, t) ∈ C

(
Ḡ
)
, there exists continuity of deflection at the points (ck, x2), and this

generates the additional transition conditions

w
(
c−

k , x2, t
) = w

(
c+

k , x2, t
) = w (ck, x2, t) , x2 ∈ [ak, bk] , k = 1, 2, . . . , N − 1. (52)

Different situations can be generated by substituting values and/or limiting values of the restraint parameters
r (ck )

T and r (ck )
R in (50) and (51). It is remarkable that since all the points of the lines �(ck ) are interior points of G,

the change of variables to (y1, y2) has not been implemented in the integrals
∫
�(ck−1) S(k)dx2 and

∫
�(ck ) S(k)dx2

of Eq. (33).

4 The Ritz and Lagrange multipliers methods in rectangular anisotropic plates

Let us consider a rectangular plate with

G = {(x1, x2) , 0 < x1 < a, 0 < x2 < b} , (53)

and three internal line hinges parallel to the x2 axis. Consequently, the corresponding sub-domains are given
by the following:

G(k) = {(x1, x2) , ck−1 < x1 < ck, 0 < x2 < b} , k = 1, . . . , 4, (54)

where c0 = 0 and c4 = a. The curves

�(k) = �(k,1) ∪ �(k,2), k = 2, 3,

are described by the smooth paths:

γ (k,1) = {
(ck−1 + x1, 0) , x1 ∈ [0, ck − ck−1

]}
,

γ (k,2) = {
(ck − x1, b) , x1 ∈ [0, ck − ck−1

]}
, k = 2, 3. (55)

In this case, the curves �(1) and �(4) are given by (see Fig. 3) the following:

�(k) = �(k,1) ∪ �(k,2) ∪ �(k,3), k = 1, 4,
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and are described by the smooth paths:

γ (1,1) = {(c1 − x1, b) , x1 ∈ [0, c1]} , γ (1,2) = {(0, b − x2) , x2 ∈ [0, b]} ,

γ (1,3) = {(x1, 0) , x1 ∈ [0, c1]} ,

γ (4,1) = {(c3 + x1, 0) , x1 ∈ [0, a − c3]} , γ (4,2) = {(a, x2) , x2 ∈ [0, b]} ,

γ (4,3) = {(a − x1, b) , x1 ∈ [0, a − c3]} .

It must be noted that the upper sides of the plate are given by (see Fig. 3) the following:

�(k,m), (k, m) ∈ {(1, 1) , (2, 2) (3, 2) , (4, 3)} ,

and to these sides correspond n(k)
1 = 0, n(k)

2 = 1. Meanwhile, the lower sides of the plate are given by

�(k,m), (k, m) ∈ {(1, 3) , (2, 1) , (3, 1) , (4, 1)} ,

and n(k)
1 = 0, n(k)

2 = −1. Finally, to the side �(1,2) corresponds n(1)
1 = −1, n(1)

2 = 0, and to the side �(4,2)

corresponds n(4)
1 = 1, n(4)

2 = 0.
It is immediate that Eq. (27) with v replaced by w lead to the following relations:

D1(1)

w (x1, x2, t)
∣∣∣
�(k,m)

= −D1(2)

w̃ (0, y2, t) ,

D1(2)

w (x1, x2, t)
∣∣∣
�(k,m)

= D1(1)

w̃ (0, y2, t)
(56)

when (k, m) ∈ {(1, 1) , (2, 2) (3, 2) , (4, 3)} and

D1(1)

w (x1, x2, t)
∣∣∣
�(k,m)

= D1(2)

w̃ (0, y2, t) ,

D1(2)

w (x1, x2, t)
∣∣∣
�(k,m)

= −D1(1)

w̃ (0, y2, t)
(57)

when (k, m) ∈ {(1, 3) , (2, 1) , (3, 1) , (4, 1)}. Finally, we have

D1(1)

w (x1, x2, t)
∣∣∣
�(1,2)

= −D1(1)

w̃ (0, y2, t) ,

D1(2)

w (x1, x2, t)
∣∣∣
�(1,2)

= −D1(2)

w̃ (0, y2, t) ,

D1(1)

w (x1, x2, t)
∣∣∣
�(4,2)

= D1(1)

w̃ (0, y2, t) ,

D1(2)

w (x1, x2, t)
∣∣∣
�(4,2)

= D1(2)

w̃ (0, y2, t) .

