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We construct measures for the non-Markovianity of quantum evolution with a physically meaningful
interpretation. We first provide a general setting in the framework of channel capacities and propose two families
of meaningful quantitative measures, based on the largest revival of a channel capacity, avoiding some drawbacks
of other non-Markovianity measures. We relate the proposed measures to the task of information screening. This
shows that the non-Markovianity of a quantum process may be used as a resource. Under these considerations,
we analyze two paradigmatic examples, a qubit in a quantum environment with classically mixed dynamics and

the Jaynes-Cummings model.
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I. INTRODUCTION

The field of open quantum systems is of paramount
importance in quantum theory [1]. It helps us to understand
fundamental problems such as decoherence, the quantum-to-
classical transition, and the measurement problem [2]. Besides,
it has been essential for reaching an impressive level of control
in experiments on different quantum systems, which are the
cornerstone of recent developments in quantum technologies
[3-7].

The usual approach to quantum open systems relies on
the assumption that the evolution has negligible memory
effects. This supposition is part of the so-called Born-Markov
approximation, which also assumes weak system-environment
coupling and a large environment. The keystone of Marko-
vian quantum dynamics is the Lindblad master equation
[8,9], which describes the generator of quantum dynamical
semigroups. The behavior of several interesting and realistic
quantum systems has been studied using the Born-Markov
approximation. However, these assumptions (weak coupling
and large size of the environment) cannot be applied in
many situations, including recent experiments of quantum
control. This shows the importance of understanding quantum
open systems beyond the Born-Markov approximation. A
whole new area of research, under the name of quantum
non-Markovianity (NM), has emerged, which includes de-
viations from the semigroup property, along with wider
criteria.

A great amount of work (see [ 10—12] and references therein)
has been done to understand and characterize non-Markovian
quantum evolutions—or non-Markovianity, as it is generically
called. This not only gives us a better understanding of open
quantum systems but also provides more efficient ways to
control quantum systems. For example, it was recently shown
that NM is an essential resource in some instances of steady-
state entanglement preparation [13,14] or can be exploited to
carry out quantum control tasks that could not be realized in
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closed systems [15]. Besides, non-Markovian environments
can speed up quantum evolutions reducing the quantum speed
limit [16].

Unlike other properties, such as entanglement, there is not a
unique definition of NM. There exist different criteria, more or
less physically motivated, which in turn can be associated with
a measure [10—12]. The two most popular criteria are based
on distinguishability [17] and divisibility [18], from which
two corresponding measures can be derived. There exist other
measures [19-23], which basically are variations of these two
or are very similar. All of these measures present some of the
following problems: they lack a clear and intuitive physical
interpretation, they can diverge in very generic cases [24],
and they are not directly comparable to each other. Another
problem is that, even if at least one of them has an intuitive
physical interpretation, in terms of information flow [17],
neither, to our knowledge, has a direct relation to a resource
associated with a task—Ilike entanglement of formation has.

In this work, we pursue two goals. First, we want to
construct NM measures without the mentioned drawbacks.
We undertake this task within the framework of channel
capacities. The proposed measures are based on the maximum
revival of the capacities, a characteristic that has a very simple
physical interpretation and has a natural time-independent
bound. Of course there might—and most likely will—exist
many possible measures of quantum NM. Thus, we first
provide a general setting and then put forward two plausible,
meaningful quantitative measures. Our second goal is to
outline the theoretical bases for considering NM as a resource.

Consider what we call a quantum vault (QV). Alice shall
deposit information, classical or quantum, in a quantum
physical system (say, in a physical realization of a qubit);
for some period of time, during which the system evolves, the
physical system can be subject to an attack by an eavesdropper,
Eve; finally, after that time interval, the information is to be
retrieved by Alice from the same physical system. Of course,
the system interacts with an environment, which neither Alice
nor Eve can access. Note that this task can be related to
quantum data hiding [25-27]. We show that one of the NM
measures proposed is closely related to the efficiency of the
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QV. Therefore the value of the measure can be considered a
resource associated with a specific task.

