Contents lists available at ScienceDirect

### Journal of Molecular Structure

journal homepage: http://www.elsevier.com/locate/molstruc

results correspond to a great extent to experimental ones.

# Experimental and theoretical studies on the structure and spectroscopic properties of (*E*)-1-(2-aminophenyl)-3-(pyridine-4-yl) prop-2-en-1-one

Andrés Felipe Cruz Ortiz <sup>a, b</sup>, Alberto Sánchez López <sup>a, \*</sup>, Alejandro García Ríos <sup>a</sup>, Fernando Cuenú Cabezas <sup>b</sup>, Ciro Eduardo Rozo Correa <sup>c</sup>

<sup>a</sup> Grupo de Investigación en Fisicoquímica Ambiental y Computacional, Programa de Química, Universidad Del Quindío, Carrera 15, Calle 12 Norte, Armenia, Colombia

<sup>b</sup> Laboratorio de Química Inorgánica y Catálisis, Programa de Química, Universidad Del Quindío, Carrera 15, Calle 12 Norte, Armenia, Colombia <sup>c</sup> Grupo de Investigaciones Ambientales Para el Desarrollo Sostenible, Facultad de Química Ambiental, Universidad Santo Tomas, Floridablanca, Colombia

#### ARTICLE INFO

Article history: Received 3 February 2015 Received in revised form 28 April 2015 Accepted 2 June 2015 Available online 5 June 2015

Keywords: Ab initio DFT FT-IR NMR Aminochalcone

# 1. Introduction

# Chalcones are flavonoid type organic compounds [1] that can be obtained from natural products or organic synthesis, via aldol condensation. The name chalcone was given by Kostanecki and Tambor [2]. It is formed by two aromatic rings linked by three carbon atoms that form an unsaturated $\alpha$ , $\beta$ system, which is a key factor in the synthesis of compounds such as benzothiazepines [3], pyrazoline [4], 1,4-diketone [5], flavones [6] and other biologically important heterocycles with pharmacological important properties, e.g. antitumor agents [7], antioxidants [8], anti-inflammatory [9] and antifungal [10]. Its excellent optical properties that include high extinction coefficients for UV absorption and significant nonlinear optical responses [11–13], lead to potential applications in new drugs and agrochemicals design [14]. Moreover, some of the chalcones derivatives have shown excellent properties to inhibit important enzymes in cellular systems, such as xanthine

oxidase [15] and tyrosine kinase [16,17].

(E)-1-(2-aminophenyl)-3-(pyridine-4-yl)prop-2-en-1-one (or simply 2-aminochalcone) was synthetized

and characterized by elemental analysis, FT-IR, NMR, MS and XRD. Molecular geometry optimization,

vibrational harmonic frequencies. <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts were calculated by ab initio (HF and

MP2) and density functional theory (DFT) methods, with B3LYP and B3PW91 functionals, using

GAUSSIAN 09 program package without any constraint on the geometry. With VEDA software vibrational

frequencies were assigned in terms of the potential energy distribution. A detailed interpretation of the FT-IR, NMR and XRD, experimental and calculated, is reported. The HOMO and LUMO energy gap that

reflects the chemical activity of the molecule were also studied by DFT and above basis set. All theoretical

Chalcone type compounds have been studied at the ab initio and DFT levels of theory, to analyze their geometry, normal vibrational modes, <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts, in order to perform a painstaking structural characterization and thus verify experimental data [18–20].

In this work, 2-aminochalcone (Fig. 1) molecular geometry, spectroscopic and electronic properties were studied at levels of ab initio and DFT, with 6-311++G (d,p) basis set. In all cases, molecular structure was optimized to be the lower energy structure and hence the more stable in agreement with experiment, followed by a vibrational frequencies calculation at the optimized geometry, the stability of wave function was verified, <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts and HOMO and LUMO energy gap was obtained.

#### 2. Experimental details

#### 2.1. 2-Aminochalcone synthesis

The synthesis was performed following the methods reported in literature [21]. A mixture of 2-aminoacetophenone (2.8 mmol),









© 2015 Elsevier B.V. All rights reserved.

ABSTRACT

<sup>\*</sup> Corresponding author. Carrera 15 Calle 12 N, Armenia, Quindío, Colombia. *E-mail address: gifac@uniquindio.edu.co* (A. Sánchez López).



Fig. 1. Numbering Scheme 2-aminochalcone.

pyridine-4-carbaldehyde (2.8 mmol), ethanol (10 mL) and 20% aqueous sodium hydroxide solution (0.5 mL) was heated under reflux for 20 min (Scheme 1). The mixture was cooled to ambient temperature, and the resulting solid was collected by filtration, then successively washed with ethanol  $(2 \times 0.5 \text{ mL})$  and water  $(2 \times 0.5 \text{ mL})$ , finally it was dried at reduced pressure. The result was an orange solid (yield 84%, mp 166–167 °C) that was characterized by elemental analysis, FT-IR, MS, XRD, <sup>1</sup>H and <sup>13</sup>C NMR. Elemental analyses were carried out on a CHN Analyzer Flash EA 1112 Series. FT-IR spectrum was recorded with a Thermo Nicolet 320 FT-IR Spectrophotometer, through KBr pellet dispersion method. Mass spectrum (70 eV) was performed in a GC/MS-QP2010 mass spectrometer. <sup>1</sup>H and <sup>13</sup>C NMR were carried out in a Bruker Avance 400 spectrophotometer, using DMSO- $d_6$  as solvent and the chemical shifts are reported relative to tetramethylsilane (chemical shifts in  $\delta$  values. I in Hz). The structures of 2-aminochalcone compound was deduced from the results of <sup>1</sup>H and <sup>13</sup>C NMR. FT-IR in KBr Pellet (Fig. 2), showed characteristic bands at  $\nu_{max}$  (cm<sup>-1</sup>): 3392, 3263, 1621 (amine group N–H), 3139, 3077 (phenylamine ring C=C–H), 3029 (pyridine ring C=C-H), 1648, 650 (system  $\alpha$ ,  $\beta$ -unsaturated C=0), 1585 (pyridine ring C=N), 1546 (pyridine ring C=C), 1481, 1415 (phenylamine ring C=C). Assignments of NMR chemical shifts were performed according to the 2-aminochalcone numbering scheme (Fig. 1). <sup>1</sup>H NMR –(400 MHz, DMSO- $d_6$  (Fig. 3))–,  $\delta$  (ppm): 8.64 (d, 2H, J 5.5 Hz, H(27)), 8. 18 (d, 1H, J 15.6 Hz, H(7)); a 8.09 (d, 1H, J 8.04 Hz, H(19)), 7.80 (d, 2H, J 5.6 Hz, H(29)), 7.56 (d, 1H, J 15.6 Hz, H(9)), 7.48 (s, 2H, N-H of group amino) 7.30 (t, 1H, H(15)), 6.81 (d, 1H, H(13)), 6.59 (t, 1H, H(17)). <sup>13</sup>C NMR –(400 MHz, DMSO $d_6$  (Fig. 4))—,  $\delta$  (ppm): 190C(5), 152C(20), 150C(26), 142C(11), 139C(8), 135C(14), 132C(18), 128C(6), 122C(28), 118C (10), 117C(12), 115C(17). The elemental analyses for C<sub>14</sub>H<sub>12</sub>N<sub>2</sub>O (C 75.02%; H 5.37%; N 12.53%) is in a good agreement with the proposed composition (C 74.98%; H 5.39%; N 12.49%) which is further confirmed by MS: (70 eV) *m*/*z* (%) 224 (23.25, *M*<sup>+</sup>), 146 (100, M-*C*<sub>5</sub>*H*<sub>4</sub>*N*), 120 (14.51,  $C_8H_8N^+$ ), 92 (11.16,  $C_6H_6N^+$ ) (Fig. 5).

#### 3. Computational details

2-Aminochalcone crystallographic data [22] was used as a parameter for geometry optimization with methods ab initio (HF and MP2) and DFT (B3LYP and B3PW91), with the 6-311G++(d, p) basis set [23,24]. Optimized structural parameters were used to work out analytical vibrational frequencies, <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts and HOMO and LUMO energy gap calculations. All quantum chemical calculations were performed with GAUSSIAN 09 [25] program package. With GAUSSVIEW 5.0.8 [26] molecular visualization software assistance vibrational frequencies were assigned. In addition, they were analyzed in terms of potential energy distribution with VEDA software [27].

#### 4. Results and discussion

The elemental analysis and mass spectrometry of 2-aminochalcone (Fig. 1) are consistent with the molecular formula chalcone  $C_{14}H_{12}N_2O$ . It was characterized by FT-IR, <sup>1</sup>H and <sup>13</sup>C NMR instrumental techniques.

#### 4.1. Structural analysis

Non-restricted optimized geometries for 2-aminochalcone were obtained from X-ray diffraction data [22]. Ab initio and DFT, with 6-311++G (d,p) basis set, calculations were done. Comparison between optimized structural and experimental parameters, according to numbering scheme (Fig. 1), is shown in Table 1.

Most of calculated bond lengths are slightly longer than the experimental values observed. According to crystallographic data [22], experimental C–C bond length can be observed between 1.473 Å-1.299 Å, calculated ones were between 1.498 Å-1.325 Å (HF), 1.492 Å–1.352 Å (MP2); 1.491 Å–1.343 Å (B3LYP); 1.486 Å–1.342 Å (B3PW91). Experimental C–H bond length are seen between 0.935 Å–0.929 Å and calculated ones were among Å–1.072 Å (HF); 1.090 Å–1.086 Å 1.076 (MP2); 1.087 Å-1.081 Å (B3LYP); 1.088 Å-1.082 Å (B3PW91). Experimental C-N bond length are observed between 1.332 Å-1.306 Å, calculated ones were detected at 1.367 Å-1.317 Å (HF); 1.384 Å-1.345 Å (MP2); 1.358 Å-1.335 Å (B3LYP); 1.353 Å–1.332 Å (B3PW91). Experimental N–H bond length are between 0.880 Å-0.879 Å, calculated ones were identified in 0.993 Å (HF); 1.012 Å-1.010 Å (MP2); 1.013 Å-1.005 Å (B3LYP); 1.014 Å–1.005 Å (B3PW91). The major differences from calculated structural parameter regarding experimental ones correspond to the C–H's bonds.

The greatest differences in calculated bond angles regarding experimental ones were  $5.406^{\circ}$  (HF) and  $6.894^{\circ}$  (MP2) for bond H(4)-N(2)-C(11). This is consistent with a molecule's geometric distortion where hydrogen from amino group is in a different plane to the aromatic ring. In addition, there is an intramolecular hydrogen bond that impact on the overall molecular conformation. In DFT methods the greatest differences were  $2.401^{\circ}$  (B3LYP) and



Scheme 1. Synthesis of 2-aminochalcone.







Fig. 3. Experimental <sup>1</sup>H NMR spectrum of 2-aminochalcone in DMSO-d6.

 $2.354^\circ$  (B3PW91) in the angle C (21)-C (23)-H (24) from pyridine ring.

DFT level calculated 2-aminochalcone bond lengths and angles are closer to the experimental values due to, possibly, the presence of the electron correlation including the B3LYP and B3PW91 functional. Comparison of the calculated and experimental dihedral angles, according to the numbering scheme of Fig. 1, are presented in Table 2. It was observed that the largest difference in calculated angles considering experimental ones was presented with the ab initio methods (HF and MP2), which is consistent with a distortion in the optimized geometry amino group with respect to the initial geometry. Similarly the DFT level calculated dihedral angles differ by no more than 3.6.

Calculated geometrical parameters represent a good



Fig. 4. Experimental <sup>13</sup>C NMR spectrum of 2-aminochalcone in DMSO-d6.



Fig. 5. Experimental mass spectrum (70 eV) of 2-aminochalcone.

approximation and can be used as the basis to calculate other parameters, such as vibrational frequencies, chemical shifts, and Fukui local reactivity indexes.