(58)

1x

2x

(1)G (4)G

(2,2)Γ

(2)G

(2,1)Γ

( )1 1,c b

1( )Γ c

( )1 1,c a

(3)G

(1,2)Γ 2( )Γ c 3( )Γ c (4,2)Γ

( )2 2,c a ( )3 3,c a

(3,1)Γ

(3,2)Γ

( )2 2,c b ( )3 3,c b

(1,3)Γ (4,1)Γ

(1,1)Γ (4,3)Γ

a

b

Fig. 3 Rectangular plate with three internal lines hinges
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From Eq. (44), we have

r̃ (k,m)
R (0, y2) D1(1)

w̃ (0, y2, t) = −S̃(k)
2 (0, y2, t) , y2 ∈

[
0, l(k,m)

]
(59)

when (k, m) ∈ {(1, 1) , (2, 2) (3, 2) , (4, 3)} and

r̃ (k,m)
R (0, y2)D1(1)

w̃ (0, y2, t) = −S̃(k)
2 (0, y2, t) , y2 ∈

[
0, l(k,m)

]
(60)

when (k, m) ∈ {(1, 3) , (2, 1) , (3, 1) , (4, 1)} . Finally, for the remaining two sides, we have the following:

r̃ (1,2)
R (0, y2) D1(1)

w̃ (0, y2, t) = −S̃(1)
1 (0, y2, t) , y2 ∈ [0, b] (61)

and

r̃ (4,2)
R (0, y2) D1(1)

w̃ (0, y2, t) = −S̃(4)
1 (0, y2, t) , y2 ∈ [0, b] . (62)

Let us consider the first of Eqs. (59). From Eq. (56) and the relations between the derivatives of order two, we
obtain the following boundary condition:

r (1,1)
R (x1, b) D1(2)

w (x1, b, t)
∣∣∣
�(1,1)

= −
3∑

j=1

A(1)
2 j (x1, b) Dα( j)

w (x1, b, t) , x1 ∈ [0, c1] . (63)

From Eqs. (25)–(26), it is immediate that Eq. (63) in the classical notation is given by the following:

r (1,1)
R (x1, b)

∂w

∂x2
(x1, b, t) = − C (1)

12 (x1, b)
∂2w

∂x2
1

(x1, b, t) − C (1)
22 (x1, b)

∂2w

∂x2
2

(x1, b, t)

− 2C (1)
26 (x1, b)

∂2w

∂x1∂x2
(x1, b, t) , x1 ∈ [0, c1] . (64)

In an analog form can be obtained the remaining boundary conditions and it must be noted that in this case,
the boundary is composed of four smooth arcs and has four corner points, and then, there exist four corner
conditions.

The transition conditions (52) ensure the continuity of the transverse deflection along the internal line
hinges. Since it is difficult to construct a simple and adequate deflection function which can be applied to the
entire plate and to show the continuity of displacement and the discontinuities of the slope crossing the line
hinges, the Ritz method is used in conjunction with the Lagrange multipliers method to force the continuity
along the line hinges by means of suitable multipliers. When the plate makes free vibrations, its displacement
is given by an harmonic function of the time, i.e.,

w (x1, x2, t) = W (x1, x2) cos ωt, (65)

where ω is the radian frequency of the plate. Substituting Eq. (65) into Eq. (18) leads to its maximum expression
Fmax, and the Lagrange multipliers method requires the stationarity of the functional

L = Fmax + Fλ, (66)

where

Fλ =
N−1∑
k=1

∫

�(ck )

λ(k) (x2)
(
W
(
c−

k , x2
)− W

(
c+

k , x2
))

dx2, (67)

is the subsidiary condition which imposes the transition conditions (52). In this case, the Lagrange multipliers
are functions which can be represented by a set of polynomials as:

λ(k) (x2) =
rk∑

i=1

d(k)
i x i−1

2 , (68)
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where d(k)
i are unknown coefficients.

In the present paper, the transverse deflection of the rectangular plate is represented by means of

W (x1, x2) = W (k) (x1, x2) if (x1, x2) ∈ Ḡ(k), k = 1, 2, . . . , N ,

where

W (k) (x1, x2) =
mk∑
i=1

nk∑
j=1

a(k)
i j p(k)

i (x1/a)q(k)
j (x2/b) , k = 1, 2, . . . , N , (69)

and p(k)
i , q(k)

i are polynomial functions. The application of the Ritz method in conjunction with the Lagrange
multipliers method leads to the governing eigenvalue equation:

(
[K] −�2 [M]

) {d} = {0} , (70)

where � = ωb2√ρh/C11 is the nondimensional frequency parameter. For the sake of simplicity, the following
has been adopted: C (k)

11 = C11, h(k) = h, mk = nk = M for k = 1, 2, . . . , N and rk = M for k =
1, 2, . . . , N − 1.