To illustrate our ideas we analyze two examples of physical
systems coupled to non-Markovian environments and analyze
the newly defined measures as well as their QV capabilities.
We also explain possible advantages with respect to other
NM measures. First, we study a qubit, coupled via pure
dephasing to an environment whose dynamics are given by
a mixed quantum map. Different kinds of dynamics can be
explored, changing the initial state of the environment. For
the measures proposed in previous works, this sometimes
leads to unexpected behavior. The other example we consider
is the well-known Jaynes-Cummings model (JCM) [28], a
two-level atom coupled to a bosonic bath, where we contrast
our proposals with some of the most used NM measures.

The work is organized as follows. In Sec. II we describe
the general framework that relates NM to the capacities of a
quantum channel. Then we define two NM measures based on
the largest revival of the capacities. In Sec. III we introduce
the concept of the QV and show its relation to the new NM
measures. Section IV is devoted to analyzing two examples
using the ideas presented in the previous sections. We end the
paper with some final remarks in Sec. V.

II. NON-MARKOVIANITY MEASURED
BY THE LARGEST REVIVAL

The two most widespread NM measures are the one due to
Breuer, Laine, and Piilo (BLP) [17], based on distinguisha-
bility (henceforth abbreviated MPBYF), and the one due to
Rivas, Huelga, and Plenio (RHP) [18], based on divisibility
(MRHPY At the heart of both measures, there is a well-defined
concept which has been borrowed from classical stochastic
systems. In the case of MBLP it is the contraction of the
probability space under Markovian stochastic processes, while
in the case of MRHP it is the divisibility of the process
itself. Both concepts can be used as criteria for quantum
Markovianity by defining that a quantum process is Markovian
if the distinguishability between all pairs of evolving states
is nonincreasing (MP" = 0) or if the process is divisible
(MRHP = 0); otherwise, the process is called non-Markovian.
It has been shown in Ref. [11] that the semigroup property
of a quantum process implies that MRHP = 0 and that, if the
system is Markovian according to the RHP criterion, it is also
Markovian under the BLP criterion. In order to obtain the
measures, both groups of authors apply essentially the same
procedure: integrate a differential measure for the violation of
the corresponding criterion. The same construction principle
has been used in Ref. [23] to quantify NM based on channel
capacities.

Consider the convex space of all quantum channels and, in
this space, a continuous curve A, with 0 < ¢ < oo starting at
the identity Ay = 1. We call such a curve a quantum process.
Any resource K of interest will be a function of the space of
quantum channels. Thus any quantum process comes along
with the function

K@) = K(A,), (D

quantifying the resource the quantum channel provides at time
t. Postulating that K(¢) cannot increase during Markovian
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dynamics, one defines the function

MZIA] = f K(7)dt (2)

K=>0
as a measure of NM. We use the subscript oo for this class of
measures, as itis possible that one has to add an infinite number
of contributions (all intervals where K > 0). We use brackets
to indicate a functional in the space of quantum processes
and parentheses when we refer to a functional in the space of
quantum channels. One can immediately derive a criterion for
NM, namely, M[A;] > 0. In the case of RHP,

K@) = lim HCrrerl =1 3)

e—>0t &

where tr|A| is the trace-norm and C; . ; is proportional to the
Choi representation [29,30] of the map A, o A7!, which

T 2
evolves states from time 7 to time t + &. In the case of BLP

K(t) = D[A(p1). Ai(p2) ], 4)

where D(0;,02) = tr|o; — 02]/2 is the trace distance between
the two states o; and o,. The initial states p;, p, are chosen to
maximize the NM measure. The measures defined in Ref. [23]
can also be cast in this form. In that case, K(¢) is directly
defined as the corresponding channel capacity of A,.

For definitiveness, two channel capacities are considered in
this work: that for entanglement-assisted communication and
that for quantum communication [31]. Note that also much
simpler measures, such as the average fidelity, the purity, and
some measure of entanglement, may be cast in that form.