#### 4.2. Vibrational analysis

Analytical vibrational frequencies for 2-aminochalcone were calculated from optimized geometries. The lack of imaginary frequencies inferred that optimization is in a minimum of the potential energy surface. Molecular conformation obtained by optimizing the geometry exhibits no spatial symmetry and, therefore, the molecule belongs to  $C_1$  point group. According to 3N-6 formula, the molecule presents 81 normal modes of vibration. The assignments of the vibrational frequencies were done through GAUSSVIEW 5.0.8 software. Table 3 gives calculated and experimental vibrational frequencies. FT-IR experimental spectrum is shown in Fig. 2 and the calculated ones in Figs. 6–9. The discrepancies between calculated and experimental vibrational frequencies are due to two fundamental reasons: firstly, the experimental frequencies correspond to the solid phase (KBr pellet)

| Table 1 |  |
|---------|--|
|---------|--|

Optimized geometrical parameters for 2-aminochalcone molecule computed at HF, MP2, B3LYP and B3PW91 with 6–311++G (d,p) basis set.

| Bond length (Å) | Exp <sup>a</sup> | Ab initio |       | DFT   |        | Bond angles (°)   | Exp <sup>a</sup> | Ab initio |        | DFT    |        |
|-----------------|------------------|-----------|-------|-------|--------|-------------------|------------------|-----------|--------|--------|--------|
|                 |                  | HF        | MP2   | B3LYP | B3PW91 |                   |                  | HF        | MP2    | B3LYP  | B3PW91 |
| C(5)-O(1)       | 1.224            | 1.201     | 1.236 | 1.238 | 1.236  | H(3)-N(2)-H(4)    | 120.77           | 116.46    | 115.14 | 121.26 | 121.68 |
| N(2)-H(3)       | 0.879            | 0.993     | 1.012 | 1.013 | 1.014  | H(3)-N(2)-C(11)   | 117.04           | 117.48    | 114.88 | 118.22 | 117.85 |
| N(2)-H(4)       | 0.880            | 0.993     | 1.010 | 1.005 | 1.005  | H(4)-N(2)-C(11)   | 122.18           | 116.77    | 115.28 | 119.81 | 119.96 |
| N(2)-C(11)      | 1.332            | 1.367     | 1.384 | 1.358 | 1.353  | O(1)-C(5)-C(6)    | 117.35           | 119.41    | 120.18 | 118.68 | 118.70 |
| C(5)-C(6)       | 1.473            | 1.498     | 1.492 | 1.491 | 1.486  | O(1)-C(5)-C(10)   | 121.85           | 121.95    | 122.21 | 121.64 | 121.74 |
| C(5-C(10)       | 1.452            | 1.486     | 1.484 | 1.477 | 1.472  | C(6)-C(5)-C(10)   | 120.79           | 118.64    | 117.60 | 119.68 | 119.56 |
| C(6)-H(7)       | 0.930            | 1.072     | 1.086 | 1.081 | 1.082  | C(5)-C(6)-H(7)    | 119.32           | 118.63    | 118.78 | 119.26 | 119.41 |
| C(6)-C(8)       | 1.299            | 1.325     | 1.352 | 1.343 | 1.342  | C(5)-C(6)-C(8)    | 121.44           | 120.14    | 120.24 | 120.32 | 120.12 |
| C(8)-H(9)       | 0.935            | 1.076     | 1.090 | 1.087 | 1.088  | H(7)-C(6)-C(8)    | 119.24           | 121.22    | 120.96 | 120.41 | 120.46 |
| C(8)-C(20)      | 1.451            | 1.477     | 1.466 | 1.464 | 1.461  | C(6)-C(8)-H(9)    | 115.96           | 117.80    | 117.54 | 116.81 | 116.71 |
| C(10)-C(11)     | 1.409            | 1.411     | 1.422 | 1.434 | 1.431  | C(6)-C(8)-C(20)   | 128.02           | 126.24    | 125.16 | 127.08 | 126.95 |
| C(10)-C(18)     | 1.392            | 1.401     | 1.412 | 1.413 | 1.410  | H(9)-C(8)-C(20)   | 116.02           | 115.96    | 117.26 | 116.11 | 116.34 |
| C(11)-C(12)     | 1.395            | 1.404     | 1.411 | 1.415 | 1.413  | C(5)-C(10)-C(11)  | 120.95           | 121.02    | 120.96 | 120.39 | 120.29 |
| C(12)-H(13)     | 0.931            | 1.076     | 1.088 | 1.085 | 1.086  | C(5)-C(10)-C(18)  | 121.14           | 120.35    | 119.67 | 121.78 | 121.78 |
| C(12)-C(14)     | 1.338            | 1.372     | 1.392 | 1.379 | 1.377  | C(11)-C(10)-C(18) | 117.90           | 118.60    | 119.24 | 117.83 | 117.93 |
| C(14)-H(15)     | 0.930            | 1.076     | 1.087 | 1.085 | 1.086  | N(2)-C(11)-C(10)  | 122.40           | 122.90    | 121.84 | 122.08 | 121.87 |
| C(14)-C(16)     | 1.374            | 1.393     | 1.403 | 1.403 | 1.401  | N(2)-C(11)-C(12)  | 119.41           | 118.70    | 119.69 | 119.26 | 119.52 |
| C(16)-H(17)     | 0.930            | 1.074     | 1.086 | 1.083 | 1.084  | C(10)-C(11)-C(12) | 118.18           | 118.34    | 118.17 | 118.65 | 118.61 |
| C(16)-C(18)     | 1.356            | 1.374     | 1.392 | 1.381 | 1.379  | C(11)-C(12)-H(13) | 119.10           | 118.69    | 118.60 | 118.46 | 118.50 |
| C(18)-H(19)     | 0.929            | 1.073     | 1.086 | 1.081 | 1.082  | C(11)-C(12)-C(14) | 121.83           | 121.32    | 121.50 | 121.38 | 121.34 |
| C(20)-C(21)     | 1.365            | 1.392     | 1.406 | 1.404 | 1.402  | H(13)-C(12)-C(14) | 119.08           | 119.98    | 119.84 | 120.16 | 120.16 |
| C(20)-C(28)     | 1.358            | 1.388     | 1.405 | 1.402 | 1.400  | C(12)-C(14)-H(15) | 119.59           | 119.22    | 119.43 | 119.41 | 119.35 |
| C(21)-H(22)     | 0.929            | 1.073     | 1.087 | 1.083 | 1.084  | C(12)-C(14)-C(16) | 120.71           | 120.83    | 120.29 | 120.58 | 120.65 |
| C(21)-C(23)     | 1.361            | 1.381     | 1.396 | 1.389 | 1.387  | H(15)-C(14)-C(16) | 119.70           | 119.95    | 120.27 | 120.01 | 120.00 |
| C(23)-H(24)     | 0.929            | 1.076     | 1.088 | 1.086 | 1.088  | C(14)-C(16)-H(17) | 120.32           | 120.93    | 120.62 | 120.63 | 120.66 |
| C(23)-N(25)     | 1.313            | 1.322     | 1.347 | 1.339 | 1.336  | C(14)-C(16)-C(18) | 119.23           | 118.37    | 118.99 | 118.90 | 118.84 |
| N(25)-C(26)     | 1.306            | 1.317     | 1.345 | 1.335 | 1.332  | H(17)-C(16)-C(18) | 120.44           | 120.70    | 120.36 | 120.47 | 120.50 |
| C(26)-H(27)     | 0.930            | 1.076     | 1.088 | 1.086 | 1.088  | C(10)-C(18)-C(16) | 122.14           | 122.50    | 121.61 | 122.64 | 122.63 |
| C(26)-C(28)     | 1.371            | 1.386     | 1.398 | 1.392 | 1.390  | C(10)-C(18)-H(19) | 118.90           | 119.17    | 119.13 | 119.36 | 119.32 |
| C(28)-H(29)     | 0.931            | 1.075     | 1.087 | 1.084 | 1.085  | C(16)-C(18)-H(19) | 118.96           | 118.31    | 119.26 | 117.99 | 118.05 |
|                 |                  |           |       |       |        | C(8)-C(20)-C(21)  | 123.97           | 123.68    | 123.23 | 124.19 | 124.11 |
|                 |                  |           |       |       |        | C(8)-C(20)-C(28)  | 119.39           | 119.27    | 119.92 | 119.28 | 119.34 |
|                 |                  |           |       |       |        | C(21)-C(20)-C(28) | 116.64           | 117.05    | 116.85 | 116.53 | 116.55 |
|                 |                  |           |       |       |        | C(20)-C(21)-H(22) | 120.45           | 121.61    | 121.00 | 121.31 | 121.32 |
|                 |                  |           |       |       |        | C(20)-C(21)-C(23) | 119.22           | 118.92    | 119.25 | 119.35 | 119.29 |
|                 |                  |           |       |       |        | H(22)-C(21)-C(23) | 120.33           | 119.46    | 119.74 | 119.33 | 119.38 |
|                 |                  |           |       |       |        | C(21)-C(23)-H(24) | 117.64           | 119.93    | 120.08 | 120.04 | 119.99 |
|                 |                  |           |       |       |        | C(21)-C(23)-N(25) | 124.69           | 123.88    | 124.13 | 123.99 | 124.08 |
|                 |                  |           |       |       |        | H(24)-C(23)-N(25) | 117.67           | 116.18    | 115.79 | 115.97 | 115.92 |
|                 |                  |           |       |       |        | C(23)-N(25)-C(26) | 115.68           | 117.35    | 116.39 | 116.81 | 116.73 |
|                 |                  |           |       |       |        | N(25)-C(26)-H(27) | 118.04           | 116.41    | 115.90 | 116.19 | 116.14 |
|                 |                  |           |       |       |        | N(25)-C(26)-C(28) | 123.84           | 123.59    | 123.90 | 123.65 | 123.75 |
|                 |                  |           |       |       |        | H(27)-C(26)-C(28) | 118.12           | 120.00    | 120.19 | 120.16 | 120.11 |
|                 |                  |           |       |       |        | C(20)-C(28)-C(26) | 119.91           | 119.20    | 119.46 | 119.66 | 119.59 |
|                 |                  |           |       |       |        | C(20)-C(28)-H(29) | 120.08           | 120.86    | 120.35 | 120.30 | 120.30 |
|                 |                  |           |       |       |        | C(26)-C(28)-H(29) | 120.00           | 119.94    | 120.19 | 120.04 | 120.11 |

<sup>a</sup> Geometric parameters determined with X-ray diffraction method from Ref. [22].

and the calculated ones belong to the gas phase. Secondly, calculus has been done for an isolated molecule in gas phase and the experimental values include intermolecular interactions. That is why a correction of the calculated frequencies through a scale factor for all methods is needed [28] [18]; 0.899748 HF/6-311G (d, p); 0.956853 MP2/6-311G (d, p) 0.960461 B3LYP/6-311++G (d, p); 0.957562 B3PW91/6-311++G (d, p).

The specific allocation for each frequency was performed according to the potential energy distribution (PED) (Table 4), using the VEDA software [27]. The PED for the scaled vibrational frequencies, at level DFT/B3LYP, was deeply analyzed since they were the closest to the experimental observed data.

#### 4.2.1. N–H vibrations

The phenylamine (aromatic primary amine) has two sharp N–H bands, the asymmetrical N–H stretch showing such bands in the 3420  $cm^{-1}$  – 3500  $cm^{-1}$  range and the symmetrical N–H stretch showing bands at 3340  $cm^{-1}$  – 3420  $cm^{-1}$  [29]. These vibrations were calculated at 3526  $cm^{-1}$  and 3432  $cm^{-1}$  for 2-

aminoterephthalic in previous works [30]. In 2-aminochalcone these bands were observed at 3392  $cm^{-1}$  and 3263  $cm^{-1}$ , and calculated at 3541  $cm^{-1}$  and 3432  $cm^{-1}$  (HF); 3545  $cm^{-1}$  and 3417  $cm^{-1}$  (MP2); 3555  $cm^{-1}$  and 3372  $cm^{-1}$  (B3LYP); 3563  $cm^{-1}$  and 3355  $cm^{-1}$  (B3PW91).

The N–H bending vibration of aromatic primary amines gives a strong intensity band between 1638  $cm^{-1}$  and 1575  $cm^{-1}$  [31]. This vibration has been calculated before at 1596  $cm^{-1}$  for nicotinamide N-oxide in previous studies [32]. For 2-aminochalcone it was observed at 1623  $cm^{-1}$  and calculated at 1559  $cm^{-1}$  (HF); 1594  $cm^{-1}$  (MP2); 1568  $cm^{-1}$  (B3LYP); 1544  $cm^{-1}$  (B3PW91).

The N–H wagging band for aromatic primary amines gives a band between 650  $cm^{-1}$  to 900  $cm^{-1}$  [33]. This vibration was calculated at 575  $cm^{-1}$  (HF); 612  $cm^{-1}$  (MP2); 654  $cm^{-1}$  (B3LYP); 667  $cm^{-1}$  (B3PW91).

