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Abstract One of the major challenges in the area

of artificial neural networks is the identification of a

suitable architecture for a specific problem. Choosing

an unsuitable topology can exponentially increase the

training cost, and even hinder network convergence. On

the other hand, recent research indicates that larger or

deeper nets can map the problem features into a more

appropriate space, and thereby improve the classifica-

tion process, thus leading to an apparent dichotomy.

In this regard, it is interesting to inquire whether inde-

pendent measures, such as mutual information, could

provide a clue to finding the most discriminative neu-

rons in a network. In the present work we explore this

question in the context of Restricted Boltzmann Ma-

chines, by employing different measures to realize post-

training pruning. The neurons which are determined by
each measure to be the most discriminative, are com-

bined and a classifier is applied to the ensuing network

to determine its usefulness. We find that two measures

in particular seem to be good indicators of the most

discriminative neurons, producing savings of generally

more than 50\% of the neurons, while maintaining an ac-

ceptable error rate. Further, it is borne out that start-
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ing with a larger network architecture and then pruning

is more advantageous than using a smaller network to

begin with. Finally, a quantitative index is introduced

which can provide information on choosing a suitable

pruned network.

Keywords Restricted Boltzmann Machines \cdot Prun-
ing \cdot Discriminative Information \cdot Phoneme Classifica-

tion \cdot Emotion Classification

1 Introduction

In the last few years, many large scale recognition chal-

lenges have been successfully addressed using recent ad-

vances in pattern recognition, machine learning and ar-

tificial neural networks (Le 2013; Taigman et al 2014;
Simonyan and Zisserman 2014). In the case of artifi-

cial neural networks, there are several criteria used to

evaluate a network's quality e.g. training time, scalabil-

ity, and generalization ability, among others. However,

one of the most relevant concerns in artificial neural

networks is determining an appropriate network size

for a specific task. Large networks can define complex

decision regions, while smaller networks can reach su-

perior generalization capacity (Du and Swamy 2014).

One common approach to determining network size

is by using heuristics and/or trial-and-error, usually

looking for good performance and generalization abil-

ity on a validation set, especially if the problem size

is large. Another approach considers ways of 'growing'

an artificial neural network until satisfactory perfor-

mance is achieved (Guo et al 2012; Stanley and Mi-

ikkulainen 2002). A different technique uses `pruning'

methods (Castellano et al 1997; Suzuki et al 2001; Hus-

sain and Alili 2016). In general, these methods begin

by training an artificial neural network, which is large
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enough to ensure a satisfactory performance. After-

wards, neurons are removed from the trained net (for

example, the ones with the smallest weights) and then

the network is often fine-tuned or retrained. This proce-

dure could also be repeated until some convergence cri-

terion is achieved, otherwise the smallest network that

performed adequately is assumed to have the most suit-

able topology for the given data set. This type of prun-

ing was called post--training pruning (PTP) (Castellano

et al 1997; Reed 1993). In this work we will consider

PTP.

In particular, there are two well--known techniques

that have been applied in this case: the Optimal Brain

Surgeon (OBS) and Optimal Brain Damage (OBD)

(Hassibi et al 1993, 1994), both of which remove unim-

portant weights from a trained neural network. OBD

does this by approximating the change in the error func-

tion when pruning a certain weight using a Taylor se-

ries expansion (LeCun et al 1990). OBS continues on

from OBD, and computes the full Hessian matrix iter-

atively, giving a more exact approximation of the er-

ror function. Both algorithms retrain the network after

each weight removal. This process however, is carried

out without considering the class information of each

pattern, i.e. none of these approaches are supervised,

and there is no easy way to evaluate the impact of the

weight's pruning on the class classification.

In contrast, our proposed technique acts more like

a feature selection, by ranking the neurons and elim-

inating the less discriminative ones, along with their

weights. One advantage of our proposal over these tech-

niques is that no further training is required after prun-

ing.

The question of network size is especially relevant

as recent works show that larger or deeper nets can

map the problem tasks features into a more appro-

priate space (Lee et al 2009; Hinton and Salakhutdi-

nov 2006; Huang et al 2006, 2011). Consequently, new

complications associated with complex and computa-

tionally demanding training algorithms must be ad-

dressed (Sutskever and Hinton 2007; Huang et al 2007;

Cao et al 2013; Lu et al 2013).

