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Abstract This paper deals with the free transverse vibration of anisotropic plates with several arbitrarily located
internal line hinges and piecewise smooth boundaries, elastically restrained against rotation and translation.
The equations of motion and the associated boundary and transition conditions are derived using Hamilton’s
principle in a rigorous framework. A new analytical manipulation based on a condensed notation is used
to compact the corresponding analytical expressions. A combination of the Ritz method and the Lagrange
multipliers method with polynomials as coordinate functions is used to obtain tables of the nondimensional
frequencies and the corresponding mode shapes, for rectangular plates with different boundary conditions and
restraint conditions in the internal line hinges. The cases not previously treated of two- and three line hinges
are particularly analyzed.

1 Introduction

Substantial literature has been devoted to the formulation, by means of the calculus of variations of boundary
value problems of mathematical physics [1-14]. Several books treated the study of isotropic and anisotropic
plates including the determination of static, buckling, and vibrations characteristics [15-21]. It is not the
intention to review the literature consequently; only some of the published papers related to the present work
will be cited. A great number of articles treated the dynamical behavior of plates with complicating effects such
as elastically restrained boundaries, presence of elastically or rigidly connected masses, variable thickness,
anisotropic material, points and lines supports, presence of holes, etc. A review of the literature has shown that
there is only a limited amount of information for the vibration of plates with line hinges. A line hinge in a plate
can be used to facilitate folding of gates and to simulate a through crack along the interior of the plate, among
other applications. Wang et al. [22] studied the buckling and vibration of plates with an internal line hinge by
using the Ritz method. Gupta and Reddy [23] presented the exact buckling loads and vibration frequencies
of orthotropic rectangular plates with an internal line hinge by employing an analytical method which applies
the Levy solution and the domain decomposition technique. Xiang and Reddy [24] provided the first-known
solutions based on the first-order shear deformation theory for vibration of rectangular plates with an internal
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line hinge. The Lévy method and the state-space technique were employed to solve the vibration problem.
Huang et al. [25] developed a discrete method for analyzing the free vibration problem of thin and moderately
thick rectangular plates with a line hinge and various classical boundary conditions. Quintana and Grossi [26]
dealt with the study of free transverse vibrations of isotropic rectangular plates with an internal line hinge and
elastically restrained boundaries. The problem was solved employing a combination of the Ritz method and
the Lagrange multiplier method.

All of these studies have considered rectangular plates with only one free internal line hinge. However,
there is no previous study for the vibration of anisotropic plates with generally restrained piecewise smooth
boundaries and with several internal line hinges, elastically restrained against rotation and translation.

Engineers and applied mathematicians increasingly used the techniques of calculus of variations to solve
a large number of problems, and in this discipline, the “operator” § has been assigned special properties and
handled using heuristic procedures. Commonly, the domain of definition of a functional and the space of
admissible directions of the variation of this functional are not clearly stated; thus, most of the analytical
manipulations are confusing and not mathematically precise. Grossi [27] formulated an analytical model for
the dynamic behavior of anisotropic plates, with an arbitrarily located internal line hinge and piecewise smooth
boundaries among other complicating effects. By introducing an adequate change of variables, the energies
which correspond to the different elastic restraints were handled in a rigorous framework. In the same manner,
in the present paper, a complete rigorous application of the Hamilton’s principle is developed for the derivation
of equations of motion and its associated boundary and transition conditions, for anisotropic plates with several
arbitrarily located internal line hinges and piecewise smooth boundaries, elastically restrained against rotation
and translation. Also, a methodology based on a combination of the Ritz method and the Lagrange multipliers
method with polynomials as coordinate functions is used to investigate the natural frequencies and mode
shapes. To demonstrate the validity and efficiency of the proposed algorithm, results of a convergence study
are included, several numerical examples not previously treated are presented, and some particular cases are
compared with results obtained by other authors. Tables are given for frequencies, and two-dimensional plots
for mode shapes are included.

The consideration of special characteristics such as elastically restrained piecewise smooth boundary,
variable thickness, anisotropic material and particularly several internal line hinges, leads to complicated
analytical expressions and tedious algebraic manipulations. For this reason, in this paper, a new analytical
manipulation based on a condensed notation is used. The compact analytical expressions substantially lower
the analytical effort and the amount of information.

This paper is organized in the following way. In Sect. 2, a rigorous treatment of techniques of the calculus
of variations to obtain the governing differential equations and the boundary conditions is presented. In Sect. 3,
the transition conditions at the line hinges are determined. In Sect. 4, a combination of the Ritz method and
the Lagrange multipliers method is used for the determination of frequencies and mode shapes of rectangular
anisotropic plates. Verifications and numerical applications are also included. Finally, Sect. 5 contains the
conclusions of this paper.

2 The variation of the energy functional

Let us consider an anisotropic plate that in the equilibrium position covers the two-dimensional domain G,
with piecewise smooth boundary dG elastically restrained against rotation and translation. The plate has N — 1
intermediate line hinges elastically restrained against rotation and translation, as it is shown in Fig. 1. In order
to analyze the transverse displacements of the system under study, we suppose that the vertical position of the
plate at any time ¢ is described by the function w = w(x, t), where x = (x1,x2) € G, G = GUJG and that
the domain G is divided by the lines re k=1,2,...,N—1,into N parts G® with boundaries 8G®), (see
Fig. 1). Different rigidities and mass density of the anisotropic material correspond to each subdomain G*.

The extreme points a; and by of the lines reo k=1,2,...,N — 1, divide the boundary curve dG such that
(see Fig. 2):

G =rVur®...urM (1)
and

r® —=9G® - e =12 .. N, )
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where
ro=r&byr®2  r=12..N (3)

with (€0 = 1~ = 1.2 = TV.2) — ¢ where equality is understood in the sense of set theory and ¢
denotes the empty set.