This construction, which includes conpributions from a
possibly infinite number of intervals where K > 0, may result
in rather inconvenient properties. The main problem stems
from the overvaluation of fluctuations. Fluctuations arising
from a finite-size environment, or from finite (numerical or
experimental) statistics, will lead to a linear increase in the
measure. This contribution will be proportional to both the
time interval considered and the amplitude of the fluctuations.
One must thus truncate the integration interval and smear
functions or remove these contributions in another way. From a
mathematical point of view, consider adding a small fluctuating
term with a high frequency in a fixed interval. This will
add to the measure a term proportional to the amplitude, the
interval length, and the frequency. This in turn implies that
neighbor functions, under any p-norm, may have arbitrarily
different measures of NM under M$°[A,] and even diverge
(a detailed example is presented in Sec. IV A, where the
different measures are compared). The divergence can be
remedied by normalization such as in [18], where the authors
consider MP[A,](a + MP[A,])~" with a = 1. However,
this normalization is completely arbitrary, as any other scale
for a would be equally acceptable. Even if the measures yield
finite values, it is not clear how one should interpret a statement
that one process has a larger value for BLP NM (RHP NM)
than another. It is even less possible to compare values obtained
for different measures.

Here, we show that a rather simple modification of the
construction can avoid these issues and lead to a clear physical
interpretation of the resulting NM measures. The modification
consists of considering only the largest revival with respect to
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either (i) the minimum value of K (7) prior to the revival or (ii)
the average value prior to the revival. Thus, we take

MP[A] = max [K(ty) — K(D)] )
1y, Tty

in the first case and

MIA] = max {0, max [K (1)) = (K(@)e<y ]} (6)

in the second. Here, (-),, ; denotes the time average until 7.
In the first case, we are measuring the biggest revival during
the time interval, whereas in the second, we are measuring a
revival, but with respect to the average behavior prior to this
time. Note that

M AT < MENA,] (M
as (K(A¢))r<x,,, = Min; ., K(A;). Moreover, also note that
MPEIA] > 0 <= ME™[A,] > 0, )

though no such relation is found for ./\/l;g. In fact, we see
later that nonmonotonic behavior does not guarantee a positive
value for ./\/l,%).

Note that one could also take additional disjoint contribu-
tions in Eq. (5), i.e., include more nonoverlapping segments
in which K > 0. In this case, relations (7) and (8) would still
hold, though the simple geometric interpretation of the “largest
overall revival” would break. We prefer Eq. (5) for simplicity.

III. NON-MARKOVIANITY AS A RESOURCE:
THE QUANTUM VAULT

We consider a quantum system which is used to store and
retrieve information by state preparation and measurement.
The quantum system is coupled to an inaccessible environment
and we describe its dynamics by a quantum process. In order
to use the system, Alice encodes her information (which may
be quantum or classical) in a quantum state. Then at some
later time Alice attempts to retrieves the information from
the evolved quantum state. Note that this state need not be
equal to the initial state; it is sufficient that Alice is able to
recover her information from it. The capacity of the device
depends on the amount of information which can be stored and
faithfully retrieved. During the time in which the information
is stored, it might be subject to an attack by an eavesdropper,
Eve. Some important remarks should be made. Eve has a finite
probability of attacking, and her attack destroys the quantum
state. We assume that Alice becomes aware if there is an attack
and discards the state. A good QV is such that Alice can
obtain her information with a high reliability and, between
state preparation and readout, the information is difficult to
retrieve.

The process, until the measurement by Alice or Eve, is
described by the quantum process A., while the information
is quantified by a capacity . We thus have a time-dependent
value of the capacity, analogous to Eq. (1). The times
considered are in the range 0 < 7 < ty, with 7, being the
time at which Alice attempts to retrieve the information. The
average information that can be obtained by Eve per attack is
then (K'), where the average is taken during the vault operation,
namely, from O until ;. Here we assume that when Eve attacks,
she does so only once, as an attack destroys the state anyway. If
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Eve attacks with a probability g, on average she will obtain the
information g (K'). Thus, the average information successfully
retrieved by Alice will be only (1 — g)K (¢7). We consider as a
figure of merit the difference between the average information
obtained by Alice and that obtained by Eve:

AK, = (1 - K(tp) — q(K). ©)

Note that to obtain Eq. (9) the presence of an eavesdropper is
crucial. It is responsible for the second term, and without it, we
would have simply an equation stating how a channel capacity
decays over time. Note that this quantity can be negative,
when Eve obtains on average more information than Alice can
retrieve. Finally, we may define the QV efficiency as n, =
AK;/Kmax, With Ky = K(1). A good QV should have an
efficiency close to 1.