In this context, Restricted Boltzmann Machines

(RBM) have received increasing attention. The idea be-

hind the deep learning paradigm suggests that, in order

to learn high--level representations of data, a hierar-

chy of intermediate representations is required (Bengio

2009). These intermediate representations in a deep ar-

chitecture translate into a feed--forward artificial neu-

ral network that has several layers of hidden units be-

tween the input and output layers. However, usually

these hidden layers are hard to optimize. The best re-

sults obtained on supervised learning tasks involve an

unsupervised learning component, usually in an unsu-

pervised greedy pre--training phase (Hinton et al 2012;

Erhan et al 2010; Hinton 2012). This means that, if the

network is allowed to discover representations at var-

ious levels of abstraction, it will obtain better results

since in the lower layers the network will find basic fea-

tures, while in the upper layers more complex concepts

will be represented (Hinton et al 2006; Bengio 2009).

Restricted Boltzmann machines and deep belief net-

works (DBN) have been applied successfully to several

tasks. For example, a system for understanding natural

language using DBNs was proposed in (Sarikaya et al

2014), a neuro--image classifier based on RBMs was pre-

sented in (Hjelm et al 2014) and a model for forecast-

ing time series was proposed in (Kuremoto et al 2014).

RBMs and DBNs are also used for parametric voice

synthesis by (Zen and Senior 2014) and modeling sta-

tistical and probabilistic networks (Atwood et al 2014)

among others. In speech emotion recognition, RBM and

DBN achieved a significative performance improvement

in comparison with other machine learning techniques

(Albornoz et al 2014; S\'anchez-Guti\'errez et al 2014).

Even though all these results results are encourag-

ing, there is still an area open to improvement con-

cerned with selecting an adequate topology for the net-

work. One way to attempt this, as we have mentioned

above, is by selecting, according to some criterion, the

neurons that contribute most to the network's objec-

tive.

In Berglund et al (2015), the authors propose the

use of mutual information between all the visible neu-

rons and each individual hidden neuron, as a way of
measuring the usefulness of each hidden unit in the

RBM. They do not use any information about classes

since their objective is to measure how much of the in-

put information is represented in each hidden neuron.

By contrast, in the present work we address the prob-

lem of selecting the most discriminative neurons in the

hidden layer of an RBM using the class information of

each pattern. In order to find a suitable network size,

while retaining an adequate classification performance,

a PTP method is proposed based on the discriminative

`ability' of each neuron. This capacity is measured by

firstly feeding the original input data into the trained

RBM network to obtain its output activations. Then,

using all of the output activations for a particular neu-

ron, the discriminative measures are used to quantify

how different the activations are between classes. Fi-

nally, the hidden neurons are ranked based on this in-

formation. In this way, the most discriminative units are

the only ones employed to feed into the final classifier,

while the rest are pruned. From another perspective, we
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can see that we are also performing a type of feature

selection by pruning hidden units in the network.

Five different discriminative measures are used in

this paper. The results show that two of these measures

seem to be good indicators of the most discriminative

neurons, producing savings of generally more than 50\%

of the neurons in the original network, while maintain-

ing an acceptable or improved error rate. Further, it

is borne out that starting with a larger network archi-

tecture and then pruning is advantageous compared to

using a smaller network to begin with, in the sense of

obtaining a better classification rate. In this work we de-

sign and test the method for the two-class problem only,

however generalization to more classes is straightfor-

ward. Finally, a quantitative index is introduced which

can provide information on choosing a suitable pruned

network.

In the next two sections, the proposed method for

pruning an RBM is given and the corresponding five

discriminative measures are introduced. Section 4 de-

scribes both speech databases used in the experiments.

Furthermore, it also explains which features were ex-

tracted and the experiments that were conducted on

them. Section 5 presents the results obtained and dis-

cusses them. Finally, conclusions and future work are

presented in Section 6.

2 Post-training approach to pruning RBMs

In this section, we describe our approach to selecting

the most useful neurons from an RBM based on their

activation and discriminative ability.