#### 4.2.2. C–H vibrations

The C–H vibration (stretching) bands of aromatic compounds appear in the 3100  $cm^{-1}$  – 3000  $cm^{-1}$  range and exhibits weak to

| Table 2                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------|
| Selected dihedral angles (°) for 2-aminochalcone molecule computed at HF, MP2, B3LYP, and B3PW91 with 6-311++G (d,p) basis set. |

| Dihedral angles (°)     | Exp <sup>a</sup> | Ab initio |          | DFT      |          |
|-------------------------|------------------|-----------|----------|----------|----------|
|                         |                  | HF        | MP2      | B3LYP    | B3PW91   |
| H(3)-N(2)-C(11)-C(10)   | 3.532            | 21.133    | 27.621   | 5.947    | 5.306    |
| H(3)-N(2)-C(11)-C(12)   | -177.17          | -161.679  | -158.798 | -174.901 | -175.452 |
| H(4)-N(2)-C(11)-C(10)   | -177.65          | 166.713   | 165.091  | 176.376  | 177.226  |
| H(4)-N(2)-C(11)-C(12)   | 1.651            | -16.100   | -21.327  | -4.472   | -3.532   |
| O(1)-C(5)-C(6)-H(7)     | -179.12          | 164.272   | 160.181  | 174.352  | 173.879  |
| O(1)-C(5)-C(6)-C(8)     | 0.82             | -14.823   | -18.107  | -4.410   | -4.752   |
| C(10)-C(5)-C(6)-H(7)    | 1.851            | -15.093   | -18.597  | -4.963   | -5.354   |
| C(10)-C(5)-C(6)-C(8)    | -178.21          | 165.812   | 163.115  | 176.276  | 176.015  |
| O(1)-C(5)-C(10)-C(11)   | -9.50            | -18.498   | -19.814  | -5.471   | -5.729   |
| O(1)-C(5)-C(10)-C(18)   | 169.06           | 159.576   | 155.995  | 173.883  | 173.686  |
| C(6)-C(5)-C(10)-C(11)   | 169.49           | 160.850   | 158.937  | 173.823  | 173.480  |
| C(6)-C(5)-C(10)-C(18)   | -11.95           | -21.076   | -25.254  | -6.824   | -7.105   |
| C(5)-C(6)-C(8)-C(20)    | -178.49          | 179.204   | 178.317  | 179.104  | 179.040  |
| C(6)-C(8)-C(20)-C(21)   | 2.60             | -16.968   | 22.190   | 0.647    | 0.657    |
| C(6)-C(8)-C(20)-C(28)   | -177.31          | 163.357   | -157.996 | -179.301 | -179.284 |
| H(9)-C(8)-C(20)-C(28)   | 2.66             | -15.576   | 19.502   | 0.443    | 0.453    |
| C(5)-C(10)-C(11)-N(2)   | -0.69            | -3.024    | -5.435   | -0.370   | -0.018   |
| N(2)-C(11)-C(12)-H(13)  | 0.03             | 1.450     | 4.331    | 0.280    | 0.109    |
| C(8)-C(20)-C(21)-H(22)  | -179.88          | 179.593   | -178.758 | -179.945 | -179.937 |
| C(28)-C(20)-C(21)-C(23) | 0.03             | -0.726    | 1.422    | 0.005    | 0.005    |

<sup>a</sup> Geometric parameters determined with X-ray diffraction method from Ref. [22].

moderate intensities [34], so making them easy to differentiate from those produced by aliphatic C–H groups which appear below 3000  $cm^{-1}$ . The asymmetrical C–H stretching vibration of the phenylamine ring was experimentally observed at 3139  $cm^{-1}$  and was calculated at 3026  $cm^{-1}$  (HF); 3081  $cm^{-1}$  (MP2); 3031  $cm^{-1}$  (B3LYP); 3065  $cm^{-1}$  (B3PW91). The symmetric C–H stretching vibration was experimentally observed at 3077  $cm^{-1}$ , and calculated at 3011  $cm^{-1}$  (HF); 3095  $cm^{-1}$  (MP2); 3049  $cm^{-1}$  (B3LYP); 3051  $cm^{-1}$  (B3PW91). The symmetric C–H stretching vibration of pyridine ring was observed at 3031  $cm^{-1}$  and calculated at 3013  $cm^{-1}$  (HF); 3077  $cm^{-1}$  (MP2); 3054  $cm^{-1}$  (B3LYP); 3027  $cm^{-1}$  (B3PW91).

The C–H bending bands of aromatic compounds appear in the regions 1300  $cm^{-1}$  and 1000  $cm^{-1}$  (in-plane bending) [35]. This vibration of phenylamine ring was experimentally observed at 1155  $cm^{-1}$  and was calculated at 1139  $cm^{-1}$  (HF); 1135  $cm^{-1}$  (MP2); 1143  $cm^{-1}$  (B3LYP); 1131  $cm^{-1}$  (B3PW91). The C–H bending vibration of pyridine ring was experimentally observed at 1080  $cm^{-1}$  and calculated 1008  $cm^{-1}$  (HF); 1039  $cm^{-1}$  (MP2); 1068  $cm^{-1}$  (B3LYP); 1065  $cm^{-1}$  (B3PW91).

The aromatic rings substitution patterns can be identified by the C–H out of plane bending that leads to bands between 900  $cm^{-1}$  and 675  $cm^{-1}$  [35,36]. The characteristic vibrations of the ortho substituted aromatic rings were observed at 760  $cm^{-1}$  and 732  $cm^{-1}$ . These vibrations were calculated at 751  $cm^{-1}$  and 729  $cm^{-1}$  (HF); 760  $cm^{-1}$  and 714  $cm^{-1}$  (MP2); 751  $cm^{-1}$  and 715  $cm^{-1}$  (B3LYP); 761  $cm^{-1}$  and 721  $cm^{-1}$  (B3PW91).

#### 4.2.3. *C*–*C* vibrations

The C–C stretching vibrations in the aromatic ring are very important to characterize chalcones. Sathyanarayana, 2004 [37], found that these vibrations give bands between 1430  $cm^{-1}$  and 1650  $cm^{-1}$ . For pyridine ring, C=C vibration was observed at 1546  $cm^{-1}$  and calculated at 1560  $cm^{-1}$  (HF); 1521  $cm^{-1}$  (MP2); 1565  $cm^{-1}$  (B3LYP); 1575  $cm^{-1}$  (B3PW91). For phenylamine ring, asymmetric and symmetric C=C bond stretching vibrations were observed at 1481  $cm^{-1}$  and 1415  $cm^{-1}$ , respectively, and calculated at 1474  $cm^{-1}$  and 1432  $cm^{-1}$  (HF); 1419  $cm^{-1}$  and 1401  $cm^{-1}$  (MP2); 1451  $cm^{-1}$  and 1412  $cm^{-1}$  (B3LYP); 1447  $cm^{-1}$  and 1412  $cm^{-1}$  (B3PW91).

Deformation vibration of the pyridinic ring hints bands from 1100  $cm^{-1}$  and 950  $cm^{-1}$  [31]. In this work, the deformation vibration of aromatic ring was observed at 981  $cm^{-1}$  and calculated at 978  $cm^{-1}$  (HF); 962  $cm^{-1}$  (MP2); 968  $cm^{-1}$  (B3LYP); 968  $cm^{-1}$  (B3PW91).

#### 4.2.4. C=0 vibrations

The C=O stretching vibration hints bands in the region of 1740  $cm^{-1}$  and 1660  $cm^{-1}$  [38]. In this work a strong band was observed at 1651  $cm^{-1}$  and assigned to the C=O stretching vibration, which appears at a frequency slightly lower than the expected since it is forming a  $\alpha$ ,  $\beta$ -unsaturated system that generates an electron delocalization in the C=O bond. This stretching vibration was calculated at 1710  $cm^{-1}$  (HF); 1626  $cm^{-1}$  (MP2); 1630  $cm^{-1}$  (B3LYP); 1638  $cm^{-1}$  (B3PW91), which was found consistent with some related work [39].

The C=O bending vibration results in bands in the region of 700  $cm^{-1}$  and 600  $cm^{-1}$  [33]. It was observed at 650  $cm^{-1}$  and calculated at 650  $cm^{-1}$  (HF); 685  $cm^{-1}$  (MP2); 653  $cm^{-1}$  (B3LYP); 665  $cm^{-1}$  (B3PW91).

#### 4.2.5. C–N vibrations

The pyridine type compounds and their derivatives show strong bands in the region of 1600  $cm^{-1}$  to 1430  $cm^{-1}$  due to the C—N stretching vibration of the pyridine ring [40]. For 2-aminochalcone a strong band was observed at 1585  $cm^{-1}$  and assigned to the C—N stretching vibration. This was calculated at 1570  $cm^{-1}$  (HF); 1564  $cm^{-1}$  (MP2); 1565  $cm^{-1}$  (B3LYP); 1535  $cm^{-1}$  (B3PW91).

Aromatic amines show C–N stretching vibration bands between 1382  $cm^{-1}$  and 1266  $cm^{-1}$  [41]. In the phenylamine ring such band was observed at 1265  $cm^{-1}$  and was calculated at 1266  $cm^{-1}$  (HF); 1283  $cm^{-1}$  (MP2); 1240  $cm^{-1}$  (B3LYP); 1296  $cm^{-1}$  (B3PW91).

#### 4.3. NMR analysis

Chemical shifts of <sup>1</sup>H and <sup>13</sup>C NMR were calculated with ab initio and DFT by GIAO method [42,43], from the optimized geometries, with tetramethylsilane (TMS) as standard and DMSO as solvent with CPCM model [44]. Experimental <sup>1</sup>H and <sup>13</sup>C NMR spectra are shown in Figs. 3 and 4. The experimental chemical shifts of <sup>1</sup>H and

 Table 3

 Vibrational assignments of fundamental observed frequencies and calculated frequencies of 2-aminochalcone with ab initio and DFT.