Assume that C is normalized in such a way that p =
K / K max 18 the probability that the message encoded in the state
will be retrieved. A successful run can be defined as a run in
which, if Eve attacks, she gains no information, whereas if Eve
does not attack, Alice retrieves the information successfully.
From the considerations above, one can see that the probability
of having a successful run is given by

Py =q( —{pO)+ A —q)plty) =n4 +4. (10)

We associate with this probability a quality factor for the
channel, as a QV, that is simply the above probability weighted
by the capacity of the channel, that is, N, = Ky Py =
AKy 4 qKpax -

Now we discuss AK, and ./\/q for some particular examples
and establish its relation to M,(g. We first examine the worst-
case scenario: ¢ & 1. By definition, if Eve attacks, she destroys
the state. This fact is reflected in AK,, which can go from the
minimal value — K, (Worst efficiency; n,) to AK, = 0 (poor
QV) when (K (1)) ~ 0. N, on the other hand, ranges from
N, =0(.e., bad QV) to N, = Kmax . In the latter case a large
N, value due to a small (K (r)) evidences the fact that Eve is
unable to obtain anything. In the best-case scenario of ¢ < 1,
evidently the efficiency of the vault is only tied to K(zy), the
larger the better.

Now let us assess the general case. We only take into
account the case where M) > 0, i.e., from Eq. (6) there is
at least one ¢ for which (K(t)) < K(tf). The first relation

between the QV and M,@ that we find is

min(l — g,q) x M,@ < AK, < max(l — ¢q,g9) x M,@,

1D
which is easy to derive from the definition, provided 7, is the
same for both. This relation sets lower and upper bounds for the
QV, depending on ¢ and M" [a corresponding relation with
N, follows directly from Eq. (10)]. If there is no information
about the attack probability, and assuming that all probabilities
are uniformly likely, we can assume, invoking a maximum
entropy principle, an average probability of g = 1/2. For this
unbiased case (and M) > 0) we have

1 . 1 .
AK1/2=§M§3, M/2=§(Kmax+/w§3>. (12)

These equations relate the NM measure proposed with the pos-
sibility of performing the task at hand, namely, the operation
of a QV, under the assumption that the attacker attacks with
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I

FIG. 1. Schematic examples of K(¢)/ K. to be considered as
QVs. Top left: Example with large 8K, and M", a good QV
candidate. Top right: Worst-case scenario. Small § K, small (or null)
M), and information always available for Eve to grab. Bottom left:
Small M® and AK, (poor for information retrieval) but decent
(good for information protection). Bottom left: A more general case,
strongly depending on M) and the height of the peak at 7.

probability 1/2. In particular, it gives an operational meaning
to the measures proposed here and shows that, for the task
proposed here, the figure of merit is J\/l,(é).

In Fig. 1 we show some examples one could encounter
for K(t)/Kmax- In the first one (top left) we have (K (¢)) =~ 0,
MY~ K(ty), and