2.1 Restricted Boltzmann machines

In the last few years, RBMs (Smolensky 1986) have

been used as the first stage in classification systems, ei-

ther as feature extractors or as a way to initialize neu-

ral networks (Hinton and Salakhutdinov 2006; Erhan

et al 2010; Albornoz et al 2014). Specifically, a RBM is

an artificial neural network with two layers, one layer

of visible input units, and the other containing hidden

units. There are connections between the units of the

two layers and with the bias unit, but no connections

between units in the same layer. The RBM is a genera-

tive stochastic network, so it can learn the probability

distribution over the data. To do this, the RBM de-

fines an energy function, E, for every configuration of

visible and hidden state vectors, denoted by v and h

respectively, by:

E(v, h) =  - a\top v  - b\top h - v\top Wh (1)

where W is a symmetric matrix of the weights connect-

ing the visible and hidden units, and a, b are bias vec-

tors on the connections of a bias unit to the visible and

hidden layer, respectively. The joint probability, p(v, h),

for the RBM mentioned above, assigns a probability to

every configuration (v, h) of visible and hidden vectors

using:

p(v, h) =
e - E(v,h)

Z
(2)

where Z, known as the partition function, is a nor-

malization constant that makes the probability sum to

one that is defined as:

Z =
\sum 
v,h

e - E(v,h) (3)

The probability assigned by the network to a visible

vector v is:

p(v) =
1

Z

\sum 
h

e - E(v,h) (4)

It turns out that the lack of connections in the same

layer of an RBM contributes to the property that its

visible variables are conditionally independent, given

the hidden variables, and vice versa. This means that

we can write these conditional probabilities as:

p(vj = 1| h) = \sigma (ai +
\sum 
j

hjwi,j)

p(hj = 1| v) = \sigma (bj +
\sum 
i

viwi,j)
(5)

where

\sigma (x) =
1

1 + e - x
(6)

The contrastive divergence algorithm (Hinton 2002)

is applied to find the parameters W , a, and b.

2.2 Discriminative evaluation

After training the RBM, the outputs from the hidden

neurons are fed into the final classifier, which is sim-

ply a 1-nn classifier, although clearly other classifiers

could be employed. We hypothesize that often not all

the RBM hidden neurons provide useful discriminative

information for the final classifier, however it is diffi-

cult to know which of these are the most important.

We study the effect of using discriminative measures
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Fig. 1 Scheme for discriminative selection of neurons. It in-
cludes an unsupervised trained RBM, a method for ranking
the most discriminative neurons and a final classifier.

to rank the hidden units with respect to their output

values, and then prune them according to this ranking.

We then analyze whether the resulting performance of

the network and classifier is statistically acceptable. A

graphical scheme of this process is shown in Figure 1.

As we mentioned previously, the work of (Berglund

et al 2015) is of particular interest. They also propose

a way to determine the importance of each hidden neu-

ron. They note that while the variance of the output

state of a hidden unit has been used previously, it is not

applicable in the case of RBMs, given their stochastic

nature. Their approach is to compute the mutual infor-

mation between the input data (visible layer) and each

hidden neuron. Both pruning and adding neurons are

explored. The question arises as to whether mutual in-

formation is also useful in our approach, as a measure

of a hidden unit's discriminative ability, and how prun-

ing affects the resulting error rate. In this paper we also

evaluate four other discriminative measures.

The general steps used in a multi--class approach

are described in Algorithm 1, although in this paper

we only use a binary--class version of the algorithm.

3 Discriminative Measures

Apart from mutual information, there are many other

measures that can be used in our approach. In a general

sense, they measure the distance between two discrete

distributions p and q. The histograms of the output

activations of each neuron are used to approximate the

probability distributions of the two classes: p and q and,

at the same time, to calculate the probabilities that are

used in the computations of the following discriminative

measures.

Algorithm 1 Discriminative evaluation

Input: An unsupervised trained RBM
1: for each class
2: calculate the propagated value in the hidden layer for

each training vector
3: end for

Input: The outputs of the RBM (the propagated vectors)
4: for each neuron i
5: estimate separately the histograms of the output data

for each class.
6: calculate i's discriminative value Di according to the

selected measure.
7: end for
8: Rank the neurons according to their discriminative value

in descending order.

Input: Ranked neurons
9: for i\leftarrow 1 to total number of neurons
10: use the first i neurons to classify the data using Knn.
11: end for

The first measure that we introduce is the mutual

information (MI) computed for each hidden unit's ac-

tivations for both classes.