| $ \begin{array}{ c c c c c } \hline  c$ | Modes    | Observed frequencies (cm <sup>-1</sup> ) | Calculated | with 6–311++G(d | , p) basis set |            | Characterizat          | ion of normal mod    | les with |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------|------------|-----------------|----------------|------------|------------------------|----------------------|----------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                          | DFT        |                 | Ab initio      |            | PED(%)                 |                      |          |
| 1     332     355     354     344     347     374     374       3     363     367     367     367     367     368     368       3     363     366     361     368     368     368       3     363     364     361     368     367     377       363     364     301     368     310     367     371       363     364     301     368     368     361     368       363     364     301     368     361     368     371       364     361     368     368     367     371     371       365     361     368     368     368     378     371       366     367     368     368     368     367     371       367     368     368     368     368     368     371       368     367     368     368     368     368     368       368     367     368     368     368     368     368       368     368     368     368     368     368     368       368     368     368     368     368     368     368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | FT-IR (cm <sup>-1</sup> )                | B3LYP      | B3PW91          | HF             | MP2        |                        |                      |          |
| 2         365         3155         4.12         4.17         2.187         3.185         3042         3063         3064         3074         3068         3074           3         307         3077         3077         3077         3074         3054         3011         3076         9.78         3077           3         3071         3054         3054         3011         3076         9.78         7           3         3071         3073         3073         3077         3077         3077         3077         3077         3072         3084         3011         3078         9.78         7         12           3         3031         3022         3023         2982         3084         1316         127         13           1         1651         1656         1676         1600         1564         4468         1313         1407         147         147         147         147         147         147         147         147         147         147         147         147         147         147         147         147         147         147         147         147         147         147         147         147         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | 3392                                     | 3555       | 3563            | 3541           | 3545       | s1 (97)                |                      |          |
| 3         3081         3041         3082         56,88         ''''''''''''''''''''''''''''''''''''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2        | 3263                                     | 3372       | 3355            | 3432           | 3417       | s2 (97)                |                      |          |
| 4         3078         3076         3086         38         38         38           6         307         3077         3078         3081         3078         3079           7         3077         3084         3034         3031         3078         3079         7           7         3077         3084         3031         3070         3071         7         7           8         3031         3022         3032         2999         3059         111 (2)         7         7           9         3031         3036         1974         2883         1048         5 7         7         7         7         7         10         122 (1)         1         11         124         126         121 (1)         1         121 (1)         1         124         121 (1)         1         121 (1)         1         121 (1)         1         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1)         121 (1) <td>3</td> <td></td> <td>3098</td> <td>3093</td> <td>3041</td> <td>3095</td> <td>s6 (88)</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3        |                                          | 3098       | 3093            | 3041           | 3095       | s6 (88)                |                      |          |
| 3         3130         3660         3671         3671         3670         12771           9         077         3034         3061         3033         3070         5173         7793           9         0303         3070         5173         7793         7793           10         3031         3022         3023         2022         3058         1178         5171           11         3032         3022         2084         3044         4199         1171           12         3030         3070         1513         32748         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211         1211 </td <td>4</td> <td>2122</td> <td>3078</td> <td>3077</td> <td>3026</td> <td>3088</td> <td>s8 (84)</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4        | 2122                                     | 3078       | 3077            | 3026           | 3088       | s8 (84)                |                      |          |
| 9         3077         3084         3081         3071         3078         37780           9         3072         3073         2898         3079         57797           9         3072         3073         2898         3078         57111         97797           10         3031         3072         2998         3068         110 (8)         12(11)           11         3073         3022         2929         3058         1316         57771           12         163         3073         3078         3078         57711         5771           14         1632         1589         1589         1587         1610         1584         321(8)         521(1)           15         1566         1576         1610         1584         321(8)         522(24)           18         1522         1315         1580         1523         32(8)         522(24)           14         1411         1417         1415         1418         523(14)         522(24)           14         1411         1417         1415         1418         523(14)         522(24)           14         1411         1417         1417         14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5        | 3139                                     | 3065       | 3066            | 3021           | 3081       | s3 (79)                | -12 (77)             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6<br>7   | 3077                                     | 3063       | 3064            | 3013           | 3078       | s11(10)<br>s9(78)      | \$12(77)             |          |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8        | 5077                                     | 3049       | 3051            | 3003           | 3070       | s5 (11)                | s7 (79)              |          |
| 103031303230292952803810 (8)11165130242883304544 (8)12302630242883304544 (8)13165115011531171163832 (13)141623159615771620159542 (19)32 (13)1515661571601156342 (19)35 (11)16152115561560152142 (19)53 (12)171546151215561560152142 (19)181586151215161561421 (19)53 (14)191546151215151560152142 (19)14144114421403148243 (11)52 (24)14143614421402138748 (17)52 (20)14143614221328137 (41)52 (20)161414371423138734 (13)43 (11)15113611361136133137 (11)16126128128733 (41)53 (11)171261281128112833 (41)1813131101138137 (13)53 (11)1912651361361138131191265136136136136 (15)19126512712712661281231 (14)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9        |                                          | 3032       | 3033            | 2999           | 3059       | s11 (79)               | s12 (11)             |          |
| 11     3028     3027     2889     9044     87     7     7       13     1653     1613     1613     1613     1614     1615     1615     17       13     1651     1613     1710     1655     17     15     21     15       14     1636     1716     1655     17     150     156     27     153     32     131       15     1523     1534     1570     1555     32     163     32     141       18     1856     1523     1534     1570     1555     32     163     16       21     1440     1443     1442     1435     1448     37     144     57     152     32     140       22     1440     1443     1442     1435     1448     37     140     52     141       23     1400     1413     1412     133     1410     153     34     162       24     126     1306     1237     1236     1331     131     131     131     131     131     131     131     131     131     131     131     131     131     131     131     131     131     131     131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10       | 3031                                     | 3032       | 3029            | 2992           | 3058       | s10 (86)               |                      |          |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11       |                                          | 3028       | 3027            | 2989           | 3054       | s5 (78)                | s7 (11)              |          |
| 11       1631       1638       1710       1625       536       512       513         15       1623       1564       1576       1610       1564       357       351       351       351       351       351       351       351       351       351       351       351       351       352       134       150       153       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351       351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12       |                                          | 3026       | 3024            | 2983           | 3045       | s4 (99)                |                      |          |
| 16       1862       1879       1826       1826       1826       1826       1826       1826       1826       1826       1826       1826       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       1937       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13       | 1651                                     | 1630       | 1638            | 1710           | 1626       | s13 (65)               | -22 (12)             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14       | 1623                                     | 1589       | 1599            | 1652           | 1594       | \$23 (48)<br>\$27 (50) | S32 (13)             |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15       |                                          | 1566       | 1576            | 1610           | 1564       | s26 (47)               | 555 (15)             |          |
| 18       1586       153       1534       1570       1535       121       122       120         20       1481       1463       1462       1453       1452       537       152       538       1548       538       1548       538       1548       538       1548       538       1548       538       1548       538       1461       1413       1412       1413       1412       1413       1412       1413       1413       1412       1413       1413       1413       1413       1413       1413       1413       1413       1413       1413       1413       1413       1413       1413       1413       1413       1413       1417       1373       1311       1311       1311       1311       1311       1313       1317       1313       1311       1311       1313       1311       1311       1313       1311       1311       1313       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1311       1313       1311       1313       1311       1313       1311       1313       1311       1313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17       |                                          | 1542       | 1543            | 1601           | 1563       | s21 (28)               | s32 (14)             |          |
| 19       1546       1512       1515       1560       1521       522 (26)         21       1461       1463       1462       1453       1452       532 (26)       532 (46)         22       1440       1413       1412       1432       1415       515 (28)       538 (40)         23       1386       1383       1400       1402       532 (48)       532 (49)         24       1415       1338       1314       1318       1331       513 (28)       532 (49)         25       1346       1369       1299       1266       1346 (10)       543 (12)       532 (17)         26       1346       1297       1246       1287       1344 (10)       56 (15)       534 (12)         27       1265       1273       1216       1287       534 (12)       536 (15)       541 (16)         38       1205       1137       1139       117       506 (13)       541 (15)       541 (15)         54       1135       1137       1101       1132       153 (13)       547 (17)       536 (14)       537 (12)       537 (12)         54       1062       598 (16)       1131       1101       1132       156 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18       | 1585                                     | 1523       | 1534            | 1570           | 1535       | s21 (20)               | s32 (32)             |          |
| 20148114631462145814581458377 (44)522 (24)2214401413141214321419152 (28)388 (40)12313661383141214321419152 (28)388 (40)12414151384134213291387188 (47)82 (30)1251346131413181321137 (35)134 (23)137 (13)137 (13)2612651275127312661363143 (23)137 (13)110271266127712731207124125 (33) (43)167 (15)1603112651181118711791122256 (13)96 (15)161 (17)3212411181117111391171940 (62)97 (14)97 (14)33106810571135113111011128135 (12)36 (15)17 (14)341057106310581058136 (30)34 (14)17 (14)17 (14)13 (15)131 (11)3410681069101518 (30)42 (42)39 (14)37 (14)37 (17)17 (14)35106810681068106956 (14)33 (11)11 (15)33 (11)11 (15)33 (11)11 (15)33 (11)11 (15)33 (11)11 (15)33 (11)11 (15)33 (11)11 (15)33 (11)11 (15)33 (11)11 (15) <t< td=""><td>19</td><td>1546</td><td>1512</td><td>1515</td><td>1560</td><td>1521</td><td>s22 (69)</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19       | 1546                                     | 1512       | 1515            | 1560           | 1521       | s22 (69)               |                      |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20       | 1481                                     | 1463       | 1462            | 1495           | 1458       | s37 (44)               | s52 (24)             |          |
| 22       1440       1413       1412       1432       1419       1386       383       1400       1402       5248         24       1415       1228       1342       1129       1381       1317       137       137         26       1346       1309       1229       1286       1331       1317       1317       1314       1311       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1314       1285       1314       1285       1314       1212       1314       1315       1314       1315       1315       1314       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1315       1316       1316       1316       1316       1316       1316       1316       1316       1316       1316       1316       1316 </td <td>21</td> <td></td> <td>1451</td> <td>1447</td> <td>1475</td> <td>1452</td> <td>s39 (56)</td> <td>s48 (11)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21       |                                          | 1451       | 1447            | 1475           | 1452       | s39 (56)               | s48 (11)             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22       | 1440                                     | 1413       | 1412            | 1432           | 1419       | s15 (28)               | s38 (40)             |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23       | 1 41 5                                   | 1386       | 1383            | 1400           | 1402       | s24 (69)               | a 42 (20)            |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24<br>25 | 1415                                     | 1326       | 1342            | 1329           | 1331       | s17 (63)               | \$42 (50)            |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26       | 1346                                     | 1309       | 1299            | 1296           | 1305       | s34 (52)               |                      |          |
| 28       1265       1275       1273       1266       1285       525 (22)       538 (47)         30       1265       1227       1237       1207       1241       525 (22)       536 (15)         31       118       1187       1199       1204       526 (13)       546 (15)         32       1214       1181       1187       1179       1192       526 (13)       541 (15)         34       1155       1143       1136       1105       1135       535 (67)         35       1135       1131       1101       1128       535 (67)       536 (56)         36       1068       1068       1058       518 (20)       542 (22)       539 (14)         37       1047       1046       1046       1050       521 (15)       539 (11)       539 (14)         38       1080       1037       1036       1044       1050       521 (51)       539 (11)       541 (51)       551 (7)       598 (11)       541 (51)       537 (12)       448 (50)         41       1002       988       986       995       957       559 (81)       571 (12)       448 (50)         42       946       941       978       876<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27       | 10.10                                    | 1296       | 1296            | 1284           | 1287       | s14 (10)               | s34(11)              |          |
| 29       1265       1247       1218       1266       533 (4)         30       1265       1227       1271       1271       1241       525 (32)       s36 (15)         31       1198       1197       1189       1244       525 (32)       s36 (15)         32       1214       1181       1176       1170       1192       252 (13)       s36 (56)         33       1143       1136       1105       1135       s35 (67)       s39 (14)         34       1135       1131       1101       1132       s35 (57)       s39 (13)         36       1060       1037       1046       1046       1039       s20 (15)       s31 (31)         39       1080       1025       999       998       1008       1015       s16 (48)       s31 (11)         40       1025       982       979       1007       988       s26 (42)       s55 (7)         41       1002       989       986       985       957       55 (81)       s72 (12)       s48 (50)         42       981       937       933       976       806       897       s56 (84)       s37 (12)       s48 (50)         44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28       | 1295                                     | 1275       | 1273            | 1266           | 1283       | s25 (22)               | s38 (27)             |          |
| 30       1265       1227       1277       1241       425 (32)       336 (15)         31       118       1197       1189       1204       316 (15)         32       1214       1181       1187       1179       1192       226 (13)       341 (35)       411 (16)         34       1155       1143       1136       1105       1135       233 (11)       355 (67)         35       1135       1131       1101       1128       431 (30)       424 (42)       359 (14)         36       1068       1065       1058       1183 (30)       424 (42)       359 (14)         37       1047       1046       1046       1059       520 (15)       331 (31)         38       1080       1037       1036       1044       1039       520 (15)       339 (11)         40       1025       982       979       1007       988       528 (42)       555 (17)         41       1002       959       957       559 (81)       544 (83)       56 (84)       577 (12)       548 (50)         41       1002       959       956       983       956 (57)       572 (85)       56 (81)       572 (12)       548 (50) <td>29</td> <td></td> <td>1240</td> <td>1247</td> <td>1218</td> <td>1266</td> <td>s33 (44)</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29       |                                          | 1240       | 1247            | 1218           | 1266       | s33 (44)               |                      |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30       | 1265                                     | 1227       | 1237            | 1207           | 1241       | s25 (32)               | s36 (15)             |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31       |                                          | 1198       | 1197            | 1189           | 1204       | s19 (42)               | s26 (10)             |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32       | 1214                                     | 1181       | 118/            | 11/9           | 1192       | s26 (13)               | s41 (35)             | s41 (16) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33<br>34 | 1155                                     | 11/6       | 1170            | 1139           | 1171       | s40(62)<br>s23(11)     | \$35 (67)            |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35       | 1155                                     | 1135       | 1130            | 1105           | 1128       | s15 (12)               | s36 (56)             |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36       |                                          | 1068       | 1065            | 1058           | 1058       | s18 (30)               | s42 (42)             | s39 (14) |
| 38       1080       1037       1036       1044       1039       \$20 (15)       \$39 (11)         40       1025       982       979       1007       988       \$28 (42)       \$55 (17)         41       978       976       1000       962       \$20 (58)       \$45 (17)         42       978       976       900       962       \$20 (58)       \$57 (17)         43       1002       959       956       983       905       \$55 (13)       \$72 (12)       \$48 (50)         44       981       937       933       976       876       \$60 (79)       \$71 (12)       \$48 (50)         45       981       937       933       976       876       \$66 (24)       \$71 (12)       \$48 (50)         46       890       816       878       \$66 (24)       \$51 (13)       \$52 (16)       \$51 (13)       \$52 (16)       \$51 (13)       \$52 (16)       \$51 (13)       \$52 (16)       \$51 (13)       \$52 (16)       \$51 (13)       \$52 (16)       \$51 (13)       \$52 (16)       \$51 (13)       \$52 (16)       \$51 (13)       \$52 (16)       \$51 (13)       \$52 (16)       \$51 (13)       \$51 (13)       \$51 (13)       \$51 (13)       \$51 (13)       \$52 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37       |                                          | 1047       | 1046            | 1046           | 1050       | s21 (15)               | s31 (31)             |          |
| $\begin{array}{ c c c c c c } 39 & 998 & 108 & 101 & 16 & 16 & (48) & 531 (11) \\ \hline 10 & 1025 & 982 & 979 & 1007 & 988 & 28 (42) & 555 (17) \\ \hline 41 & 788 & 976 & 1000 & 962 & 520 (58) & 548 (16) \\ \hline 42 & 968 & 968 & 995 & 957 & 559 (81) \\ \hline 43 & 1002 & 959 & 956 & 983 & 905 & 565 (74) & 572 (12) & s48 (50) \\ \hline 44 & 946 & 941 & 978 & 887 & 566 (84) & s37 (12) \\ \hline 45 & 981 & 937 & 933 & 976 & 876 & 560 (79) \\ \hline 46 & 890 & 911 & 906 & 972 & 869 & 529 (49) \\ \hline 47 & 872 & 870 & 909 & 859 & 562 (76) \\ \hline 48 & 890 & 811 & 906 & 972 & 869 & 529 (49) \\ \hline 47 & 839 & 836 & 865 & 876 & 834 & 588 (51) & s64 (11) \\ \hline 49 & 839 & 836 & 868 & 820 & s64 (58) & s65 (13) \\ \hline 49 & 839 & 836 & 886 & 821 & 791 & s63 (82) \\ \hline 50 & 842 & 824 & 823 & 850 & 816 & 528 (10) & s52 (16) \\ \hline 51 & 821 & 816 & 821 & 791 & s63 (82) \\ \hline 52 & 815 & 797 & 794 & 817 & 760 & s67 (37) \\ \hline 53 & 748 & 760 & 761 & 768 & 754 & s67 (47) & s79 (10) \\ \hline 55 & 748 & 724 & 722 & 752 & 685 & s58 (11) & s79 (45) \\ \hline 56 & 732 & 715 & 713 & 730 & 649 & s51 (46) \\ \hline 59 & 650 & 653 & 655 & 658 & 622 & s71 (68) \\ \hline 59 & 650 & 653 & 655 & 658 & 622 & s71 (89) \\ \hline 59 & 650 & 653 & 650 & 650 & 650 & 612 & s74 (57) \\ \hline 60 & 576 & 628 & 639 & 551 & 569 & 47 (14) & s75 (45) \\ \hline 61 & 526 & 557 & 551 & 546 & s49 (53) \\ \hline 62 & 576 & 652 & 557 & 551 & 546 & s49 (53) \\ \hline 63 & 501 & 649 & 451 (48) & 572 (42) \\ \hline 64 & 500 & 495 & 508 & 471 & s80 (65) \\ \hline 65 & 501 & 494 & 491 & 484 & 457 & s56 (51) \\ \hline 66 & 501 & 646 & 422 & 436 & 432 & s57 (68) \\ \hline 67 & 420 & 414 & 416 & 401 & s30 (65) & s75 (11) \\ \hline 68 & 99 & 390 & 364 & 388 & 373 & 345 (15) & 573 (27) \\ \hline 70 & 334 & 330 & 334 & 330 & 845 (13) & 573 (27) \\ \hline 71 & 526 & 321 & 334 & 300 & 334 & 300 & 843 (42) & 546 (17) \\ \hline 71 & 526 & 326 & 326 & 314 & 300 & 833 & 350 & 864 (12) & 572 (75) \\ \hline 71 & 526 & 321 & 334 & 330 & 334 & 330 & 845 (12) & 572 (75) \\ \hline 71 & 526 & 321 & 334 & 320 & 3314 & 300 & 431 (42) & 546 (7) \\ \hline 71 & 526 & 326 & 314 & 300 & 431 (42) & 306 & 516 (47) \\ \hline 71 & 526 & 521 & 536 & 521 & 536 & 531 & 536 & 537 (15) & 572 (75) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38       | 1080                                     | 1037       | 1036            | 1044           | 1039       | s20 (15)               | s39 (11)             |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39       |                                          | 999        | 998             | 1008           | 1015       | s16 (48)               | s31 (11)             |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40       | 1025                                     | 982        | 979             | 1007           | 988        | s28 (42)               | s55 (17)             |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41       |                                          | 978        | 976             | 1000           | 962        | s20 (58)<br>s59 (81)   | \$48 (16)            |          |
| 44946941978887s66 (84)s7 (1s)s87 (1s)45981937933976876s60 (79)46890911906972869s29 (49)47872870909859s62 (76)48869865876834s58 (51)s64 (11)49839836868820s64 (58)s65 (13)50842824823850816s28 (10)s52 (16)51815797794817760s67 (37)53760761768754s67 (47)s79 (10)54760751749757714s61 (73)55748724722752685s58 (11)s79 (45)56732715713730649s51 (46)59656651658622s71 (69)s75 (45)56576551564549 (53)s75 (45)s76 (47)59650652557551546s49 (53)s75 (45)61562557551546s49 (53)s75 (45)63500495508471s80 (65)s75 (11)64501494495508471s80 (65)65501494495508471s80 (65)66506446401s30 (65)s75 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43       | 1002                                     | 959        | 956             | 983            | 905        | s65 (74)               | s72 (12)             | s48 (50) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44       | 1002                                     | 946        | 941             | 978            | 887        | s66 (84)               | s37 (12)             | 510 (50) |
| 46       890       911       906       972       869       529 (49)         47       872       870       909       859       s62 (76)         48       869       865       876       834       558 (51)       s64 (11)         49       839       836       868       820       s64 (58)       s65 (13)         50       842       824       823       850       816       s28 (10)       s52 (16)         51       815       797       794       817       790       s63 (82)          53       760       751       784       877       714       s61 (73)          54       760       751       749       757       714       s61 (73)          55       748       724       722       752       685       s58 (11)       s79 (45)         56       732       715       713       730       649       s51 (46)          57       748       524       650       650       651       658       622       s71 (69)          58       650       651       658       622       s71 (69)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45       | 981                                      | 937        | 933             | 976            | 876        | s60 (79)               |                      |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46       | 890                                      | 911        | 906             | 972            | 869        | s29 (49)               |                      |          |
| 48       869       865       876       834       s58 (s1)       s64 (11)         49       839       836       868       820       s64 (s8)       s65 (13)         50       842       824       823       850       816       s28 (10)       s52 (16)         51       821       816       821       791       s63 (82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47       |                                          | 872        | 870             | 909            | 859        | s62 (76)               |                      |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48       |                                          | 869        | 865             | 876            | 834        | s58 (51)               | s64 (11)             |          |
| 50 $842$ $824$ $823$ $850$ $816$ $220$ (10) $52$ (16) $51$ $821$ $816$ $821$ $791$ $s63$ (82) $52$ $815$ $797$ $794$ $817$ $760$ $s67$ (37) $53$ $760$ $751$ $749$ $757$ $714$ $s61$ (73) $54$ $760$ $751$ $749$ $757$ $714$ $s67$ (47) $s79$ (45) $55$ $748$ $724$ $722$ $752$ $685$ $s58$ (11) $s79$ (45) $56$ $732$ $715$ $713$ $730$ $649$ $s51$ (46) $57$ $666$ $665$ $684$ $646$ $s50$ (83) $58$ $650$ $653$ $650$ $612$ $s74$ (57) $59$ $650$ $653$ $650$ $612$ $s74$ (47) $60$ $576$ $628$ $639$ $561$ $569$ $s47$ (14) $s75$ (45) $61$ $562$ $557$ $551$ $546$ $s49$ (53) $ 64$ $500$ $495$ $508$ $471$ $s80$ (65) $ 64$ $500$ $495$ $508$ $471$ $s80$ (65) $ 64$ $494$ $491$ $484$ $457$ $s56$ (51) $ 66$ $420$ $414$ $416$ $401$ $s30$ (65) $s75$ (11) $68$ $ 369$ $364$ $388$ $373$ $s45$ (15) $s73$ (27) $69$ $ 369$ $364$ $388$ $373$ $s46$ (12) $s72$ (75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49       | 0.40                                     | 839        | 836             | 868            | 820        | s64 (58)               | s65 (13)             |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50<br>51 | 842                                      | 824<br>821 | 823             | 850            | 816<br>701 | S28 (10)<br>s63 (82)   | \$52 (16)            |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52       | 815                                      | 797        | 794             | 817            | 760        | s67 (37)               |                      |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53       | 010                                      | 760        | 761             | 768            | 754        | s67 (47)               | s79 (10)             |          |
| 55       748       724       722       752       685       s58 (11)       s79 (45)         56       732       715       713       730       649       s51 (46)         57       666       665       684       646       s50 (83)         58       650       651       658       622       s71 (69)         59       650       653       650       650       s75 (45)         60       576       628       639       561       569       s47 (14)       s75 (45)         61       562       557       551       546       s49 (53)       -         62       547       543       539       535       s45 (17)       s47 (42)         63       500       495       508       471       s80 (65)       -         64       500       494       491       484       457       s56 (51)       -         65       501       426       422       436       432       s57 (68)       -         67       420       414       416       401       s30 (65)       s75 (11)         68       399       398       392       397       s73 (31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54       | 760                                      | 751        | 749             | 757            | 714        | s61 (73)               |                      |          |
| 56       732       715       713       730       649       s51 (46)         57       666       665       684       646       s50 (83)         58       656       651       658       622       s71 (9)         59       650       653       650       652       s74 (57)         60       576       628       639       561       569       s47 (14)       s75 (45)         61       562       557       551       546       s49 (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55       | 748                                      | 724        | 722             | 752            | 685        | s58 (11)               | s79 (45)             |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56       | 732                                      | 715        | 713             | 730            | 649        | s51 (46)               |                      |          |
| 58       656       651       658       622       \$71 (69)         59       650       653       650       650       612       \$74 (57)         60       576       628       639       561       569       \$47 (14)       \$75 (45)         61       562       557       551       546       \$49 (53)       -         62       547       543       539       535       \$45 (17)       \$47 (42)         63       517       514       516       494       \$53 (48)       -         64       500       495       508       471       \$80 (65)       -         65       501       494       491       484       457       \$56 (51)       -         66       426       422       436       432       \$57 (68)       -         67       420       414       416       401       \$30 (65)       \$75 (11)         68       399       398       392       397       \$73 (31)       -         69       364       388       373       \$45 (15)       \$73 (27)         70       334       330       383       350       \$64 (12)       \$72 (75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57       |                                          | 666        | 665             | 684            | 646        | s50 (83)               |                      |          |
| 59       650       653       650       650       612       574       577         60       576       628       639       561       569       s47 (14)       s75 (45)         61       562       557       551       546       s49 (53)       -         62       547       543       539       535       s45 (17)       s47 (42)         63       517       514       516       494       s53 (48)       -         64       500       495       508       471       s80 (65)       -         65       501       494       491       484       457       s56 (51)       -         66       426       422       436       432       s57 (68)       -       -         67       420       414       416       401       s30 (65)       s75 (11)         68       399       398       392       397       s73 (31)       -         69       364       388       373       s45 (15)       s73 (27)         70       334       330       383       350       s64 (12)       s72 (75)         71       263       263       314       300 </td <td>58</td> <td>650</td> <td>656</td> <td>651</td> <td>658</td> <td>622</td> <td>s71 (69)</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58       | 650                                      | 656        | 651             | 658            | 622        | s71 (69)               |                      |          |
| 60     570     528     635     501     503     547     543       61     562     557     551     546     549 (53)       62     547     543     539     535     s45 (17)     s47 (42)       63     517     514     516     494     s53 (48)       64     500     495     508     471     s80 (65)       65     501     494     491     484     457     s56 (51)       66     426     422     436     432     s57 (68)       67     420     414     416     401     s30 (65)     s75 (11)       68     399     398     392     397     s73 (31)       69     369     364     388     373     s45 (15)     s73 (27)       70     334     330     383     350     s44 (12)     s46 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59       | 576                                      | 628        | 630             | 550            | 569        | \$74 (57)<br>\$77 (14) | s75 (45)             |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61       | 570                                      | 562        | 557             | 551            | 546        | s49 (53)               | 373 (43)             |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62       |                                          | 547        | 543             | 539            | 535        | s45 (17)               | s47 (42)             |          |
| 64       500       495       508       471       s80 (65)         65       501       494       491       484       457       s56 (51)         66       426       422       436       432       s57 (68)         67       420       414       416       401       s30 (65)       s75 (11)         68       399       398       392       397       s73 (31)         69       369       364       388       373       s45 (15)       s73 (27)         70       334       330       383       350       s64 (12)       s72 (75)         71       263       263       314       300       s43 (42)       s46 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63       |                                          | 517        | 514             | 516            | 494        | s53 (48)               | 、 <i></i> /          |          |
| 65       501       494       491       484       457       s56 (51)         66       426       422       436       432       s57 (68)         67       420       414       416       401       s30 (65)       s75 (11)         68       399       398       392       397       s73 (31)         69       369       364       388       373       s45 (15)       s73 (27)         70       334       330       383       350       s64 (12)       s72 (75)         71       263       263       314       300       s43 (42)       s46 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64       |                                          | 500        | 495             | 508            | 471        | s80 (65)               |                      |          |
| 66426422436432s57 (68)67420414416401s30 (65)s75 (11)68399398392397s73 (31)69369364388373s45 (15)s73 (27)70334330383350s64 (12)s72 (75)71263263314300s43 (42)s46 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65       | 501                                      | 494        | 491             | 484            | 457        | s56 (51)               |                      |          |
| 67     420     414     416     401     s30 (65)     s75 (11)       68     399     398     392     397     s73 (31)       69     369     364     388     373     s45 (15)     s73 (27)       70     334     330     383     350     s64 (12)     s72 (75)       71     263     263     314     300     s43 (42)     s46 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66       |                                          | 426        | 422             | 436            | 432        | s57 (68)               |                      |          |
| b8         399         398         392         397         s/3 (31)           69         369         364         388         373         s45 (15)         s73 (27)           70         334         330         383         350         s64 (12)         s72 (75)           71         263         263         314         300         s43 (42)         s46 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67<br>67 |                                          | 420        | 414             | 416            | 401        | s30 (65)               | s75 (11)             |          |
| 509     509     504     588     573     540 (15)     573 (27)       70     334     330     383     350     s64 (12)     s72 (75)       71     263     263     314     300     s43 (42)     s46 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>60 |                                          | 399        | 398             | 392            | 397        | s/3 (31)<br>s45 (15)   | c72 (27)             |          |
| 71 263 263 314 300 s43 (42) s46 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09<br>70 |                                          | 334        | 304<br>330      | 200<br>282     | 373        | s40 (10)<br>s64 (10)   | s13 (21)<br>s72 (75) |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71       |                                          | 263        | 263             | 314            | 300        | s43 (42)               | s46 (17)             |          |