Let us assume that the boundary curve 3G is described by a smooth path y in R? defined in the compact
interval [0, /], where [ = [(dG) is the length of the path y. The image of [0, /] under y (the graph of y) is the
boundary curve 3G and will be denoted by im(y). We also assume that the curves I'® given by Eq. (3) are
described, respectively, by the smooth paths

y&m: [o,16m] - B2
with
y ) = (rE" @, i) s e 0.1 m =12, k=1,2,.N, @)

where [&m = | (T*™) is the length of the path y*™ and 112 = |V:2 = 0. From (3) and (4), it
follows that y(k”") describes the arc T*™ For k = 2,..., N, in Eq. (4), s denotes the arc length mea-
sured from the point (cx—1, ax—1) of the curve r*D and from the point (ck, br) of the curve r&2,
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where a;_1 = yz(k_l’l)(l(k_l’l)), by = yz(k’Q)(O) (see Fig. 2). In the case of the curve 4D the arc length
is measured from the point (c1, b1). The path which describes the boundary dG can be expressed as:

y D (5) ifs € [0,1(1D],
)/(2’1) (S B l(l,l)) ifs e [l(l»l), (LD +l(2,1)] ,
) (s) = y(N—lyl) (s — An_2) ifs € [AN72, AN—I]’ (5)
y®D (s —Ay_D) ifs € [AN_1, AN],
yN=12) (5 AN ifs € [Ay, Ay + B1],
y@2 (s — Ay — By_3) if s € [Ay + By_3. Ay + By_2].

where
J J
Ay =0 By = Y = B0 0.
i=1 i=1 i=1

Itis well known that if f : im(B) — R is a continuous function defined on the image I" of a piecewise smooth
path 8 : [c, d] — R?, the curvilinear integral of f along I' is given by the following:

d
/f(xwu)ds =/(f013) ) |8/ | ar, (6)
r c

where (f o 8) (r) = f (B(r)) and the norm | g/(r)| is given by (B2(r) + BZ())"*. In the case of a real

continuous function, f defined on the image of the path y [given by (5)], i.e., the boundary curve 92, the
definition (6) when s is taken as the parameter r, leads to

! I
/f(xl,xz)ds =/(f°V)(S) Iy ()| ds =/(fOJ/) (s)ds, (M
G 0 0

and

m=1 k=1

2 N
/f(X1,X2)dS=ZZ / f (x1, x2) ds, ®)
iG

[ k,m)

where, in view of Eq. (4) and the conditions / (1.2) — J(N.2) — 0, we have

/ f(x1,x)ds =0 and / f (x1,x2)ds = 0.
ra2 rv.2)
The additive property (8) will prove be valuable in the definitions of functions and functionals over 92, since

they can be set-up independently in each I'®¥) and by using Eq. (4). Thus, we assume that the rotational rigidities
of the elastic restraints along the boundary and the line hinges are, respectively, given by the functions

e im(y Sy S R m=1,2k=1,2,... N, %)
K i@ SR, k=12, N—1, ©b)

where y(ck) is the path which describes the line ') In the same manner, the translational rigidities are,
respectively, given by the functions

P Cim(y®m) S R, m=1,2, k=12,...,N, (102)
r7(_Ck) ;im(y(ck))—)R, k=1,2,...,N—1. (10b)
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It is obvious that

r1(€1,2) = rl(eN’z) = r(Tl’z) = r(TN’Z) =0. (11)

The presence of several complicating effects [particularly the existence of N — 1 line hinges which requires
a careful analysis similar to the developed procedure to obtain the path which describes the boundary dG by
Eq. (5)] leads to complicated analytical expressions and tedious algebraic manipulations. In order to obtain a
compact analytical scheme for the derivation of the boundary value problem which describes the dynamical
behavior of the mechanical system, we consider the following new procedure for the manipulation of derivatives
introduced in [28].

Let us consider the following notation: C”(S) denotes the set of all real functions u : § — R that have

continuous partial derivatives of order n and C" (S) denotes the set of all u € C” (S) for which all partial
derivatives of order n can be extended continuously to the closure S of S. Consider the well-known notation

ally (%)

Dau )E = )
2 8)6‘{”8)63‘28)65‘3

(12)

where u : A > R, u € C%(A), A c R? and ¥ = (x1, x2, x3). The vector @ = (a1, a2, @3) is a
multi-index whose coordinates are non-negative integers and |«| is the sum || = 21‘3:1 «;. In the case of the
described plate, we consider a sufficiently smooth function v : A — R, defined on A = G x [0, T'] for some
fixedtime T > 0, withx = (x1,x2) € G, x3=1,G C R2,

A new compact notation is generated if we introduce the following multi-indices:

a'=2,0,00, «?=(0,2,0, «®=(,1,00, «® =(0,0,2),

. (13)
19 = (817,80, 83), i=1,2,3,
where §; is the Kronecker delta, 6;; = 1if j =i and §;; = 0if j # i. The use of (12)—(13) leads to
i ad 0
Do =0, i=12 D"virn="(x0
0x; at
o 92%v .
D v(x,t)= — (x,0), i=12, (14)
0x;
3) 9%y 0 9%v
D% 1) = ,t), D" 1) = — (x,1).
v (x,1) 8x18x2(x ) v (x, 1) 8t2(x )
The multi-indices (13) verify the following algebraic rules [28]:
19D 41O = @, 16-D 410 — a(3), Vi e{l,2}, 10 10 = @, (15)

These rules will probe be valuable in the algebraic manipulation of the variation of the energy functional. An
essential step to compact analytical expressions is the derivation of formulae needed to transform the terms
which involves derivatives of variations. Let us suppose that

SUiA-R viA-R A=Gx[0.T], S (e.1), v(e1) eCXG),
n 9P - R, ie{l,2},ke{l,2,...,N}.
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Then, the following formulas are valid:

/ SO (e, D v(x, dx = / (5 oo (D" v ) 1 @)

G® aG®

= (p"s® @ n)v e on® @]+ / ("5 o) v nde, i=12. (16)

G®
3 1 2 y

/ Sgk) (x, 1) D" v (x, 1) dx = 2 Z / [Sék) (x, 1) (Dl(‘_[)v o, t)) n;")(x)
G® =1 logw

_ (Dl(i) s (x, t)) v(x,0)nd. (x)] ds} + / (Damsgk) (x, f)) v (x, 1) dx, (7)

Gk

where nfk) denotes the i-th component of the outward unit normal 2 to the boundary dQ®). The demonstra-
tions of (16) and (17) are a direct consequence of the proposition 2 of Grossi [28].