3.1 Mutual information

The mutual information of two random variables is a

measure of the dependence between them. More specif-

ically, it quantifies the amount of information obtained

about a random variable through another. This mea-

sure is closely related to the entropy H of a random

variable X, with probability mass function p, that mea-

sures the randomness of the given variable i.e., the mean

amount of information provided by an event is:

H(X) =  - 
\sum 
x

p(x) log2 p(x) (7)

The idea behind this definition is that, if one of the

events is more probable than others, the observation of

that event is less informative. Conversely, rarer events

provide more information when observed. In this sense,

it is possible to define the information for a particular

event as I(x) =  - log2 p(x), so its expected value over

all possible values of x leads to the Shannon's entropy

(7).

From Shannon's entropy we can define the condi-

tional entropy of a random variableX given the random

variable Y by:

H(X| Y ) =
\sum 
x,y

p(x, y) log2 p(x| y) (8)



Post--training discriminative pruning for RBMs 5

where p(x, y) is the joint probability that X = x and

Y = y.

Another definition we require in order to introduce

the concept of mutual information is the joint entropy,

which measures how much uncertainty there is in the

two random variables X and Y taken together, and is

defined by:

H(X,Y ) =  - 
\sum 
x,y

p(x, y) log2 p(x, y) (9)

We have the following relationship:

H(X| Y ) = H(X,Y ) - H(Y ) (10)

In our implementation, we use the output activations

of a hidden neuron for both classes as the joint distri-

bution p(x, y). The mutual information is then given

by:

MI(X,Y ) =
\sum 
x,y

p(x, y) log2
p(x, y)

p(x)p(y)

= H(X) - H(X| Y )

= H(X) +H(Y ) - H(X,Y ) (11)

3.2 Kullback--Leibler divergence

The Kullback-Leibler (KL) divergence is a discrimi-

native measure between two probability distributions.

Given two discrete random variables X and Y , de-

scribed by probability distributions p(x) and q(x), the

model defined by p is evaluated in terms of closeness to

the distribution q. In other words, this divergence mea-

sures the ratio between the probability or uncertainty

that a sample of p behaves like a sample of q.

Prior to the definition of KL divergence, we note

that the cross entropy is defined by:

H(X;Y ) = EX [log2
1

q(y)
]

=  - 
\sum 
x

p(x) log2 q(y) (12)

where EX represents the expectation regarding the

probability distribution p. The KL information, or rel-

ative entropy of p with respect to q, can be defined as:

DKL(p \| q) =
\sum 
x

p(x) log2
p(x)

q(y)

=  - 
\sum 
x

p(x) log2 q(y)

+
\sum 
x

p(x) log2 p(x)

= H(X;Y ) - H(X) (13)

with H(X;Y ) being the cross entropy of X and Y and

H(X) the entropy of X.

However, the KL divergence is not symmetric and in

our implementation we consider a symmetric measure,

which we refer to as KLS and is also known as Jeffreys'

divergence, defined by:

DKLS(p \| q) =
(DKL(p \| q) +DKL(q \| p))

2
(14)

3.3 Wasserstein distance

The Wasserstein, or Earth Mover's Distance

(EMD) (Pele and Werman 2009), is based on the

minimum cost to be paid, or work to be done, to

transform one distribution into another. It is more

robust than other techniques that use histograms since

it operates with representations of variable length

distributions, thus avoiding problems with intervals or

bins that are typical when working with histograms.

Intuitively speaking, given two distributions, one

can be considered as a mass of soil, while the other as

holes to be filled with. This means that the EMD mea-

sures the work necessary to move or transform one dis-

tribution into another, where a unit of work corresponds

to transport a unit of soil by one unit of distance. The

distance measure between locations is known as the

ground distance, and is introduced below in (15).

The EMD is defined for histograms of the form

(\mu , p(x)), where \mu is the mean of the histogram while

p(x) is the number of occurrences of x. The histograms

may or may not be normalized, so that the total mass

of two histograms may not be equal.

Given two histograms X and Y , the EMD is defined

in terms of optimal flow as F = (fij) that minimizes

the work W :

W (X,Y, F ) =
\sum 
i,j

fij\delta ij (15)

Where \delta ij = dist(\mu i, \mu j) is some distance between

\mu i and \mu j , for example the Euclidean distance, while
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W (X,Y, F ) is the work needed to move the soil from

one histogram to another.