AK, ~ (1 —g)M", (13)

so for a fixed g, a large M " implies a high efficiency. This is
in fact the ideal scenario for a QV, because most of the time the
information is hidden and inaccessible to Eve and at time ¢
the information can be retrieved with a high accuracy. If (K (7))
is very large, close to K.« (e.g., Fig. 1, top right), then, by
definition, the channel is not a good QV: a large proportion
of the information is readily available at all times before 7.
Here K(t7) < (K) [so Eq. (11) does not hold], but the only
possibility of having a good efficiency is the trivialg — 0 case.
If, on the other hand, (K (#)) and K(zy) are both very small
(Fig. 1, bottom left)—again, M ~ 0—there is little chance
of retrieving the information, even for small g, yielding a poor
efficiency and ;. For large ¢, N, & g Kmax can be large. The
interpretation of this large value of V is that Eve will likely
attack, but unsuccessfully. Finally, we consider the case where
K () decays monotonously except for one bump (e.g., Fig. 1,
bottom right). The analysis now requires a little more care. If
K(ts) < (K), which happens for a small enough bump, then
M. =0, and there is no connection between AK, (or ./\/q)
and M. The analysis is similar to that in Fig. 1 (top right).
On the other hand, if M® > 0, the efficiency is bounded by
Eq. (11), and for maximum M*? the case is equivalent to the
first one (top left).
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FIG. 2. Left: F(t) as a function of time for two initial states of an
environment modeled by the quantum Harper map. Right: Classical
phase space of the environment for the parameters studied (see text).
The two states of the environment in the left panel are coherent pure
states centered at (¢, p) = (0.1,0.1)—in the integrable region marked
with a red circle, corresponding to the dashed (red) line in the left
panel —, and (¢, p) = (0.5,0.04) —in the chaotic region, marked with a
blue diamond, corresponding to the solid (blue) line in the left panel.
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IV. EXAMPLES

In this section we present concrete physical examples of
quantum channels where we can test the newly proposed
measures and their relation to the QV scheme.

A. Environment with mixed dynamics

Let us discuss encoding quantum information in a qubit
coupled to an environment in a dephasing manner. We consider
that the environment evolves according to a dynamics that in
the semiclassical limit is mixed, i.e., has integrable and chaotic
regions in phase space.

A simple way to realize such an environment is to use
a controlled kicked quantum map [32,33]. In this case, the
environment evolution is slightly modified depending on the
state of the qubit. This is equivalent to having a coupling
with the environment that commutes with the Hamiltonians
corresponding to the free evolution of each part, qubit, and
environment.

Here we choose to use the quantum Harper map [34]. The
evolution operator, in terms of the discrete conjugate space-
momentum variables ¢ and p, is

k k
U = exp |: — ii_i cos(Znﬁ)] exp [ — iﬁ cos(2né)i|, (14)

h=1/2rxN) being the effective Planck constant and N
the dimension of the Hilbert space of the environment. The
corresponding classical dynamics (N — 00) is given by

Pn+1 = Pn — k S.in(ZJan), (15)
Gn+1 = Gn + ksin2wp,41).

The phase-space geometry is a 2-torus, so p, and g, are taken
modulo 1. For k = 0.2, the dynamics is mixed (see Fig. 2). To
use this closed system as an environment, we consider that the
state of the qubit induces a small change in the parameter k
of the map, so the evolution of the whole system for one time
step is given by the Floquet operator

U = |0}0|Ux + [1)(1|Ups1 (16)
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and U(t) = U’, for integer ¢t. Throughout this example, we
set N = 4000, k = 0.2, and 8k = 2h, unless otherwise stated.
The initial state of the whole system is the uncorrelated state
Psys @ Penv,q,p>» Where the environment is taken to be a pure
coherent state centered in (g, p). The state of the qubit, obtained
with unitary evolution in the whole system and partial tracing
over the environment, is given by

Psys(t) = ey [U (1) psys ® Penv.g pUT(1)] = AP (pgys). (17)

In the basis of Pauli matrices {0;} = {I,0,,0y,0.}/+/2, the
induced channel takes the form

1 0 0 0
_ 0 Re[fq,p(t)] Im[fq,p(t)] 0
Ar®O =10 Tm[f, )] Relfy,n of ¥
0 0 0 1
where
Fop®) = ttlpeny.g p Ursk () Uk ()] (19)

is the expectation value of the echo operator Uk+5k(t)TUk(t)
with respect to the corresponding coherent state (also known
as the fidelity amplitude). We also define the fidelity, F, ,(t) =
| f4,»()], for later convenience. Note that the channel depends,
up to unitary operations, only on F, ,(¢), and thus all capacities
will be functions solely of this quantity. In Fig. 2 (left) we show
two examples of F ,(¢), for different initial conditions of the
environment (marked by large symbols in Fig. 2, right). One
can see that in the case where the environment starts inside the
chaotic sea (blue diamond), the system has very small ./\/lp
and M7 values, and therefore from Eq. (12) it will be a very
bad QV.