Hamilton’s principle requires that between times #y and #1, at which the positions of the mechanical system
are known, it should execute a motion which makes stationary the functional

1
F(w) =/(EK — Ep)dt,
fo

on the space of admissible functions, where Ex denotes the kinetic energy and E p the total potential energy.
From the well-known expressions of the kinetic and potential energies of the mechanical system under study,
it follows that the energy functional is given by

N

N 2
1 dw\? 92
Fay=5 [13°] [ [wn® (—;f) —Ci’i)(—axf)
1

n |l gw

2
3w 92 92 92 32 92
i T R
8x12 8x22 8x22 0x10x2 8x12 Bxg

ac® 2w\ : ey 2, ey (0w )’
— 4C¢e 33100 dx—z rpwT g PH) ds

m= lp(k,m)

- / (r$k>w2+r,<§k) ([8w/3xl]ck)2>ds dr, (18)
rex)

where w(x, 1) is given by w® (x, r) when x € G®; (ph)® is the mass density, and Ci(]].() = Cl-(JIF)(x) are

the rigidities of the anisotropic material [18], which correspond to the subdomain G®; Jw Jan%m is the
directional derivative of w with respect to the outward normal unit vector 7% to the curve I'®™ and
finally, the symbol [0w/dx1]., denotes the difference of lateral derivatives

ow . ow , o ow , _
[a_ﬂ]ck = o1 (ck , X2, t) ox; (ck , X2, t). (19)

Since the number of line hinges is N — 1, it is necessary to adopt r = 0 in Eq. (18), and in view

of conditions (11), we have the following:

/(o)ds: / (o)ds = / (e)ds = 0.

ra.2) [(V.2) reen)

gN) _ V;CN)
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The definition of the variation of F at w in the direction v is given by
dF
SF (w;v) = — (w + ev) , (20)
de e=0
and the condition of stationary functional requires that

SF (w;v) =0, Yve D, 21

where D, is the space of admissible directions at w for the domain D of this functional. In order to make
the mathematical developments required by the application of the techniques of the calculus of variations, we
assume the following:

P ec (V). cfec?(GV), w0 eClo.nl, wenec(G),

w(.,r)|é(k)ec4((;<’<>), GP =GP yUIGH, k=1,2,...,N.

It must be noted that as a consequence of the presence of the line hinges, the derivative dw/dx; and the
corresponding derivatives of greater order do not necessarily exist in the domain G, so it is necessary to
impose the conditions w (e, )|z € C* (G(k)) k=1,2,...,N.

In view of all these observations and since Hamilton’s principle requires that at times 7o and #; the positions
are known, the space D is given by

D= {w; w(x,e) € C 1, 11], w (e, 1) € C (G), w(e,Dlgw € ct (G(k)) ,

k=1,...,N,w(x, ), w(x,t) prescribed}. (22)

The only admissible directions v at w € D are those for which w + ev € D for all sufficiently small ¢ and
8 F(w; v) exists. In consequence, and in view of (22), v is an admissible direction at w for D if, and only if,
v € D, where

D, = {v; v(x,e) € c? [to, 1], v (e, 1) € C (C_;), v(e,Dlgw € ct (G(k)) ,
k=1,....,N,v(x,t0) =v(x,1;)) =0,Vx € G}. (23)

Performing the corresponding analytical developments by using the compact notation in Eq. (20), we have

i / ((,oh)(k) (D]<3) w) (Dm)v) B isi(k)Da(i)v)dx

i=1

2 ow ov
(k,m) (k,m)
-2 (rT wy +rg WW) ds

m:lr(k’m)

- / (r;c")wv + r;;k) [dw/dx1],, [8v/8x1]6k)ds dr, (24)
)

where

3

)

s =>" Af.j.‘) x) D" w (x, 1), (25)
j=1
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with the coefficients Agf) as elements of the symmetric matrix
(k) *) (k)
Gy Cip 2Cg
— (k) (k) (k)
A=|Cy Gy 20y | (26)
(k) (k) (k)
2C)y 2C5 4C¢

It is convenient from now on to introduce a change of Vanables in order to deal with the points which
correspond to the curves I'®_ Let us consider the new variables (y;, y») where y; is a distance measured from
the boundary and along the normal to dG and y; is the arc length measured from the point (cy, b1) of the
boundary dG, (see Fig. 2). This problem has been addressed in [27].

The mentioned change of variables transforms w = w(x, ¢) into w = w(y, t) with y = (y1 y2). It also

transforms v into v and leads to the following relation between the original derivatives D17y (i.e. dv/0x;)
and the new ones D1"'% (i.e. 00/0y;):

pl"y = (Dl(])f;) A 4 (1) (Dl(” 5) A i=1,2, inaG®. 27)
Integrating by parts with respect to ¢ the first term of (24) and applying the conditions
v(x,fo)=vx,11) =0, Vxe G,

imposed in (23), we obtain

n

j / (ph)(k) (D1(3>w) (D1(3)v) dxdr = / (,oh)(k) (D1(3)w) v| dx

o gk G® 10
/ / (ph)® Dl“) (D‘(” vdxdt / / (ph)® D“” ) vdxdr, (28)
o gk o gk

where the last algebraic rule from (15) has been applied.

To transform the terms Si(k)D"‘(i)v of (24), the formulae (16)—(17) and the change of variables described
above must be employed. This procedure and (28) lead to

SF (w; v)

1

/ ][ (o )

n | = gw

2
Z S(k) ® D1<'> )_ (Dl(') S,.(")) n®y
i=1

N

aG®m
+ 05 (570 (D17"0) — (D158) n 0) ) ds
2 l(k,m)
#3| [ A 008052050520 dn
m=1 0
l(k m)
i / ™ (0, 32) D 0, y2, 1) D5 (0, 32, 1) dy
0
+ / (r;‘k)wv + i [dw/dx1,, [av/axl]ck)ds dr, (29)

)
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where
.fg,z) _ ;l(eN,Z) _ r}f"’) _ f;],Z) _ ;;N,2) _ r(TcN) —0
From Egs. (2)-(3), we have the following:

IGWH = ®kD yr*2D yr@- yre whenk =2,...,N — 1,
G =D yrenD and sGN = VD I"(CN—I)’

and in consequence, in Eq. (29), it is possible to write (see Fig. 2)

N
Z / s®ds
kzlaG(k)
N 2
— > / skm s 4 / s®ds + / s® g (30)
k=1 \ m=1pGm 1) iep)
where
/S<1~2>ds= / SN2 ds = / sWds = / sMds =0,
ra2 v o) ren)
and