The flow (fij) must meet the following restrictions:

fij \geq 0\sum 
j

fij \leq \mu i\sum 
i

fij \leq \mu j\sum 
i,j

fij = min(
\sum 
i

\mu i,
\sum 
j

\mu j) (16)

The first constraint allows us to move soil from X to

Y and not the other way, the second limits the amount

of soil that can be sent from X, the third constraint

limits the amount of maximum soil that Y can receive,

and finally, the fourth restriction forces us to move the

greatest possible quantity of soil (total flow).

Once the transport problem is solved and the opti-

mal flow F is found, the EMD is defined as the work

W normalized by the total flow defined in equation 16:

EMD(X,Y ) =

\sum 
i,j fij\delta ij\sum 
i,j fij

(17)

3.4 Difference of Conditional Activation Frequency

In (Rolon et al 2014), the authors describe a method to

select the most discriminative atoms from a fixed dictio-

nary in order to improve a neural network's classifica-

tion performance on a sparse representation. A dictio-

nary is defined as a matrix, \Phi \in \BbbR M\times N , whose columns

\bfitphi j are called atoms. A particular signal can be syn-

thesized by a linear combination of these atoms, also

known as signal features.

The idea behind this particular method is to select

the most discriminative atoms of the dictionary using

the atom's `activation' probability given the class. An

atom is supposed to be active for a particular signal

(of a given class) if the corresponding coefficient is dif-

ferent from zero in its representation. The candidates

considered are those atoms with higher absolute dif-

ference between activation probabilities for each class.

That is, an atom is more discriminative if it is active

more times for signals belonging to one class, than for

the signals belonging to the other class.

In our work we can apply a similar idea to neurons,

instead of atoms, as follows and we refer to it as the

difference of conditional activation frequency (DCAF):

Let pi \triangleq p(xi \not = 0| x \in C1) and qi \triangleq q(yi \not = 0| y \in 
C2) be the activation probabilities of the neuron i for

Class 1 and Class 2, respectively. Our implementation

of this criteria is as follow:

DDCAF (X,Y ) = | pi  - qi| (18)

where pi and qi are computed using the relative activa-

tion frequency for each neuron:

pi \approx \# activations of neuron i for data \in C1

\# all data \in C1

qi \approx \# activations of neuron i for data \in C2

\# all data \in C2
(19)

In the particular case of equally represented classes

(i.e. balanced dataset), both denominators are the same

so the criteria can be simplified only computing the

absolute difference between the number of activations

per each class.

3.5 Welch's t--test

Welch's t--test is an adaptation of Student's t--

test (Wilcox 1995; Keselman et al 2004) that compares

the means of two groups. It is a good approach when

the homogeneity of variances assumption is not met,

especially with unequal sample sizes. The general idea

here is that the means of the output activations can be

used to estimate how far the distributions are from each

other or, in a way, test if the statistical units underlying

the two samples being compared are non-overlapping.

Let \mu i be the sample means of the output activations

for one neuron and class i=1,2, \sigma i the variance and ni

the group size, then our implementation of Welch's test

is given by:

WT =
(\mu 1  - \mu 2)

2

\sigma 1

n1
+ \sigma 2

n2

(20)

In the context of statistical pattern classification

with a two-class problem with normal distributions, this

test is related to the so called Fisher's ratio (Hegde

et al 2015), since in equation 20 the numerator reflects

the inter--class variance while the denominator consid-

ers the intra--class variance.

That is, \mu 1 is the mean of the output activations

of one neuron for Class 1 patterns and \mu 2 is the mean

of the output activations of one neuron for Class 2.

Likewise, \sigma 1 is the variance of the output activations

of one neuron for Class 1 and \sigma 2 is the variance of the

output activations of one neuron for Class 2.
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Fig. 2 Conceptual flowchart of the whole general process for the experiments.

4 Experiments

In this section we describe the experiments performed

in the paper. The general procedure is presented in Fig-

ure 2, where the first step involves extracting features

from the speech signal. In the second step, an RBMwith

N hidden units is trained in an unsupervised manner on

a given training set. The values of N used in this pa-

per are specified in section 5. Then, this training set is

propagated through the RBM to obtain the activations

of the hidden units and, according to Algorithm 1, each

hidden unit is ranked using the discriminative mea-

sures. Once the hidden units are ranked, networks with

1, 2, . . . , N best ranked units are systematically formed.