An interesting point in Fig. 2 is how ./\/l;) and MP*
compare to MBLP and MRHP,

In terms of Fy ,(¢) the latter are given by

fout .
MBLpzf‘ dtF, ,(v),
0,F>0
’ . (20)
Fy (1)

Teut
MRHP :/ dt ,
0,F>0 Fq.p(f)

where 7, indicates the cutoff time. The [F, p(r)]‘1 term
in MRHP can be problematic when F, ,(t) is very small,
which is exactly the case for an initial state located in the
chaotic region. In Table I the values of all four measures,

TABLE 1. Comparison between different values of measures of
non-Markovianity (NM) for the two situations depicted in Fig. 2. We
cut the integral in Eq. (20) at + = 8000. The inherent fluctuations
present for this finite-dimensional environment cause the integrable
situation (with larger fluctuations) to reach larger values for the NM
measures MPBLP and MRHP than does the chaotic counterpart. On the
other hand, both Mﬁ? and MF* capture well the idea of the QV,
reporting large values for the integrable case and small values for the
chaotic one.

In Flg 2 M;,) M?z\x MBLP MRHP
Filled red circle 0.899 0.953 33 1333.97
Filled blue diamond 0.108 0.194 62.92 6274.89
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FIG. 3. Mapping of the classical phase space obtained from the
different non-Markovianity measures discussed, for the quantum
Harper map with N = 8000, K = 0.2, §K/h = 2, and maximum
time 7., = 16 000. The color code is dark/black = 0, light/white =
max. The different panels correspond to ./\/l}') with a maximum value
of the measure of 1 (top left), MF** with a maximum value of 1 (top
right), MBP with a maximum value of 200 (bottom left), and MRHP
with a maximum value of 19 000 (bottom right).

based on F, corresponding to Fig. 2 are listed. The values
reported in the table highlight important characteristics of all
four measures. On the one hand, for non-monotonicity-based
measures, intuitively we expect that a fast-decaying K(¢)
followed by sharp and high revivals would yield a larger value
of NM. This is not the case for MBY and MRHP (at least in
this particular example), for different reasons. In the case of
MRHBP it i5 due to the small denominator and in the case of
MBP it is due to fluctuations (and finite N). These facts are
further illustrated in the color density plots in Fig. 3. We see
that in all cases the underlying classical structure is clearly
outlined. For both M} and M™% an additional structure
appears that resembles the unstable manifolds. The measures
Mﬁ?, M and MBLP all seem to peak in the vicinity of the
border between chaotic and regular behavior. As stated before,
the MRHP measure behaves differently, as it is larger in the
chaotic region.

Note that the measure Mﬁ can be associated with the
task of transmitting classical information (without the use of
entanglement) encoded initially in the states |+).

B. Non-Markovian Jaynes-Cummings model

In order to explore and compare the different measures
of NM discussed throughout this work, we now consider
the paradigmatic JCM [28], which has served as a testbed
in quantum optics (see, e.g., [1]). In this model, a two-level
atom is coupled to a bosonic bath, which induces a degradable
channel in the qubit. We take advantage of the fact that a lot is
known about this model analytically and we build upon known
results.
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The Hamiltonian of the system is H = Hy + H;, where H,
is the free Hamiltonian of the atom plus the reservoir and H;
the interaction between them. In particular, Hy = wyo.0_ +
Dk a)kb,ibk, where o are the rising and lowering operators in
the atom, wy is the energy difference between the two levels in
the atom, b; and b,t are the creation and annihilation operators
of mode k of the bath, and wy is its frequency. The interaction
Hamiltonian is given by H; = 0, ® B + o_ ® B, with B =
> &kby and g the coupling of the qubit to mode k. In the
limit of an infinite number of reservoir oscillators and a smooth
spectral density, this model leads to the channel [1]