2
sk — Z [Si(mnlgk) (Dl(”v) _ (D1<z)Sl_(k)) nl(k)erO.S (Sgk)nlgk) (Dla_l)v) _ (D1<I>S§k)) ngk)iv)] . 6D

i=1

It must be noted that S denotes the expression S® when n?k) is replaced by ngk’m). The compact notation

has the following useful property which allows an adequate collection of terms, [28]:
2 ) 2 @
> (o) nlm =30 (01 0) nl,
i=1 i=1
then from Eq. (31), the expression of & is given by
2 @) @) @)
stm =3 [(50n*" +0.550nE) D — ((0M'50) 0™ 405 (DM sP) nE) o] 32)
i=1

Now, if the line integrals along I'®") are replaced by the corresponding ordinary integrals according to (7)
and the new variables (y;, y2), we have the following:

[ (k.m)
/ Glem g — / 56 (0, v, 1) dys.
I k.m) 0

The expression of the derivatives D"y in Eq. (32) can be expressed in the new variables (yg, y2) by using
Egs. (27), and then, when the boundary dG is smooth, the Eq. (29) reduces to

SF (w; v)

=- j i / ((ph)"‘) (0" w)+ > (D"‘(i)Si(k)))vdx

1o k=1 G® i=1
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(k,m)
2
+ Z / H(k m) +r(k m){[)i} +r(k m)Dl“) ~ 1D ~ )dyz
m: 0

+ / S(k)dxz—l—/S(k)dxz—i- / (r}ck>wv+r§;k)[aw/axl]ck[av/axl]ck)ds dr, (33)
k-1 ) )

where H*™ is obtained by the following procedure. Let us consider
H® = oW pl"y 4 ROP1?y — pHy (34)
and

1M~

A® = g®plV5 4 gOp1V5 _ phg, (35)

where the expressions of P® | 0® and R® is obtained by introducing the new variables (y{, y2), respectively,
in

2
(i) (i)
PO =3 [(01s0)n® +05 (01 s) nl,], (36)
i=1
2 . 2
o zz[s;k> (1) + 0558 gﬂ 37
i=1
and
2
R® =Z[( 1y (S(k) O, +0.5580 () )} (38)
i=1

Finally, the expressions of pkm) Q(k"”), and R®&™  needed in H* ™ are obtained by replacing ﬁlgk) by

ﬁ;k’m) and ﬁgk_)i by ﬁgk_"i"), respectively, in P®  0® and R® . The integration by parts

l(k,nl) l(k,m)

5 (k,m) 71® ~ 5 (k m)~1(k'm) 1@ 5km)\

(Rm D1 5)day, = REms| [ (D1 RO 5y, (39)
0 0

transforms Eq. (33) into

11 N 3 .
SF(w;v) = — Z /((ph)ac)( p*? )+Z( a(’)Si(k)))vdx
o |*=1gw i=1
2 l(k.m)
+Z / (D1<1>1~) (Q(k,m) +71(ek’m)D1(1)17)) . (IS(k,m) + D1(2>I§(k,m) _;;k,m)ﬁ)) f;) dy»
m=1 0
< - [km) . .
+ RO )+ / S®dxy+ / S®dx,
(k-1 NG
N / (™ wo + g 0w/0x1 1, [9v/0x11,, )ds | 1 dr. (40)

rx)
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According to the condition of stationary functional (21), the expression (40) must vanish for the function w
corresponding to the actual motion of the plate for all admissible directions v, and in particular for those

P ~ D~ . . . . . . ..
admissible v, (or v) and p! )v, for which the one-dimensional integrals in (40) vanish. Then, the variation
reduces to

! N 3
SF (w; v) = —/ / {Z ((ph)(k) (D“(4)w) +> (D“(Z)S(k))):| vdxdr. (41)

0 gW k=1 i=1

If the fundamental lemma of the calculus of variations is applied, it is concluded that the function w must
satisfy the following differential equations:

3 .
(ph)® (D“(4) w) +> (D“(”S,.(")) =0, VxeG®, >0, k=1,2.....N. (42)
i=1

Next, we remove the conditions for which the one-dimensional integrals in (40) vanish, and since the function
w must satisfy Egs. (42), the functional (40) reduces to

nfw | 2 [

§F (w;v) = —/ Z Z / (Dl“);) (Q(k,m) +f1(ek,i)D1(l>w)

k=1 | m=1 0
l(k,m)
. )+ / S®dxa+ / S®dx,

F(L’k_|) F(Uk)

fo

+/ (i wo + g [0w/x11, [90/0x11,, )ds |  dr. (43)
rx)

When the boundary dG is smooth, using admissible directions v, for which the curvilinear integrals along
I'(©-1) and I"(0) vanish, the condition of stationarity of (43) leads to the following natural boundary conditions:

2
10 - ~ _ 2
Fe™ (0.32) DM (0, y2. 1) = = (S,fk) 0, y2.1) (nf.k’”” o, y2>)
i=1
+0.558 0. 32,0 "™ 0, 32) A (0, 32))
yze[O,l(k”")], k=1,...,N, m=1,2, (44)
2 (i) (33—
A 0,328 0, 32,0 = D [(DM'5 0 32,0 +0.5D" 8P 0, 32, 0) " 0, 32)
i=l1
2)
+ 0" (0 (30 32, 0™ 0,32 A 0, 32)
+0.55 0, y2.0) (7" 0. v2)) )} ,
yze[o,ﬂ"’m)], k=1,....N, m=1,2. (45)

When the boundary is piecewise smooth, additional corner conditions are generated as a consequence of the
terms, [27]:

5 l(k.m)
REMG

0
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3 The transition conditions at the line hinges

If we remove the conditions from which the curvilinear integrals along '~ and I"(®) vanish and since the
function w must satisfy the natural boundary conditions (44)—(45), the functional (43) reduces to