4.1 Convergence and comparison of eigenvalues and modal shapes

The terminology to be used throughout the remainder of the paper for describing the boundary conditions of
the plate considered will now be introduced. In all Tables and Figures, the symbol F, S, and C denote free,
simply supported and clamped edges, and, for example, in the designation CSFS, the first symbol indicates
the boundary condition at x1 = 0, the second at x2 = 0, the third at x1 = a, and the fourth at x2 = b.

In order to establish the accuracy and applicability of the approach developed and discussed in the previous
sections, numerical results were computed for a number of plate problems for which comparison values were
available in the literature and also convergence studies have been implemented. Additionally, new numerical
results were generated for rectangular plates with one, two, and three internal line hinges and different boundary
conditions. All calculations have been performed taking Poisson’s ratio μ = 0.3.

Results of a convergence study of the values of the frequency parameter � = ωb2√ρh/C of a rectangular
isotropic plate are presented in Table 1. The isotropy is characterized by

C11 = C22 = C, C16 = C26 = 0, C12 = μC, C66 = 0.5(1 − μ)C,

where C denotes the flexural rigidity of the isotropic plate. The first ten values of � are presented for a CSCS
plate with aspect ratio b/a = 1/2 and with a free internal line hinge located at two different positions, namely,

Table 1 Convergence study of the first ten values of the frequency parameter � for an isotropic rectangular CSCS plate with
aspect ratio b/a = 1/2, and with a free internal line hinge located a c̄1 = 1/3 and c̄1 = 1/2

P Mode sequence

c̄1 M 1 2 3 4 5 6 7 8 9 10

1/3 4 13.08704 21.34970 41.24297 42.19241 50.52497 57.45938 68.12335 87.31363 88.83035 115.50618
5 13.02938 21.29404 38.87133 42.10803 50.51505 53.58910 66.54726 83.70899 88.57164 92.42562
6 13.02747 21.24199 38.48675 41.93049 50.29860 53.31515 66.25574 75.30024 82.89380 92.36946
7 13.02725 21.23979 38.41950 41.92656 50.29003 52.94558 66.21742 75.29608 82.45892 90.88579
8 13.02725 21.23977 38.41588 41.92540 50.28853 52.94515 66.21506 74.60979 82.45845 90.88127
9 13.02725 21.23977 38.41574 41.92535 50.28843 52.94376 66.21504 74.60933 82.45819 90.85921

10 13.02725 21.23977 38.41574 41.92534 50.28842 52.94374 66.21504 74.60406 82.45801 90.85909
11 13.02725 21.23977 38.41574 41.92534 50.28842 52.94373 66.21504 74.60406 82.45799 90.85897

1/2 4 12.70627 23.72724 33.17153 41.93788 51.85000 61.06898 63.33109 78.11975 88.07950 108.15864
5 12.68772 23.64758 33.11678 41.86940 51.81540 58.93268 63.23609 73.34897 86.37351 92.13940
6 12.68738 23.64638 33.06603 41.70366 51.67531 58.67674 63.01938 72.54043 86.15765 92.10829
7 12.68736 23.64632 33.06510 41.70266 51.67489 58.64840 63.01580 72.40644 86.13690 90.63356
8 12.68736 23.64632 33.06509 41.70193 51.67428 58.64640 63.01485 72.39779 86.13450 90.63286
9 12.68736 23.64632 33.06509 41.70193 51.67428 58.64637 63.01483 72.39760 86.13446 90.61148

10 12.68736 23.64632 33.06509 41.70193 51.67427 58.64636 63.01483 72.39756 86.13446 90.61148
11 12.68736 23.64632 33.06509 41.70193 51.67427 58.64636 63.01483 72.39756 86.13446 90.61137
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1
c Reference Mode sequence

1 2 3
0.1 Present 13.18790 20.71524 26.94803

Ref.[26] 13.18792 20.71540 26.94847

0.3 Present 13.24791 21.36125 30.42226
Ref.[26] 13.24793 21.36147 30.42241

0.5 Present 13.46820 21.46315 26.57492
Ref.[26] 13.46822 21.46337 26.57505

Fig. 4 Comparison of the first three values of the frequency parameter � and their modal shapes contour lines of an isotropic
FFFF square plate with a free internal line hinge located at different positions