2
At[]_<1—|G<r>| Pec G(r)pge)’ o

- G*(t)p;e |G(t)|2pee
where the initial state is p = (] ;,f’ « ff").
- ce

The function G(¢) is the solution to the equation G(t) =
— fot dtf(t — 1)G(t),with G(0) = 1,and f(t — 7)1is the two-
point correlation function of the reservoir. For a Lorenzian
spectral density

(t) = Syore 137D, (22)
2

we find

G(t) = gif(*i‘”[% sinh (%) + cosh (%)],
23

where Q = \/—ZVA + (A — i8)2. Here, y; is the strength of
the system-reservoir coupling, A is the spectral width, and §
is the detuning between the peak frequency of the spectral
density and the transition frequency of the atom [35].

In what follows, we study the NM measures M,

M, and /\/l,%) for the capacities Q (quantum capacity),
C (entanglement-assisted classical capacity), and D (distin-
guishability of the states |£)). The quantum capacity is defined
as the maximal amount of quantum information (per channel
use, measured as the number of qubits) that can be reliably
transmitted through the channel. It is given explicitly in
terms of the maximization [36] max e, 11{H2(|G(1)*p) —
Hy(1 = |GOP)p)} for |G@P > 1/2 and 0 for |G <
1/2. The entanglement-assisted classical capacity C is defined
as the maximal amount of classical information (per channel
use; measured as the number of classical bits) that can be
reliably transmitted through the channel when Alice and Bob
are allowed to use an arbitrary number of shared entangled
states [31]. For the present channel it is given by [36] C =
max pepo, 1 {Ha(p) + Ha(IG®)2p) — Ha((1 — |G@))p)). Fi-
nally, we also consider the BLP measure defined in Eq. (4). In
this case the initial states which maximize the various types of
NM measures may be chosen invariably as the two eigenstates
of the Pauli matrix o, [10]. Thereby, we obtain K (t) = |G(?)|.

Figure 4 shows a comparison between the measures M,(g
and MP*, introduced in this work, and their counterpart
ME. The measures regarding the average M;g are notoriously
smaller than the measures regarding both the maximum revival
and the integrated revivals. In fact, we find that M,(g < M=,
in agreement with (7), and M@™ < MZF°. The measures
related to the BLP criterion (dotted lines) behave similarly in
all three cases, decaying monotonously with §/A. In the case of
the entanglement-assisted classical capacity, Mg° and M7
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FIG. 4. Comparative results of the measures of quantum non-
Markovianity treated in this work for the Jaynes-Cummings model,
as a function of the scaled detuning §/X, with a coupling of y = 20A.
We show three types of measures— M (black lines), MP** (green
lines), and M,(g (inset)—for three capacities: the quantum capacity
Q (solid lines), classical entanglement-assisted capacity C (dashed
lines), and capacity based on the distinguishability D (dotted lines).

also decay monotonously. However, Mé') has a minimum at
8/A ~ 3. Beyond that point ./\/lé'> increases a bit further but,
finally, decays to 0. In this region, Mé) = MY, which is
shown in Fig. 4. The measures related to the quantum capacity
(solid lines) show the most complicated behavior. MCS and
MG* are equal to 0 until §/1 ~ 3, M<Q> is equal to O until
8/A =& 5. Beyond these points, the measures increase linearly.
From §/1 ~ 6.5 on, M3™ and /\/18 reach the corresponding
curves for the classical capacity. For somewhat larger values
of §/ this also happens for M.

The fact that for quantum capacities, M@ and Mg™ start
to deviate from O at the same point, §/A ~ 3, illustrates Eq. (8).
Other interesting features that can be appreciated in M are
the multiple discontinuities in the derivative with respect to the
detuning. This is due to the sudden appearance of new bumps
in the quantum capacity of the channel, to which this measure
is sensitive. Moreover, for most instances of X, Mg can be
discontinuous in the space of finite quantum processes, if we
consider the maximum-norm, so the measures are not stable
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FIG. 5. Quantum capacities of the non-Markovian Jaynes-
Cummings model with a strong coupling, ¥ /A = 1000. Solid curves
correspond to §/A = 0 (black) and §/1 = 40 (green); dashed curves,
to 8/A = 80 (black) and §/A = 150 (green).