SF (w; v)
5] N
_ _/ D / S®dxy+ / $®dx, + / (i wo + g [0w/0x11, [90/0x11,, )ds |  dr.
to k=1 (cx—1) (k) ()
(46)
Now, let us consider the curvilinear integrals over I'(~1) and ') | A path that describes the line I'**)| when
it is considered as a part of aG®, k=1,2,....,N—1,is given by the parametric representation
) . (cp) () . .
y k (XZ)— yl (x2)y7/2 ('x2) —(Ckvxz),XZE[akabk], k_1’27~--7 N_lv (47)
_ 1L _ (k2 : : >(k) _ .
where ay = y, (0), by =y, "7'(0), (see Fig. 2). In this case, we have n**) = (1, 0). A path that describes
the line Ik when it is considered as a part of aG®  with k = 2,..., N, is given by the parametric
representation
+ (Cry!
y ) (x) = ( ( 2). Y e (xz)) = (ck—1. bx—1 —x2) ., x2 € [0, bp—1 — ax—1], (48)
and i1 = (—1,0),whenk = 2, ..., N.It must be noted that the notations y(thl) and y(ck_ ) clearly indicate

that for a given k, the lines [(©-1) and () belong to dG™ _If we use (47) and (48) in (46) and integrate by
parts, we obtain

§F (w; v)
n N—1 hk

:/ Z /[((DI(I)S{’C)—FDl(Z)Sék)) v) (ck_,xz,t)
k

n Lk=1
N Dr-1—ar—
(S(k)Dw ) (ck_,xz,t)] dxy +Z / [_ ((D1<1)S{k) + D1<2)S§k)) v) (it brt — x2.1)
k=2
N- b
Q)]
+ (S DM"0) () et — w2 1) [z — osz (580) (e x2.1)
ak
N-1 bk
—05Z(S(k) ) iy bk — X2, 1) bkl s /(ng) (cks X2) w (ck, x2, 1) v (Ck, X2, 1)
k=1,
() 1o 10
9 (e x2) [D w]Ck [D v]Ck dxa b dr. (49)

It is remarkable that both the integral over I'‘“4~1) and that over I') must be computed twice when all the
subdomains G® have been considered. The properties

br—1—aj—1 br—1

S(k) (Ck l’bk 1— xz,t)dx2= / S(k) (Ck l,xz,l‘)dxz

0 ak—1
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and
N[ b N-1 [ B
Z / S(k) Ck 1 bk—1 — x2, )dxz = /S(k) (Ci—:,xz,f)dxz
k=2 \g | k=1 \gy

allow to collect terms, and consequently, from (49), in the manner of achieving Eqgs. (44)—(45), we obtain:
r (ex, x2) (Dlmw (cf x2.1) — " (¢ » x2, f)) =5 (¢ . x2.1)
=5 (e x2, 1), ;2 € la, bl 1 <k < N — 1, (50)
m @) -
ry“@bXﬂqupmJ)=(Dlnﬁ“+lf %M)@wxaﬂ
— (D" + D" sP) (e xar) 32 € lar i) 1 Sk SN -1 (51)
Since the domain of definition of the problem is G, and this is an open set in R?, given by G = U,jcvzl G®ou
U,iv:_ll (0 with boundary G given by Eq. (1), only the Eqs. (44)—(45) correspond to the boundary conditions.
All the points of the lines I'®*) with 1 < k < N — 1 are interior points of G, and the equations formulated
on each I'°0) can be called transition conditions. Then, Egs. (50)—(51) correspond to the transition conditions

of the problem. Since w (e,?) € C (C_;) , there exists continuity of deflection at the points (ck, x2), and this
generates the additional transition conditions
w (c;,xz, t) =w (c,j,xz, t) =w(ck, X2, 1), x2 € [ag, br], k=1,2,...,N—1. (52)

Different situations can be generated by substituting values and/or limiting values of the restraint parameters
(ck) and r(ck) in (50) and (51). It is remarkable that since all the points of the lines I" (&) are interior points of G,

the change of variables to (y1, y2) has not been implemented in the integrals fl—-(ck_|) S® dx, and fr<<'k) S® dx,y
of Eq. (33).

4 The Ritz and Lagrange multipliers methods in rectangular anisotropic plates
Let us consider a rectangular plate with
={(x1,x2),0 <x1 <a,0 <xy <b}, (53)

and three internal line hinges parallel to the x, axis. Consequently, the corresponding sub-domains are given
by the following:

GW = {(x1,x2),ck—1 <x1 <ck,0<x2 <b}, k=1,...,4, (54)
where c¢o = 0 and ¢4 = a. The curves
r®—r&byr*2d =23
are described by the smooth paths:

y*D =Lkt +x1,0), x1 € [0,k — 1]},
y(k,Z) = {(Ck —x1,b), x1 € [0, Ck — Ck—l]} . k=23. (335

In this case, the curves 'V and I'® are given by (see Fig. 3) the following:

r® =r&byr&dypkd) = p =14,
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and are described by the smooth paths:

I = {(c1 —x1,b),x1 €10, ¢11}, y P ={0,b—x2), x2 €0, 5]},
y 3 ={(x1,0), x1 € [0, 11},

4,1 _ 4.2) _
y —{(C3 +x170)’x1 E [0,(1—63]}, V _{(a9x2)7x26 [0’ b]}a
y*3 =@ —x1,b),x1 €[0,a —c3]}.

It must be noted that the upper sides of the plate are given by (see Fig. 3) the following:

rem ,omy e {(1,1),(2,2) (3,2), (4,3)},

(k

and to these sides correspond n(k) = 0,n{" = 1. Meanwhile, the lower sides of the plate are given by

r&m (k,m) e {1,3),2,1),3, 1), 41},

(k) = —1. Finally, to the side ra.2 corresponds ngl) = —1, ngl) = 0, and to the side I'*2
corresponds n( ) =1,n (4) =0.
Itis immedlate that Eq (27) with v replaced by w lead to the following relations:

and n(lk) =0,n

Dl(l)w(xl,xg,t)‘ — D" )w(O 2, 1),

[ (k.m)
1@ 1( ) ~ (56)
D" wrxn)| = DM"0 0520
when (k, m) € {(1,1),(2,2)(3,2), (4,3)} and
) .
DY w (xq, x2, t)‘r(k = DY (0, 2. 1),
" (57)
&) M .
P w v n)| = =D 03200
when (k, m) € {(1,3), (2,1), (3, 1), (4, 1)}. Finally, we have
) M .
DY w (i x0,0)| = =DV (0, 32, 1),
@ @ .
DY w (x1,x2, 1) ran = DY (0, y2. 1),
' (58)
) M
DV w (x1,x2,1) ) =D w O, y2,1),
® ® .
DY w (x1, 22,0 =DV (0,32, 1)