| Modes | Observed frequencies (cm <sup>-1</sup> ) | Calculated | with 6–311++G(d | , p) basis set |     | Characterization of normal modes with |          |  |
|-------|------------------------------------------|------------|-----------------|----------------|-----|---------------------------------------|----------|--|
|       |                                          | DFT        |                 | Ab initio      |     | PED(%)                                |          |  |
|       | FT-IR (cm <sup>-1</sup> )                | B3LYP      | B3PW91          | HF             | MP2 |                                       |          |  |
| 72    |                                          | 255        | 252             | 269            | 249 | s44 (11)                              | s77 (57) |  |
| 73    |                                          | 231        | 230             | 236            | 234 | s44 (16)                              | s70 (21) |  |
| 74    |                                          | 205        | 204             | 208            | 199 | s44 (12)                              | s70 (33) |  |
| 75    |                                          | 188        | 187             | 190            | 184 | s46 (11)                              | s55 (25) |  |
| 76    |                                          | 117        | 113             | 129            | 136 | s44 (31)                              | s69 (42) |  |
| 77    |                                          | 99         | 98              | 98             | 111 | s70 (12)                              | s76 (55) |  |
| 78    |                                          | 79         | 77              | 76             | 77  | s81 (72)                              |          |  |
| 79    |                                          | 57         | 54              | 53             | 46  | s54 (68)                              | s73 (10) |  |
| 80    |                                          | 27         | 27              | 30             | 31  | s69 (13)                              | s78 (60) |  |
| 81    |                                          | 14         | 12              | 17             | 20  | s68 (84)                              |          |  |