Table 2 First four values of the frequency parameter � for an anisotropic CCCC square plate with two elastically restrained
internal line hinges with different values of the rotational restrictions R(ck )

R = r (ck )
R a/C11, k = 1, 2, located at c̄1 = 0.25 and

c̄2 = 0.75

R(c1)
R R(c2)

R Mode sequence

1 2 3 4

0 0 23.45956 30.56252 37.85855 44.15721
10 0 23.61956 30.75000 44.68048 45.98426
1000 0 23.64241 30.77948 45.97679 46.06113
∞ 0 23.64268 30.77983 45.98424 46.07002
∞ 10 23.92261 31.09512 46.34815 59.35300
∞ 1,000 23.96589 31.14802 46.40945 62.73310
∞ ∞ 23.96640 31.14865 46.41019 62.77503
Ref. [29] 23.96642 31.14868 46.4672 62.77512

c̄1 = 1/3, and c̄1 = 1/2, where c̄1 = c1/a. The convergence of the mentioned frequency parameters is studied
by gradually increasing the number of polynomial in the approximate functions W (1), W (2) and the Lagrange
multiplier λ(1) = λ(1)(x2), given by m1 = n1 = m2 = n2 = r1 = M , as stated above. It can be seen that
M = 10 is adequate to reach a stable convergence in almost all cases.

Figure 4 shows a comparison of the first three values of the frequency parameter � = ωb2√ρh/C , and
their modal shapes contour lines of an isotropic FFFF square plate with a free internal line hinge located at
c̄1 = 0.1, c̄1 = 0.3 and c̄1 = 0.5. The comparison of results with those of Quintana and Grossi [26] shows
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1
c

2
c Mode sequence

1 2 3 4 5
1/3 2/3 22.31765 23.52980 25.75968 31.52952 37.18707

0.2 0.4 22.40032 23.45263 26.25576 29.48197 36.75353

0.4 0.8 22.28405 23.47255 26.65831 30.28586 34.97443

Fig. 5 First five values of the frequency parameter � and modal shapes of an isotropic CCFC rectangular plate with b/a = 1/3
and two free internal line hinges with different locations

Mode sequenceb/a

1 2 3 4 5
1/2

5.07587 5.79202 7.89521 9.99159 16.49430
2

4.99314 10.00064 16.26355 19.68378 23.75562

Fig. 6 First five values of the frequency parameter � and modal shapes contour lines of an anisotropic FCFS rectangular plate
with two free internal line hinges located at c̄1 = 1/3 and c̄2 = 2/3 for b/a = 1/2 and b/a = 2

that the present values are slightly lower, in consequence more accurate, since the Ritz method gives upper
bounds for eigenvalues.

Table 2 gives the first four values of the frequency parameter � = ωb2√ρh/C11 for an anisotropic
CCCC square plate with two internal line hinges elastically restrained against rotation. Different values of
the rotational restrictions R(ck )

R = r (ck )
R a/C11, k = 1, 2, located at c̄1 = 0.25 and c̄2 = 0.75 are considered.

The values which correspond to R(ck )
R = ∞, k = 1, 2, are compared with those obtained in [29]. The plate

anisotropy is characterized by

C̄22 = 0.1, C̄66 = 0.0247750, C̄12 = 0.03, C̄16 = C̄26 = 0,

where C̄i j denotes the quotient Ci j/C11.
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1
c

2
c Mode sequence

1 2 3 4 5
1/3 2/3 14.40984 14.69129 15.66289 16.54287 22.41634

0.2 0.4 14.41714 14.68934 15.42291 17.88748 19.44216

0.4 0.8 14.40627 14.67245 15.52800 17.86573 21.52009

Fig. 7 First five values of the frequency parameter � and modal shapes of an isotropic rectangular plate elastically restrained
against rotation and translation with two free internal line hinges for different locations and aspect ratio b/a = 1/3. Edge
x1 = 0 : RR = rRa/C11 = 10, RT = rT a3/C11 = 100; edge x2 = 0 : RR = rRb/C11 = 1000, RT = rT b3/C11 = 100; edge
x1 = a : RR = rRa/C11 = 100, RT = rT a3/C11 = 10; edge x2 = b : RR = rRb/C11 = 100, RT = rT b3/C11 = 1000