X
2
c.,b c,,b, ). c3,b
e @y en)
R S x R
IR re» G2 3
LT T LT LT LTHD
G G(Z) G(3) G(4)
(1,3) @1 (3.1) (4.1
,T 7 T T
4 Yﬂ )f a x,
(cpa)) (cyoa, (c3.a,

Fig. 3 Rectangular plate with three internal lines hinges
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From Eq. (44), we have

™ (0, 32) DM (0, 32,0 = =5 0, 32,0), 32 € [0,147] (59)
when (k, m) € {(1,1),(2,2)(3,2), (4,3)} and

A" 030" 03201 = =8 0321 2 €[00 (60)
when (k, m) € {(1,3),(2,1),(3,1), (4, 1)} . Finally, for the remaining two sides, we have the following:

P (0,2 DM (0,32, 1) = =5 0, y2,1), y2 € [0, 5] (1)
and

PP 0,32 D" (0, 32,0 = =5{Y (0,32, 1), y2 €10, 1. (62)
Let us consider the first of Egs. (59). From Eq. (56) and the relations between the derivatives of order two, we

obtain the following boundary condition:

! @) DM w b = ZA‘“ 1) DV w (i b1y x1 € [0.er]. (63)

wn -
From Egs. (25)-(26), it is immediate that Eq. (63) in the classical notation is given by the following:

ro (o, b>—<x1 b, 1) =—C (xi, b) 2 (b0 = O (1, b) (xl,b D)

2

— 20D (x1. b) a Y b 1), x1 €0, 1], (64)
0x10x2

In an analog form can be obtained the remaining boundary conditions and it must be noted that in this case,

the boundary is composed of four smooth arcs and has four corner points, and then, there exist four corner

conditions.

The transition conditions (52) ensure the continuity of the transverse deflection along the internal line
hinges. Since it is difficult to construct a simple and adequate deflection function which can be applied to the
entire plate and to show the continuity of displacement and the discontinuities of the slope crossing the line
hinges, the Ritz method is used in conjunction with the Lagrange multipliers method to force the continuity
along the line hinges by means of suitable multipliers. When the plate makes free vibrations, its displacement
is given by an harmonic function of the time, i.e.,

w (x1, x2, 1) = W (x1, x2) cos wt, (65)

where w is the radian frequency of the plate. Substituting Eq. (65) into Eq. (18) leads to its maximum expression
Fhax, and the Lagrange multipliers method requires the stationarity of the functional

L = Fmax + F3, (66)
where
N—1
=2, / MO () (W (60 02) = W (e 2)) dna, (67)
k=1
rex)

is the subsidiary condition which imposes the transition conditions (52). In this case, the Lagrange multipliers
are functions which can be represented by a set of polynomials as:

Tk
)\’(k) (xZ) — zdi(k)xéfl’ (68)

i=1
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where dl.(k) are unknown coefficients.
In the present paper, the transverse deflection of the rectangular plate is represented by means of

W (x,x2) = WO (x,x) if(x,x) eGP k=1,2,...,N,

where
my  ng
k) (k k
WO @, x) =" alpl (i/a)gl (afby, k=1,2,....N, (69)
i=1 j=1
and pl.(k), ql.(k) are polynomial functions. The application of the Ritz method in conjunction with the Lagrange

multipliers method leads to the governing eigenvalue equation:
(IK1-2* [M]) {d} = {0}, (70)

where Q@ = wb?+/ph/Cy] is the nondimensional frequency parameter. For the sake of simplicity, the following
has been adopted: Cﬁ) = Cll,h(k) = hmy =ng = Mfork =1,2,...,Nand ry, = M for k =
,2,...,N—1.

4.1 Convergence and comparison of eigenvalues and modal shapes

The terminology to be used throughout the remainder of the paper for describing the boundary conditions of
the plate considered will now be introduced. In all Tables and Figures, the symbol F, S, and C denote free,
simply supported and clamped edges, and, for example, in the designation CSFS, the first symbol indicates
the boundary condition at x; = 0, the second at xo = 0, the third at x| = a, and the fourth at x, = b.

In order to establish the accuracy and applicability of the approach developed and discussed in the previous
sections, numerical results were computed for a number of plate problems for which comparison values were
available in the literature and also convergence studies have been implemented. Additionally, new numerical
results were generated for rectangular plates with one, two, and three internal line hinges and different boundary
conditions. All calculations have been performed taking Poisson’s ratio u = 0.3.

Results of a convergence study of the values of the frequency parameter @ = wb?/ph/C of a rectangular
isotropic plate are presented in Table 1. The isotropy is characterized by

Cii=Cn=C, Cig=Cpx=0, Cpp=uC, Ce¢ =0.5—-pn)C,

where C denotes the flexural rigidity of the isotropic plate. The first ten values of €2 are presented for a CSCS
plate with aspect ratio »/a = 1/2 and with a free internal line hinge located at two different positions, namely,

Table 1 Convergence study of the first ten values of the frequency parameter €2 for an isotropic rectangular CSCS plate with
aspect ratio b/a = 1/2, and with a free internal line hinge located ac; = 1/3 and c; = 1/2