<sup>13</sup>C NMR were assigned according to the reported in literature [45,46]. Compound 2-aminochalcone experimental and calculated chemical shifts are presented in Table 5.

In the <sup>1</sup>H NMR spectrum chemical shifts between 8.64 ppm and 6.59 ppm were observed, while the calculated were obtained between 8.84 ppm and 3.94 ppm (HF); 8.93 ppm and 6.80 ppm (MP2); 9.18 ppm and 5.02 ppm (B3LYP); 9.24 ppm and 4.99 ppm (B3PW91). Atoms from (H-13), (H -15), (H -17), (H-19) presented aromatic protons characteristically chemical shifts. It was observed that the major deviation in the calculated chemical shift regarding experimental ones ( $\delta_{Exp}$ - $\delta_{Theo}$ ) was 3.54 ppm (H-4) with HF. Differences at DFT levels are 2.46 ppm (H-4) with for B3LYP and 2.49 ppm (H-4) B3PW91. They may be due to overestimated paramagnetic contribution in the DFT calculations [47], this is consistent since this deviation occurs for protons of NH<sub>2</sub> group, which seems to increase their electron density by the influence of the aromatic ring, and thus all displacements occur at high field likewise, minor deviations were obtained at 0.09 ppm (H-13) with HF, 0.02 ppm (H - 13) with MP2, 0.03 ppm (H-29) with B3LYP and 0.02 ppm (H-29) with B3PW91.

In the <sup>13</sup>C NMR spectrum chemical shifts between 190 ppm and

115 ppm were observed, finding aromatic ring signals from 150 ppm to 100 ppm [48,49]. In the same way, the calculated chemical shifts were observed between 196 ppm and 116 ppm (HF), 207 ppm and 123 ppm (MP2), 195 ppm and 120 ppm (B3LYP), 193 ppm and 119 ppm (B3PW91). It was noted that deviations of the calculated chemical shifts regarding the experimental ones ( $\delta_{Exp}$ - $\delta_{Theo}$ ) were 22 ppm (C-11) with HF, 28 ppm (C-11) with MP2, 20 ppm (C-11) with B3LYP, and 17 ppm (C-11) with B3PW91. Minor deviations were 0.89 ppm (C-12) with HF; 6 ppm (C-20) with MP2, 2 ppm (C-6) with B3LYP, 1.54 ppm (C-6) with B3PW91. In general, calculations at DFT/6-311G++(d,p) level represent a better approximation to the experimentally observed data.

#### 4.4. HOMO and LUMO analysis

Frontier molecular orbitals play a key role in the study of the electrical and optical properties. Both, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), could determine the way in which the molecule interacts with other species [50]. The HOMO represent the ability to donate an electron, and the LUMO of accepting an electron [51]. The



Fig. 6. Calculated FT-IR spectrum of 2-aminochalcone at the HF/6-311G (d, p) level.



Fig. 7. Calculated FT-IR spectrum of 2-aminochalcone at the MP2/6-311G (d, p) level.



Fig. 8. Calculated FT-IR spectrum of 2-aminochalcone at the B3LYP/6-311++G (d, p) level.



Fig. 9. Calculated FT-IR spectrum of 2-aminochalcone at the B3PW91/6–311++G (d, p) level.

# Table 4 Definition of normal modes of vibration (s) obtained with PED. a). Stretching. b). In-plane bending and c). Torsion and Out-of-plane bending.

| Mode |         |   | Atoms       | Mode |         |   | Atoms       | Mode |         |   | Atoms       |
|------|---------|---|-------------|------|---------|---|-------------|------|---------|---|-------------|
| s 1  | 1       | υ | N(2)-H(3)   | s 14 | 1       | υ | C(5)-C(10)  | s 21 | -1      | υ | C(11)-C(12) |
|      | $^{-1}$ | υ | N(2)-H(4)   |      | 1       | υ | C(8)-C(20)  |      | 1       | υ | C(14)-C(16) |
| s 2  | 1       | υ | N(2)-H(3)   |      | 1       | υ | C(10)-C(18) |      | -1      | υ | C(21)-C(23) |
|      | 1       | υ | N(2)-H(4)   |      | -1      | υ | N(25)-C(23) | s 22 | 1       | υ | C(20)-C(28) |
| s 3  | 1       | υ | C(21)-H(22) | s 15 | 1       | υ | C(10)-C(18) |      | 1       | υ | N(25)-C(23) |
| s 4  | 1       | υ | C(8)-H(6)   |      | $^{-1}$ | υ | C(12)-C(14) | s 23 | 1       | υ | C(11)-C(12) |
| s 5  | 1       | υ | C(12)-H(13) |      | 1       | υ | C(16)-C(18) |      | -1      | υ | C(12)-C(14) |
| s 6  | 1       | υ | C(16)-H(17) |      | -1      | υ | N(25)-C(26) | s 24 | -1      | υ | C(10)-C(18) |
| s 7  | 1       | υ | C(14)-H(15) |      | -1      | υ | N(25)-C(23) |      | -1      | υ | C(11)-C(12) |
|      | $^{-1}$ | υ | C(16)-H(17) | s 16 | 1       | υ | C(14)-C(16) |      | 1       | υ | C(12)-C(14) |
|      | 1       | υ | C(16)-H(19) |      | 1       | υ | C(12)-C(14) |      | 1       | υ | C(16)-C(18) |
| s 8  | 1       | υ | C(6)-H(7)   | s 17 | 1       | υ | C(20)-C(28) | s 25 | 1       | υ | N(2)-C(11)  |
|      | $^{-1}$ | υ | C(16)-H(17) |      | $^{-1}$ | υ | N(25)-C(23) |      | $^{-1}$ | υ | C(10)-C(18) |
|      | 1       | υ | C(16)-H(19) |      | 1       | υ | N(25)-C(26) | s 26 | $^{-1}$ | υ | C(21)-C(23) |
|      | 1       | υ | C(21)-H(22) | s 18 | 1       | υ | C(21)-C(23) |      | $^{-1}$ | υ | C(26)-C(28) |
| s 9  | 1       | υ | C(6)-H(7)   |      | $^{-1}$ | υ | C(26)-C(28) |      | 1       | υ | N(25)-C(23) |
|      | 1       | υ | C(14)-H(15) | s 19 | -1      | υ | C(5)-C(10)  |      | 1       | υ | N(25)-C(26) |
| s 10 | 1       | υ | C(23)-H(24) |      | 1       | υ | C(6)-C(8)   | s 27 | 1       | υ | C(6)-C(8)   |
|      | -1      | υ | C(26)-H(27) |      | 1       | υ | C(8)-C(20)  |      | 1       | υ | O(1)-C(5)   |
| s 11 | 1       | υ | C(23)-H(24) |      | $^{-1}$ | υ | C(21)-C(23) | s 28 | 1       | υ | C(5)-C(6)   |
|      | 1       | υ | C(26)-H(27) |      | -1      | υ | C(26)-C(28) |      | -1      | υ | C(11)-C(12) |
| s 12 | 1       | υ | C(28)-H(29) | s 20 | 1       | υ | N(25)-C(26) |      | 1       | υ | O(1)-C(5)   |
| s 13 | 1       | υ | O(1)-C(5)   |      | 1       | υ | N(25)-C(23) |      |         |   |             |
|      |         |   |             |      | 1       | υ | C(26)-C(28) |      |         |   |             |