022117-6



MEASURING AND USING NON-MARKOVIANITY

TABLE II. Measures treated in this work of the quantum
capacities shown in Fig. 5, with 7., = oo.

In Fig. 5 8/2 MY M Mg

Solid black line 0 0.4072 0.6419 1.4322
Solid green line 40 0.4301 0.8154 4.4928
Dashed black line 80 0.2564 0.4963 6.0953
Dashed green line 150 0.1210 0.2309 4.7588

with respect to small deviations in the quantum dynamics. In
particular, low-amplitude high-frequency noise can make Mg’
increase arbitrarily, whereas it has a small effect (proportional
to the amplitude) in the case of /\/l,%> and M.

Regarding the classical capacity, it is noteworthy that the
different cases do not share the same tendency; M7** and
MZE® diminish with the detuning (as opposed to the quantum
capacity cases), but /\/lé'> shows a nonmonotonic behavior,
mimicking fidelity until §/A &~ 3 and then resembling the
quantum capacity. A direct consequence of the fact that Q < C
is that M5 < M, as can be seen from the fact that, for all
colors in Fig. 4, the dashed line bounds the solid line (here, the
dot denotes any of max, (-), or co0). As a general remark, we
also observe that M’ is much smaller than M2 and M.
This is due to the fact that the peaks in the different capacities
are thick, and the system, in fact, would not serve as a good
QV.

Figure 5 shows the evolution of several quantum capacities
for the JCM varying the detuning while keeping the reservoir
coupling fixed. Table II lists the values of the corresponding
measures of NM treated in this work. It shows that large
detunings lead to poor scenarios for a QV operation, while
for 0 and small detuning there are better situations for use of
the QV. The time when the first peak in the capacity appears
can be tuned by choosing the correlation time of the bath.
Figure 6 shows a density plot of the NM measure, /\/18, as a
function of the channel parameters, § and y. It shows how a
region of high /\/lg appears as the coupling increases, as long
as the detuning is not too strong (~10). This is because large
couplings induce a rapid decay in the quantum capacity, while
oscillations from the detuning restore the capacity. For large
detunings, the probability of transitions in the atom is low,
which implies that the capacity initially has small oscillations
close to 1 with a slow decay. For small couplings y /A < 1/2
and zero detuning, the capacity decays monotonically [23];
this makes all the measures discussed equal to 0 and therefore
a useless QV.

V. CONCLUSIONS

In the light of the considerable advances in the experimental
manipulation of quantum systems at the very fundamental
level, understanding and controlling how a quantum system
interacts with its surroundings is of paramount importance.
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FIG. 6. Density plot of M(Q) for the non-Markovian Jaynes-
Cummings model as a function of its parameters.

In this context, finite, structure-rich environments play an
important role, and the challenge has been to understand and
control the resulting non-Markovian evolution.. In particular,
one might wonder whether there is a possibility of taking
advantage of the flow of information back to the system
which is characteristic of NM. Defining and quantifying
NM is a nontrivial task. In this work we have shown that
one can define and quantify non-Markovian behavior in a
physically meaningful way: one that is insightful and avoids
the drawbacks of previous attempts, such as divergence in very
generic cases and counterintuitive outcomes. Moreover, we
could define the new measure with a task in mind: hiding and
retrieving classical or quantum information using a quantum
channel. The efficiency with which this task is accomplished is
directly related to the NM measure. Finally, we have illustrated
the proposed measures with simple physical examples. Several
important issues are yet to be addressed. For example, an
important point is the relation between the notion quantum
NM and its classical counterpart. This relation is far from
straightforward as pointed out in previous work [37]. Some
advances in this direction were proposed recently in [38].
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