P Mode sequence
1 2 3 4 5 6 7 8 9 10

13.08704 21.34970 41.24297 42.19241 50.52497 57.45938 68.12335 87.31363 88.83035 115.50618
13.02938 21.29404 38.87133 42.10803 50.51505 53.58910 66.54726 83.70899 88.57164 92.42562
13.02747 21.24199 38.48675 41.93049 50.29860 53.31515 66.25574 75.30024 82.89380 92.36946
13.02725 21.23979 38.41950 41.92656 50.29003 52.94558 66.21742 75.29608 82.45892 90.88579
13.02725 21.23977 38.41588 41.92540 50.28853 52.94515 66.21506 74.60979 82.45845 90.88127
13.02725 21.23977 38.41574 41.92535 50.28843 52.94376 66.21504 74.60933 82.45819 90.85921
13.02725 21.23977 38.41574 41.92534 50.28842 52.94374 66.21504 74.60406 82.45801 90.85909
13.02725 21.23977 38.41574 41.92534 50.28842 52.94373 66.21504 74.60406 82.45799 90.85897
12.70627 23.72724 33.17153 41.93788 51.85000 61.06898 63.33109 78.11975 88.07950 108.15864
12.68772 23.64758 33.11678 41.86940 51.81540 58.93268 63.23609 73.34897 86.37351 92.13940
12.68738 23.64638 33.06603 41.70366 51.67531 58.67674 63.01938 72.54043 86.15765 92.10829
12.68736 23.64632 33.06510 41.70266 51.67489 58.64840 63.01580 72.40644 86.13690 90.63356
12.68736 23.64632 33.06509 41.70193 51.67428 58.64640 63.01485 72.39779 86.13450 90.63286
12.68736 23.64632 33.06509 41.70193 51.67428 58.64637 63.01483 72.39760 86.13446 90.61148
12.68736 23.64632 33.06509 41.70193 51.67427 58.64636 63.01483 72.39756 86.13446 90.61148
12.68736 23.64632 33.06509 41.70193 51.67427 58.64636 63.01483 72.39756 86.13446 90.61137
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G Reference Mode sequence

1 2 3
0.1  Present 13.18790 20.71524 26.94803

Ref.[26] 13.18792 20.71540 26.94847

0.3 Present 13.24791 | 21.36125 30.42226
Ref.[26] 13.24793 21.36147 30.42241

7 === i

3

0.5 Present 13.46820 21.46315 26.57492
Ref.[26] 13.46822 21.46337 26.57505

\ f
Fig. 4 Comparison of the first three values of the frequency parameter €2 and their modal shapes contour lines of an isotropic
FFFF square plate with a free internal line hinge located at different positions

Table 2 First four values of the frequency parameter €2 for an anisotropic CCCC square plate with two elastically restrained

internal line hinges with different values of the rotational restrictions R;;") = rl(f")a /C11,k = 1,2, located at ¢; = 0.25 and
¢y =0.75

Rﬁ;') R;e”) Mode sequence
1 2 3 4

0 0 23.45956 30.56252 37.85855 44.15721
10 0 23.61956 30.75000 44.68048 45.98426
1000 0 23.64241 30.77948 45.97679 46.06113
o) 0 23.64268 30.77983 45.98424 46.07002
00 10 23.92261 31.09512 46.34815 59.35300
00 1,000 23.96589 31.14802 46.40945 62.73310
o) o] 23.96640 31.14865 46.41019 62.77503
Ref. [29] 23.96642 31.14868 46.4672 62.77512

¢y = 1/3,andc; = 1/2, where c; = c¢1/a. The convergence of the mentioned frequency parameters is studied
by gradually increasing the number of polynomial in the approximate functions W, W® and the Lagrange
multiplier 2D = A(l)(xg), given by m; = n; = my = np = r; = M, as stated above. It can be seen that
M = 10 is adequate to reach a stable convergence in almost all cases.

Figure 4 shows a comparison of the first three values of the frequency parameter Q = wb*/ph/C, and
their modal shapes contour lines of an isotropic FFFF square plate with a free internal line hinge located at
¢y = 0.1,¢; = 0.3 and ¢; = 0.5. The comparison of results with those of Quintana and Grossi [26] shows
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2 G,  Mode sequence

1 2 3 4 5
1/3 2/3 22.31765 23.52980 25.75968 31.52952 37.18707
0.2 0.4 22.40032 23.45263 29.48197 36.75353
0.4 0.8 23.47255

Fig. 5 First five values of the frequency parameter €2 and modal shapes of an isotropic CCFC rectangular plate with b/a = 1/3
and two free internal line hinges with different locations

b/a Mode sequence

5.79202 7.89521

4.99314 10.00064 16.26355 19.68378 23.75562

Fig. 6 First five values of the frequency parameter €2 and modal shapes contour lines of an anisotropic FCFS rectangular plate
with two free internal line hinges located at ¢; = 1/3 and ¢, = 2/3 forb/a = 1/2and b/a =2

that the present values are slightly lower, in consequence more accurate, since the Ritz method gives upper
bounds for eigenvalues.

Table 2 gives the first four values of the frequency parameter Q@ = wb’/ph/Cy; for an anisotropic
CCCC square plate with two internal line hinges elastically restrained against rotation. Different values of

the rotational restrictions R;ec") = r}f")a /C11,k = 1,2, located at ¢c; = 0.25 and ¢, = 0.75 are considered.

The values which correspond to R%C") = 00,k = 1, 2, are compared with those obtained in [29]. The plate
anisotropy is characterized by

Ca = 0.1, Cgs = 0.0247750, C1 = 0.03, C16 = Ca6 = 0,

where C_’,- j denotes the quotient C;;/C1;.
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[4 [ Mode sequence
1 2 3 4 5
1/3 2/3 14.40984 14.69129 15.66289 16.54287 22.41634
B, A
g % i
0.2 0.4 14.41714 17.88748 19.44216
0.4 0.8 14.40627 14.67245 15.52800

&

Fig. 7 First five values of the frequency parameter €2 and modal shapes of an isotropic rectangular plate elastically restrained
against rotation and translation with two free internal line hinges for different locations and aspect ratio b/a = 1/3. Edge

x1=0:Rg =rga/Cy; =10, Ry = rTa3/C11 = 100; edge xo =0 : Rgp = rrb/Cy; = 1000, R = rTb3/C11 = 100; edge
xi =a:Rg=rra/Ciy =100, Ry =rra®/Cy; = 10;edge xo = b : Rg = rgb/Cy; = 100, Ry = rpb®/Cy1 = 1000

Table 3 First ten values of the frequency parameter €2 for an isotropic SSSS square plate with three internal line hinges elastically

restrained against rotation, for different values of the rotational restrictions RE;") = ri(;k)a/C ,k = 1,2,3 located at ¢; =
0.1,¢0 =03andc3 =0.5

Mode Sequence

Rl Rl gl 1 2 3 4 5 6 7 8 9 10

R R R

0 0 0 15.621165 31.424942 45.810014 55.555108 68.911856 70.699358 94.685532 100.372229 120.8326357 127.2018414
N o A N S & &>, PN
D ® © & © ¢ v e ©