|       |    |        | <b>A</b> .                                   |       |    |         | •                      |
|-------|----|--------|----------------------------------------------|-------|----|---------|------------------------|
| Mode  |    |        | Atoms                                        | Mode  |    |         | Atom                   |
| s 29  | -1 | δ      | C(5)-C(6)-C(8)                               | s 31  | 1  | δ       | H(3)-N(2)-C(11)        |
|       | 1  | δ      | C(23)-N(25)-C(26)                            |       | -1 | δ       | C(11)-C(12)-C(14)      |
|       | -1 | δ      | C(6)-C(8)-C(20)                              | s 32  | 1  | δ       | H(3)-N(2)-H(4)         |
|       | 1  | δ      | C(20)-C(28)-C(26)                            |       | -1 | δ       | C(14)-C(16)-C(18)      |
| s 30  | -1 | δ      | C(12)-C(11)-N(2)                             | s 33  | 1  | δ       | H(7)-C(6)-C(8)         |
|       | 1  | δ      | C(11)-C(12)-C(14)                            |       | -1 | δ       | H(9)-C(8)-C(20)        |
| s 34  | 1  | δ      | H(9)-C(8)-C(20)                              | s 46  | -1 | δ       | C(5)-C(6)-C(8)         |
|       | 1  | δ      | H(24)-C(23)-N(25)                            |       | -1 | δ       | C(6)-C(8)-C(20)        |
|       | -1 | δ      | H(29)-C(28)-C(26)                            |       | 1  | δ       | C(10)-C(18)-C(16)      |
| s 35  | -1 | δ      | H(15)-C(14)-C(16)                            |       | -1 | δ       | C(11)-C(12)-C(14)      |
|       | 1  | δ      | H(13)-C(12)-C(14)                            |       | -1 | δ       | C(20)-C(28)-C(26)      |
|       | 1  | δ      | H(17)-C(16)-C(18)                            |       | 1  | δ       | C(21)-C(23)-N(25)      |
| s 36  | 1  | δ      | H(17)-C(16)-C(18)                            | s 47  | 1  | δ       | C(11)-C(12)-C(14)      |
|       | 1  | δ      | H(19)-C(18)-C(16)                            |       | -1 | δ       | C(14)-C(16)-C(18)      |
| s 37  | 1  | δ      | H(19)-C(18)-C(16)                            |       | 1  | δ       | C(20)-C(28)-C(26)      |
|       | 1  | δ      | H(13)-C(12)-C(14)                            |       | 1  | δ       | C(28)-C(26)-N(25)      |
| s 38  | 1  | δ      | H(15)-C(14)-C(16)                            | s 48  | 1  | δ       | C(21)-C(23)-N(25)      |
|       | 1  | δ      | H(17)-C(16)-C(18)                            |       | 1  | δ       | C(23)-N(25)-C(26)      |
| s 39  | 1  | δ      | H(24)-C(23)-N(25)                            |       | 1  | δ       | C(28)-C(26)-N(25)      |
|       | 1  | δ      | H(27)-C(26)-N(25)                            | s 49  | 1  | δ       | C(20)-C(28)-C(26)      |
| s 40  | 1  | δ      | H(22)-C(21)-C(23)                            |       | 1  | δ       | C(28)-C(26)-N(25)      |
|       | 1  | δ      | H(29)-C(28)-C(26)                            | s 50  | 1  | δ       | C(21)-C(23)-N(25)      |
|       | 1  | δ      | H(2b) = C(2b) = C(2b)<br>H(9) = C(8) = C(20) | 500   | -1 | δ       | C(28)-C(26)-N(25)      |
|       | 1  | δ      | H(7)-C(6)-C(8)                               | \$ 51 | 1  | δ       | C(12)-C(14)-C(16)      |
|       | -1 | δ      | H(27)-C(26)-N(25)                            | \$ 52 | 1  | δ       | C(14)-C(16)-C(18)      |
| s 41  | 1  | δ      | H(2) = C(20) + C(20)<br>H(7) = C(6) = C(8)   |       | 1  | δ       | C(11)-C(12)-C(14)      |
| 5 11  | _1 | δ      | H(22)-C(21)-C(23)                            |       | 1  | δ       | C(12)-C(14)-C(16)      |
|       | 1  | δ      | H(22) = C(26) - N(25)                        | \$ 53 | 1  | δ       | C(8)-C(20)-C(28)       |
|       | _1 | δ      | H(29)-C(28)-C(26)                            | 5.55  | 1  | δ       | C(6) - C(8) - C(20)    |
| s 42  | 1  | δ      | H(22)-C(21)-C(23)                            |       | 1  | δ       | C(5)-C(10)-C(18)       |
| 5 12  | _1 | δ      | H(29)-C(28)-C(26)                            |       | 1  | δ       | C(6)-C(5)-O(1)         |
|       | -1 | δ      | H(24)-C(23)-N(25)                            |       | _1 | δ       | C(6)-C(5)-C(10)        |
|       | -1 | å      | H(2) - C(2) - H(2)                           | s 54  | -1 | δ       | C(6)-C(8)-C(20)        |
|       | 1  | å      | H(9)-C(8)-C(20)                              | 3 3 4 | 1  | δ       | C(5)-C(6)-C(8)         |
| c /13 | 1  | δ      | C(5) - C(10) - C(18)                         |       | -1 | δ       | C(5)-C(5)-C(10)        |
| 3 4 3 | 1  | 8      | C(6) C(5) O(1)                               | c 55  | 1  | 8       | C(5) - C(5) - C(10)    |
| s 11  | 1  | ٥<br>ک | C(0)-C(2)-C(1)                               | 3 33  | 1  | δ       | C(5)-C(0)-C(8)         |
| 3 44  | 1  | 0<br>Â | C(8) - C(20) - C(28)                         |       | 1  | 6       | C(0) - C(8) - C(20)    |
|       | 1  | 0<br>2 | C(5) - C(10) - C(10)                         |       | 1  | 0<br>\$ | C(10)-C(18)-C(10)      |
|       | 1  | U<br>S | C(5) - C(10) - C(10)                         |       | 1  | U<br>S  | C(20) - C(20) - C(20)  |
| c 45  | 1  | 0      | C(5) - C(0) - C(0)                           |       | -1 | 0       | U(21) - U(23) - IN(23) |
| 5 40  | 1  | 0      | C(0)-C(0)-O(1)                               |       |    |         |                        |
|       | 1  | 0      | C(11)-C(12)-C(14)                            |       |    |         |                        |
|       | 1  | 0      | C(12)-C(14)-C(16)                            |       |    |         |                        |
|       | -1 | 0      | C(14)-C(16)-C(18)                            |       |    |         |                        |
|       | 1  | 0      | C(20)-C(28)-C(26)                            |       |    |         |                        |
|       | 1  | δ      | C(28)-C(26)-N(25)                            |       |    |         |                        |

|      | (t) and Out-oi-pi | and bending ( ) |                         |      |    |   |                         |
|------|-------------------|-----------------|-------------------------|------|----|---|-------------------------|
| Mode |                   |                 | Atoms                   | Mode |    |   | Atom                    |
| s 56 | -1                | γ               | C(8)-C(21)-C(28)-C(20)  | s 70 | 1  | τ | C(5)-C(10)-C(18)-C(16)  |
|      | -1                | τ               | C(5)-C(6)-C(8)-C(20)    |      | 1  | τ | C(11)-C(12)-C(14)-C(16) |
|      | 1                 | τ               | C(23)-N(25)-C(26)-C(28) |      | 1  | τ | C(12)-C(14)-C(16)-C(18) |
| s 57 | 1                 | τ               | H(4)-N(2)-C(11)-C(10)   | s 71 | 1  | τ | H(3)-N(2)-C(11)-C(10)   |
| s 58 | 1                 | τ               | H(7)-C(6)-C(8)-C(20)    |      | 1  | τ | C(20)-C(28)-C(26)-N(25) |
|      | 1                 | τ               | H(9)-C(8)-C(20)-C(21)   |      | 1  | τ | C(21)-C(23)-N(25)-C(26) |
| s 59 | 1                 | τ               | H(9)-C(8)-C(20)-C(21)   | s 72 | 1  | τ | C(21)-C(23)-N(25)-C(26) |
|      | -1                | τ               | H(7)-C(6)-C(8)-C(20)    |      | 1  | τ | C(23)-N(25)-C(26)-C(28) |
| s 60 | 1                 | τ               | H(15)-C(14)-C(16)-C(18) | s 73 | 1  | τ | C(10)-C(18)-C(16)-C(14) |
| s 61 | 1                 | τ               | H(15)-C(14)-C(16)-C(18) |      | -1 | τ | C(11)-C(12)-C(14)-C(16) |
|      | 1                 | τ               | H(17)-C(16)-C(18)-C(10) | s 74 | 1  | τ | H(3)-N(2)-C(11)-C(10)   |
|      | 1                 | τ               | H(13)-C(12)-C(14)-C(16) |      | -1 | τ | C(20)-C(28)-C(26)-N(25) |
| s 62 | 1                 | τ               | H(17)-C(16)-C(18)-C(10) | s 75 | 1  | τ | C(11)-C(12)-C(14)-C(16) |
|      | 1                 | τ               | H(19)-C(18)-C(16)-C(14) |      | -1 | γ | N(2)-C(10)-C(12)-C(11)  |
| s 63 | 1                 | τ               | H(13)-C(12)-C(14)-C(16) | s 76 | 1  | τ | C(12)-C(14)-C(16)-C(18) |
|      | 1                 | τ               | H(19)-C(18)-C(16)-C(14) |      | -1 | τ | C(6)-C(8)-C(20)-C(21)   |
| s 64 | 1                 | τ               | H(29)-C(28)-C(26)-N(25) |      | -1 | τ | C(5)-C(10)-C(18)-C(16)  |
|      | 1                 | τ               | H(22)-C(21)-C(23)-N(25) |      | -1 | τ | C(5)-C(6)-C(8)-C(20)    |
| s 65 | 1                 | τ               | H(24)-C(23)-N(25)-C(26) |      | 1  | τ | C(11)-C(12)-C(14)-C(16) |
|      | 1                 | τ               | H(27)-C(26)-N(25)-C(23) | s 77 | 1  | τ | C(5)-C(6)-C(8)-C(20)    |
| s 66 | -1                | τ               | H(29)-C(28)-C(26)-N(25) |      | 1  | γ | C(8)-C(21)-C(28)-C(20)  |
|      | -1                | τ               | H(24)-C(23)-N(25)-C(26) |      | 1  | τ | C(20)-C(28)-C(26)-N(25) |
|      | 1                 | τ               | H(27)-C(26)-N(25)-C(23) |      | 1  | τ | C(23)-N(25)-C(26)-C(28) |
| s 67 | -1                | τ               | H(22)-C(21)-C(23)-N(25) | s 78 | 1  | τ | C(5)-C(6)-C(8)-C(20)    |
|      | -1                | τ               | H(24)-C(23)-N(25)-C(26) |      | 1  | τ | C(6)-C(5)-C(10)-C(18)   |
|      | 1                 | τ               | H(29)-C(28)-C(26)-N(25) | s 79 | 1  | γ | O(1)-C(6)-C(10)-C(5)    |
| s 68 | 1                 | τ               | C(6)-C(8)-C(20)-C(21)   | s 80 | 1  | τ | C(10)-C(18)-C(16)-C(14) |
|      | 1                 | τ               | C(8)-C(6)-C(5)-C(10)    |      | 1  | τ | C(11)-C(12)-C(14)-C(16) |
| s 69 | 1                 | τ               | C(5)-C(6)-C(8)-C(20)    |      | 1  | γ | N(2)-C(10)-C(12)-C(11)  |
|      | -1                | τ               | C(5)-C(10)-C(18)-C(16)  | s 81 | 1  | τ | C(5)-C(6)-C(8)-C(20)    |
|      | 1                 | τ               | C(6)-C(8)-C(20)-C(21)   |      |    |   | ., ., ., .,             |
|      | 1                 | τ               | C(12)-C(14)-C(16)-C(18) |      |    |   |                         |

difference in the frontier orbital energy allows us to characterize the molecule chemical reactivity and stability. A molecule with a small difference in the frontier orbital energy is generally more reactive [52]. That is, a small HOMO-LUMO gap implies low kinetic stability and high chemical reactivity, because it is energetically favorable to add electrons to a high lying LUMO and to extract electrons from a low-lying HOMO. Among many other uses, the energy difference between the HOMO and LUMO have been used to predict the activity and intramolecular charge transfer in organic molecules with conjugated  $\pi$  bonds [53,54]. Energies gap (HOMO-2 – LUMO+2, HOMO–1 - LUMO+1, and HOMO – LUMO) for 2-aminochalcone were calculated and presented in Table 6. The composition of frontier molecular orbitals is shown in Fig. 10 and the density states diagram is shown in Fig. 11, from them one can see that the HOMO orbitals are partially localized in the phenylamine ring and carbonyl group, while the LUMO orbitals are fully delocalized on the whole molecule. The HOMO and LUMO are qualitatively similar to those obtained by Oumi et al. [55].

The difference in the energy of the frontier orbitals (HOMO –

| Table 5            |                    |                                      |                             |                    |                 |
|--------------------|--------------------|--------------------------------------|-----------------------------|--------------------|-----------------|
| Calculated (STheo. | ) and experimental | ( $\delta Exp.$ ) <sup>1</sup> H and | <sup>13</sup> C NMR chemica | l shifts for the 2 | -aminochalcone. |

| Atom  | Exp  | Ab initio        |                 | DFT                 |                      |  |
|-------|------|------------------|-----------------|---------------------|----------------------|--|
|       |      | HF 6-311++G(d,p) | MP2 6-311G(d,p) | B3LYP 6-311++G(d,p) | B3PW91 6-311++G(d,p) |  |
| H(27) | 8.64 | 8.84             | 8.93            | 9.18                | 9.24                 |  |
| H(7)  | 8.18 | 7.71             | 7.74            | 8.87                | 8.84                 |  |
| H(19) | 8.09 | 8.25             | 8.34            | 8.62                | 8.61                 |  |
| H(29) | 7.80 | 7.59             | 7.52            | 7.77                | 7.82                 |  |
| H(9)  | 7.56 | 8.28             | 8.47            | 7.94                | 8.20                 |  |
| H(4)  | 7.48 | 3.94             | 7.15            | 5.02                | 4.99                 |  |
| H(15) | 7.30 | 7.85             | 7.72            | 7.64                | 7.67                 |  |
| H(13) | 6.81 | 6.90             | 6.83            | 7.20                | 7.21                 |  |
| H(17) | 6.59 | 6.71             | 6.80            | 6.89                | 6.95                 |  |
| C(5)  | 190  | 196              | 207             | 195                 | 193                  |  |
| C(20) | 152  | 153              | 158             | 150                 | 148                  |  |
| C(26) | 151  | 159              | 166             | 162                 | 161                  |  |
| C(11) | 142  | 164              | 170             | 161                 | 159                  |  |
| C(8)  | 139  | 149              | 158             | 147                 | 147                  |  |
| C(14) | 135  | 148              | 154             | 145                 | 144                  |  |
| C(18) | 132  | 144              | 150             | 141                 | 139                  |  |
| C(6)  | 128  | 130              | 137             | 130                 | 130                  |  |
| C(28) | 123  | 129              | 129             | 135                 | 134                  |  |
| C(12) | 117  | 118              | 123             | 123                 | 122                  |  |
| C(16) | 115  | 116              | 123             | 120                 | 119                  |  |

## Table 6 Selected HOMO and LUMO energies and energy gap values (eV) of 2-aminochalcone.

| Method                  | Energy (eV)  |            |               |                |                |
|-------------------------|--------------|------------|---------------|----------------|----------------|
| Basis set 6–311++G(d,p) | НОМО         | LUMO       | HOMO—LUMO gap | $\Delta E^{a}$ | $\Delta E^{b}$ |
| B3LYP                   | -6.0         | -2.7       | -3.3          | -5.8           | -6.4           |
| HF<br>MP2               | -8.2<br>-8.3 | 0.9<br>0.8 | -9.2<br>-9.1  | -10.5<br>-10.4 | -10.8<br>-10.8 |

<sup>a</sup>  $\Delta E(HOMO-1-ELUMO+1)$  gap (eV).