Table 3 First ten values of the frequency parameter � for an isotropic SSSS square plate with three internal line hinges elastically
restrained against rotation, for different values of the rotational restrictions R(ck )

R = r (ck )
R a/C, k = 1, 2, 3 located at c̄1 =

0.1, c̄2 = 0.3 and c̄3 = 0.5

The mode shapes correspond to R(ck )
R = 0 and R(ck )

R = ∞, k = 1, 2, 3

4.2 New numerical results

Figure 5 shows the first five values of the frequency parameter � = ωb2√ρh/C and modal shapes of an
isotropic CCFC rectangular plate with b/a = 1/3 and two free internal line hinges with different locations.

In Fig. 6, it can be observed the first five values of the frequency parameter � = ωb2√ρh/C11, and their
modal shapes contour lines of an anisotropic FCFS rectangular plate with two free internal line hinges located
at c̄1 = 1/3 and c̄2 = 2/3 for two different aspect ratios. The plate anisotropy considered is characterized by

C̄22 = 0.115202317, C̄66 = 0.0948810, C̄12 = 0.100812496, C̄16 = −0.24333539, C̄26 = −0.0120837.

Figure 7 shows the first five values of the frequency parameter � = ωb2√ρh/C and the modal shapes of
an isotropic rectangular plate elastically restrained against rotation and translation, with two free internal line
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Table 4 First eight values of the frequency parameter � for an isotropic SSSS square plate with three internal line hinges
elastically restrained against rotation, for different values of the rotational restrictions R(ck )

R = r (ck )
R a/C, k = 1, 2, 3, located at

c̄1 = 0.25, c̄2 = 0.5 and c̄3 = 0.75

The mode shapes correspond to R(ck )
R = 0, k = 1, 2, 3

hinges for different locations and aspect ratio b/a = 1/3. The edges are elastically restrained according to the
following:

edge x1 = 0 : RR = rRa/C = 10, RT = rT a3/C = 100,

edge x2 = 0 : RR = rRb/C = 1,000, RT = rT b3/C = 100,

edge x1 = a : RR = rRa/C = 100, RT = rT a3/C = 10,

edge x2 = b : RR = rRb/C = 100, RT = rT b3/C = 1,000.

Table 3 depicts the first ten values of the frequency parameter � = ωb2√ρh/C for an isotropic SSSS
square plate with three internal line hinges elastically restrained against rotation, for different values of the
rotational restrictions R(ck )

R = r (ck )
R a/C, k = 1, 2, 3 located at c̄1 = 0.1, c̄2 = 0.3 and c̄3 = 0.5. The mode

shapes correspond to R(ck )
R = 0 and R(ck )

R = ∞, k = 1, 2, 3.
Table 4 gives the first eight values of the frequency parameter � = ωb2√ρh/C for an isotropic SSSS

square plate with three internal line hinges elastically restrained against rotation, for different values of the
rotational restrictions R(ck )

R = r (ck )
R a/C, k = 1, 2, 3, located at c̄1 = 0.25, c̄2 = 0.5 and c̄3 = 0.75. The mode

shapes correspond to R(ck )
R = 0, k = 1, 2, 3.

5 Concluding remarks

This paper presents the formulation of an analytical model for the dynamic behavior of anisotropic plates,
with several arbitrarily located internal line hinges with elastics supports and piecewise smooth boundaries
elastically restrained against rotation and translation. The equations of motion and the associated boundary
and transition conditions were derived handling Hamilton’s principle in a rigorous framework. The presence
of a generic number of line hinges constitutes a complicating effect in the analysis and development of the
variational treatment, so a new analytical manipulation based on a condensed notation is used to compact the
corresponding analytical expressions.
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An approach to the solution of the natural vibration problems of the mentioned plates by a direct variational
method has been presented. A simple computationally efficient and accurate algorithm has been developed
for the determination of frequencies and modal shapes of natural vibrations. The approach is based on a
combination of the Ritz method and the Lagrange multipliers method. Sets of parametric studies have been
performed to show the influence of the line hinges and it locations on the vibration behavior. Although numerical
results are presented for rectangular plates with one, two, and three line hinges, the algorithm developed is
applicable for any number of line hinges. It is worth noting that when r (ck)

r → ∞, r (ck )
T → ∞, the k−th line

hinge is transformed into a line support. In the consequence, the results obtained in this paper can also be
utilized to study the internal support optimization.
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