- A 4
100 0 0 15.659686  33.084877 45.899001 67.436921 70.634302 94.834955 106.078408 122.404505 144.903509  161.598162
1000 0 0 15.659953 33.094441 45.900913 67.452516 70.666660 94.840425 106.152974 122.456922 147.762890  161.744345
00 0 0 15.659983  33.095511 45.901130 67.454243 70.670329 94.841058 106.161355 122.462959 148.090485  161.761063
50 100 0 16.129347 46.714194 49.022783 74.937776 78.665061 95.988678 110.796045 128.011627 164.529706  164.701207
so 1000 0 16.134228 46.735689 49.315058 75.247587 78.926764 96.035115 111.001479 128.274188 164.678417  164.779776
0 50 0 16.134777  46.738147 49.348022 75.283383 78.956835 96.040505 111.025379 128.304857 164.695911  164.789017
100 19.657690 49.255831 49.348022 78.956835 97.871077 98.567425 127.548259 128.304857 167.602232  167.783275
19.730888 49.338503 49.348022 78.956835 98.610977 98.682601 128.226215 128.304857 167.766261  167.783275
oo 19.739209 49.348022 49.348022 78.956835 98.696044 98.696044 128.304857 128.304857  167.783275  167.785666

8
3 8 8

The mode shapes correspond to R;;") =0 and Rg;k) =00,k=1,2,3

4.2 New numerical results

Figure 5 shows the first five values of the frequency parameter Q@ = wb*+/ph/C and modal shapes of an
isotropic CCFC rectangular plate with b/a = 1/3 and two free internal line hinges with different locations.
In Fig. 6, it can be observed the first five values of the frequency parameter Q = wb”/ph/C11, and their
modal shapes contour lines of an anisotropic FCFS rectangular plate with two free internal line hinges located
atc; = 1/3 and ¢, = 2/3 for two different aspect ratios. The plate anisotropy considered is characterized by

Ca = 0.115202317, Ce6 = 0.0948810, Cj2 = 0.100812496, C16 = —0.24333539, Cos = —0.0120837.

Figure 7 shows the first five values of the frequency parameter 2 = wb*/ph/C and the modal shapes of
an isotropic rectangular plate elastically restrained against rotation and translation, with two free internal line
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Table 4 First eight values of the frequency parameter 2 for an isotropic SSSS square plate with three internal line hinges

elastically restrained against rotation, for different values of the rotational restrictions ng) = r}f")a /C,k =1,2,3, located at
¢y =0.25,¢, =0.5and ¢3 = 0.75

Rz(zq) R[(;-') Rl(?“s) Mode Sequence
1 2 3 4 5 6 7 8

0 0 0 15.36329 27.52213 42.77809 45.42986 64.53911 91.18849 94.24992 116.83206

»

o — _./'
100 0O 0 15.69608 31.96383 45.99468 64.65612 69.54496 95.01830 102.58982 121.44341
1000 0O 0 15.69950 32.00540 46.00921 65.42236 69.68312 95.04829 103.13919 121.64389
50 0 0 15.69988 32.01005 46.01087 65.51062 69.69890 95.05177 103.20331  121.66719
50 100 0 17.15566 37.11687 47.73096 70.87514 88.20107 97.07621 119.98941  122.10969
50 1000 0 17.17572 37.20665 47.78292 70.90971 88.99991 97.16574 120.70381  122.12872
. x 0 17.17799 37.21680 47.78889 70.91367 89.09194 97.17618 120.78681  122.13093
00 00 100 19.69815 48.99297 49.30165 78.63597 98.28650 98.63132 127.92899 127.98137
00 00 1000  19.73505 49.31163 49.34326 78.92361 98.65354 98.68932 128.26556 128.27096
50 50 50 19.73921 49.34802 49.34802 78.95684 98.69604 98.69604 128.30486  128.30486

The mode shapes correspond to RE;") =0,k=1,2,3

hinges for different locations and aspect ratio b/a = 1/3. The edges are elastically restrained according to the
following:

edgex; =0: R =rga/C = 10, Rr = rra®/C = 100,
edgex =0: Rg=rgh/C =1,000, Ry =rrb’/C =100,
edgex; =a: Rg=rga/C =100, Ry =rra’/C =10,
edgexs =b: Rp=rgh/C =100, Rr =rrbh’/C =1,000.

Table 3 depicts the first ten values of the frequency parameter Q = wb?/ph/C for an isotropic SSSS
square plate with three internal line hinges elastically restrained against rotation, for different values of the

rotational restrictions Rg") = rl(;k)a/C, k =1,2,3located at ¢; = 0.1, ¢ = 0.3 and ¢3 = 0.5. The mode
shapes correspond to R;f") =0and R;;") =o00,k=1,2,3.

Table 4 gives the first eight values of the frequency parameter Q = wb?+/ph/C for an isotropic SSSS
square plate with three internal line hinges elastically restrained against rotation, for different values of the
rotational restrictions R)(,f") = r,(;")a/C, k=1,2,3, located at ¢; = 0.25, ¢ = 0.5 and ¢3 = 0.75. The mode
shapes correspond to Rg") =0, k=1,2,3.

5 Concluding remarks

This paper presents the formulation of an analytical model for the dynamic behavior of anisotropic plates,
with several arbitrarily located internal line hinges with elastics supports and piecewise smooth boundaries
elastically restrained against rotation and translation. The equations of motion and the associated boundary
and transition conditions were derived handling Hamilton’s principle in a rigorous framework. The presence
of a generic number of line hinges constitutes a complicating effect in the analysis and development of the
variational treatment, so a new analytical manipulation based on a condensed notation is used to compact the
corresponding analytical expressions.



Natural vibrations of anisotropic plates with several internal line hinges

An approach to the solution of the natural vibration problems of the mentioned plates by a direct variational
method has been presented. A simple computationally efficient and accurate algorithm has been developed
for the determination of frequencies and modal shapes of natural vibrations. The approach is based on a
combination of the Ritz method and the Lagrange multipliers method. Sets of parametric studies have been
performed to show the influence of the line hinges and it locations on the vibration behavior. Although numerical

results are presented for rectangular plates with one, two, and three line hinges, the algorithm developed is

applicable for any number of line hinges. It is worth noting that when rr(c") — 00, r7(fk) — 00, the k—th line

hinge is transformed into a line support. In the consequence, the results obtained in this paper can also be
utilized to study the internal support optimization.
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