<sup>b</sup>  $\Delta E(HOMO-2-ELUMO+2)$  gap (eV).



Fig. 10. The atomic orbital composition of the frontier molecular orbital for 2-aminochalnone at the B3LYP/6-311++G (d, p) level.



Fig. 11. Density of states (DOS) diagrams for 2-aminochalcone.

LUMO) allows us to infer that the molecule is reactive to other species to form the activated complex of any potential reaction. It also explains the possible transition involved long-range charge transfer that take place from one phenyl ring to the other within the molecule. The transition from the ground state to the first excited state is mainly described by the excitation of an electron from the HOMO to LUMO [56]. The  $\pi$  nature LUMO is fully delocalized throughout the molecule. In summary, the HOMO-LUMO transition involves a transfer of electron densities to other atoms.

#### 5. Conclusion

(*E*)-1-(2-aminophenyl)-3-(pyridine-4-yl)prop-2-en-1-one was synthesized via Claisen Schmidt condensation and characterized by FT-IR spectroscopy, <sup>1</sup>H and <sup>13</sup>C NMR, and GC–MS. Calculated geometrical parameters of the 2-aminochalcone correspond with the XRD results reported. The vibrational frequencies observed in the FT-IR spectrum were assigned based on potential energy distribution (PED) and calculi were corroborated by ab initio and DFT level. Considering the fact that the experimental results were performed on solid state (KBr), while calculi takes place for an isolated molecule in the gas phase, the comparative analysis of the experimental and theoretical frequencies of 2–aminochalcone showed that the calculated frequencies were consistent with experimental results, with DFT method (B3LYP and B3PW91) representing the best approximation to experimental values. <sup>1</sup>H and <sup>13</sup>C NMR chemical shifts were calculated by the GIAO method and represented a good approximation to the experimentally observed. The energy difference between HOMO-LUMO partly explains the molecule reactivity of and the possible charge transfer interactions taking place on it.

#### Acknowledgments

Total financial support from Vicerrectoria de Investigaciones (Proyecto 610) from Universidad del Quindío (Armenia, Colombia) is gratefully acknowledged.

#### References

- B.P. Bandgar, S.S. Gawande, R.G. Bodade, J.V. Totre, C.N. Khobragade, Bioorg. Med. Chem. 18 (2010) 1364–1370, http://dx.doi.org/10.1016/ j.bmc.2009.11.066.
- [2] S.t. V. Kostanecki, J. Tambor, Chem. Ber. 32 (1899) 1921–1926, http:// dx.doi.org/10.1002/cber.18990320293.
- [3] O. Prakash, A. Kumar, A. Sadana, R. Prakash, S.P. Singh, R.M. Claramunt, D. Sanz, I. Alkorta, J. Elguero, Tetrahedron 61 (2005) 6642–6651, http:// dx.doi.org/10.1016/j.tet.2005.03.035.
- [4] Y.R. Prasad, A.L. Rao, L. Prasoona, K. Murali, P.R. Kumar, Bioorg. Med. Chem. Lett. 15 (2005) 5030–5034, http://dx.doi.org/10.1016/j.bmcl.2005.08.040.
- [5] S. Raghavan, K. Anuradha, Tetrahedron Lett. 43 (2002) 5181–5183, http:// dx.doi.org/10.1016/S0040-4039(02)00972-3.
- [6] R.B. Kshatriya, Y.I. Shaikh, G.M. Nazeruddin, Orient. J. Chem. 29 (4) (2013) 1475–1487, http://dx.doi.org/10.13005/ojc/290425.
- [7] S. Murakami, M. Muramatsu, H. Aihara, S. Otomo, Biochem. Pharmacol. 42 (1991) 1447–1451, http://dx.doi.org/10.1016/0006-2952(91)90458-H.
- [8] L. Mathiesen, K.E. Malterud, R.B. Sund, Planta Med. 61 (6) (1995) 515–518, http://dx.doi.org/10.1055/s-2006-959360.
- [9] N. Singh, J. Pandey, A. Yadav, V. Chaturvedi, S. Bhatnagar, A.N. Gaikwad, S. Kumar-Sinha, A. Kumar, P.K. Shukla, R.P. Tripathi, Eur. J. Med. Chem. 44 (2008) 1705–1709, http://dx.doi.org/10.1016/j.ejmech.2008.09.026.
- [10] S.N. López, M.V. Castelli, S.A. Zacchino, J.N. Domínguez, G. Lobo, J. Charris-Charris, J.C. Cortés, J.C. Ribas, C. Devia, A.M. Rodríguez, R.D. Enriz, Bioorg. Med. Chem. 9 (2001) 1999–2013, http://dx.doi.org/10.1016/S0968-0896(01) 00116-X.
- [11] B.K. Sarojini, B. Narayana, B.V. Ashalatha, J. Indira, K.G. Lobo, J. Cryst. Grow. 295 (2006) 54–59, http://dx.doi.org/10.1016/i.jcrysgro.2006.07.013.
- [12] H.J. Ravindra, K. Chandrashekaran, W.T.A. Harrison, S.M. Dharmaprakash, Appl. Phys. B 94 (2009) 503-511, http://dx.doi.org/10.1007/s00340-008-3248-3.
- [13] P. Poornesh, S. Shettigar, G. Umesh, K.B. Manjunatha, K.P. Kamath, B.K. Sarojini, B. Narayana, Opt. Mater. 31 (2009) 854–859, http://dx.doi.org/ 10.1016/j.optmat.2008.09.007.
- [14] R. Prajapati, S. Kumar-Dubey, R. Gaur, R. Kumar-Koiri, B. Kumar-Maurya, S. Kumar-Trigun, L. Mishra, Polyhedron 29 (2010) 1055–1061, http:// dx.doi.org/10.1016/j.poly.2009.11.012.
- [15] C.N. Khobragade, R.G. Bodade, M.S. Shinde, D.R. Jaju, R.B. Bhosle, B.S. Dawane, J. Enzyme Inhib. Med. Chem. 23 (2008) 341–346, http://dx.doi.org/10.1080/ 14756360701608585.
- [16] S. Sagawa, Y. Nihro, H. Ueda, T. Miki, H. Matsumoto, T. Satoh, Biol. Pharm. Bull. 17 (1994) 251–256, http://dx.doi.org/10.1248/bpb.17.251.
- [17] O. Nerya, R. Musa, S. Khatib, S. Tamir, J. Vaya, Phytochemistry 65 (2004) 1389-1395, http://dx.doi.org/10.1016/j.phytochem.2004.04.016.
- [18] V. Karunakaran, V. Balachandran, J. Mol. Struct. 1053 (2013) 66-78, http:// dx.doi.org/10.1016/j.molstruc.2013.08.057.
- [19] Y. Xue, Y. Liu, L. An, L. Zhang, Y. Yuan, J. Mou, L. Liu, Y. Zheng, Comp. Theor.
- Chem. 965 (2011) 146–153, http://dx.doi.org/10.1016/j.comptc.2011.01.042. [20] Y. Xue, X. Gong, J. Mol. Struct. Theoch 901 (2009) 226–231, http://dx.doi.org/
- 10.1016/j.theochem.2009.01.034.
   [21] R. Abonia, D. Insuasty, J. Castillo, B. Insuasty, J. Quiroga, M. Nogueras, J. Cobo, Eur. J. Med. Chem. 57 (2012) 29–40, http://dx.doi.org/10.1016/ i eimech 2012 08 039
- [22] F. Cuenú, R. Abonía, J. Cobo, C. Glidewell, Acta Cryst. C 66 (2010) 0589–0592, http://dx.doi.org/10.1107/S0108270110040825.
- [23] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789, http://dx.doi.org/ 10.1103/PhysRevB.37.785.
- [24] J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54 (1996) 16533–16539, http:// dx.doi.org/10.1103/PhysRevB.54.16533.
- [25] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,

J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Danneberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc, Wallingford CT, 2013.

- [26] A. Frisch, A.B. Neilson, A.J. Holder, GAUSSVIEW User Manual, Gaussian Inc, Pittsburgh, CT, 2009.
- [27] a M.H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004–2010;
  - b M.H. Jamroz, Spectrochim. Acta Part A 114 (2013) 220–230, http:// dx.doi.org/10.1016/j.saa.2013.05.096.
- [28] K.K. Irikura, R.D. Johnson III, R.N. Kacker, J. Phys. Chem. A 109 (2005) 8430–8437, http://dx.doi.org/10.1021/jp052793n.
- [29] L.J. Bellamy, The Infrared Spectra of Complex Molecules, vol. 2, Chapman and Hall, London, 1980.
- [30] M. Karabacak, M. Cinar, Z. Unal, M. Kurt, J. Mol. Struct. 982 (2010) 22–27, http://dx.doi.org/10.1016/j.molstruc.2010.07.033.
- [31] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, Boston, MA, 1991.
- [32] A. Atac, M. Karabacak, E. Kose, C. Karaca, Spectrochim. Acta, Part A 83 (2011) 250–258, http://dx.doi.org/10.1016/j.saa.2011.08.027.
- [33] N.P.G. Roeges, A Guide to the Complex Interpretation of Infrared Spectra of Organic Structures, Wiley, New York, 1994.
- [34] J. Coates, in: R.A. Meyers (Ed.), Interpretation of Infrared Spectra: a Practical Approach, John Wiley and Sons Ltd, Chichester, 2000.
- [35] B. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, England, 2004.
- [36] P.S. Kalsi, Spectroscopy of Organic Compounds, Wiley Eastern Publisher, New Delhi, 1993.
- [37] D.N. Sathyanarayana, Vibrational Spectroscopy Theory and Applications, second ed., New Age International (P) Ltd. Publishers, New Delhi, 2004.
- [38] J. Mohan, Organic Spectroscopy-principle and Applications, second ed., Narosa Publishing House, New Delhi, 2000.
- [39] .N. Udaya Sri, K. Chaitanya, M.V.S. Prasad, V. Veeraiah, A. Veeraiah, Spectrochim. Acta. A 97 (2012) 728–736, http://dx.doi.org/10.1016/ j.saa.2012.07.055.
- [40] P.S. Kalsi, Spectroscopy of Organic Compounds, Wiley Eastern Limited, New Delhi, 2007.
- [41] M. Silverstein, G. Clayton Basseler, C. Moril, Spectrometric Identification of Organic Compounds, Wiley, New York, 1981.
- [42] R. Ditchfield, Mol. Phys. 274 (1974) 789–807, http://dx.doi.org/10.1080/ 00268977400100711.
- [43] K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251–8260, http://dx.doi.org/10.1021/ja00179a005.
- [44] M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comp. Chem. 24 (2003) 669–681, http://dx.doi.org/10.1002/jcc.10189.
- [45] Y.R. Sharma, Elementary Organic Spectroscopy, S. Chand, New Delhi, 2006.
- [46] F.L. Tobiason, J.H. Goldstein, Spectrochim. Acta A 23 (1967) 1385–1395, http://dx.doi.org/10.1016/0584-8539(67)80360-X.
- [47] S. Muthu, E.E. Porchelvi, Spectrochim. Acta, Part A 116 (2013) 220–235, http://dx.doi.org/10.1016/j.saa.2013.07.016.
- [48] K. Pihlaja, E. Kleinpeter, Carbon-13 Chemical Shifts in Structural and Sterochemical Analysis, VCH Publishers, Deerfield Beach, 1994.
- [49] H.O. Kalonowski, S. Berger, S. Braun, Carbon-13 NMR Spectroscopy, John Wiley & Sons, Chichester, 1988.
- [50] G. Gece, Corros. Sci. 50 (2008) 2981–2992, http://dx.doi.org/10.1016/ j.corsci.2008.08.043.
- [51] K. Fukui, Science 218 (1982) 747–754, http://dx.doi.org/10.1126/ science.218.4574.747.
- [52] I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York, 1976.
- [53] L. Padmaja, C. Ravikumar, D. Sajan, I. Hubert Joe, V.S. Jayakumar, G.R. Pettit, O. Faurskov Nielsen, J. Raman Spectrosc. 40 (2009) 419–428, http:// dx.doi.org/10.1002/jrs.2145.
- [54] C. Ravikumar, I.H. Joe, V.S. Jayakumar, Chem. Phys. Lett. 460 (2008) 552–558, http://dx.doi.org/10.1016/j.cplett.2008.06.047.
- [55] O. Manabu, M. David, H. Martin Gordon, Spectrochim. Acta Part A 55 (1998) 525-537, http://dx.doi.org/10.1016/S1386-1425(98)00260-1.
- [56] M. Kurt, P.C. Babu, N. Sundaraganesan, M. Cinar, M. Karabacak, Spectrochim. Acta Part A 79 (2011) 1162–1170, http://dx.doi.org/10.1016/ j.saa.2011.04.037.