Finally, the outputs of these pruned RBMs are classi-

fied using a minimum--distance criterion (with respect

to a set of prototypes/centroids).

It is important to note that a repeated random vali-

dation method (Michie et al 1994) was implemented for

the databases (see below for the description) in all the

experiments conducted. This allows us to obtain more

stable results and avoid the biased estimates of recogni-

tion error that are usually present in experiments with

only one training and test partition.

In the next subsections we describe the speech

databases used in the experiments, the feature extrac-

tion procedure, and, finally, comment on the classifier.

4.1 Speech Corpora

We evaluate our approach using two well-known speech

corpora.

TIMIT

TIMIT is a corpus of read speech created for the devel-

opment and evaluation of automatic speech recognition

systems by the Massachusetts Institute of Technology,

SRI International and Texas Instruments, Inc. (Garo-

folo et al 1993). The corpus has utterances of 630 speak-

ers expressed in the eight major dialects of American

English, which include time-aligned orthographic, pho-

netic and word transcriptions. In this work, the pho-

netic alignment is used to obtain individual files of ev-

ery phoneme occurrence. Moreover, all the regional di-

alects, including both male and female speakers, are

considered.

As is to be expected, certain sets of phonemes are

more difficult to classify than others. For example, the

set of English phonemes: /b/, /d/, /eh/, /ih/ and /jh/

are difficult to identify (Stevens 2000; Mart\'{\i}nez et al

2012; Vignolo et al 2016). From these phonemes we con-

sider the vowels /eh/ and /ih/ due to their closeness in

formant space.

The test and training subsets defined in the TIMIT

database are already balanced for phonetic and dialec-

tal coverage. The training set contains 8904 samples

while the test set has 3149 samples.

INTERFACE

This corpus was created to study emotional speech by

the Center for Language and Speech Technologies and

Applications (TALP) of the Polytechnic University of

Catalonia (UPC) (Hozjan et al 2002). Although it has

utterances in English, French, Slovene and Spanish,

only the latter is employed in this work. The Span-

ish set was spoken by two professional actors, one male

and one female. There are 184 utterances that are spo-

ken using six emotions (joy, sadness, anger, fear, dis-

gust and surprise) plus neutral. Thus, for each speaker,

1, 288 utterances were produced.

All utterances belonging to the same emotional class

are labeled with the name of the class and their tran-

scriptions are ignored. Each utterance is represented by

one unique pattern in a data partition.

For the experiments, we use two classes (anger and

neutral) and repeated random validation with 70\% for

training and 30\% for testing. The partition is balanced

with respect to the speakers and emotional classes.
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4.2 Feature extraction

One of the most relevant parts in automatic classifica-

tion systems is the pre-processing stage, where a set of

significant features is produced. In automatic speech

recognition (ASR) and emotion recognition systems,

this process should be able to extract the key-features

to exploit the capabilities of the classifier (Huang et al

2001). Many researchers have developed their own op-

timal feature sets for specific tasks (Vignolo et al 2016;

Montefusco and Puccio 2014), however mel frequency

cepstral coefficients (MFCC) are the most widely used

features for speech recognition. The MFCCs are based

on a linear model of voice production and a psycho-

acoustic frequency mapping according to the mel scale

(Huang et al 2001). The use of prosodic features in

ASR and emotion recognition has already been stud-

ied and discussed extensively (Adell Mercado et al 2005;

Borchert and Dusterhoft 2005; Milone and Rubio 2003).

As our principal concern is not with the selection

of the best acoustic features, we simply chose a stan-

dard set of well-known features consisting of: energy,

zero crossing rate and fundamental frequency (F0). To

this end, the first 12 mean MFCCs, the mean F0, the

average of the zero crossing rate and the mean of the en-

ergy, plus the means of first derivatives of each one were

extracted using the OpenSMILE (Eyben et al 2010)

toolbox. Hence, each utterance is represented by a 30--

dimensional vector in all the experiments.

This can be seen in Figure 2, where these features

serve as inputs to the RBM, and are then sent on from

the RBM to the classifier. The exact outputs received

by the classifier depend on the pruning applied to the

hidden units which, in turn, depends on identifying the

most discriminating neurons. Additionally, we can ob-

serve that the proposed process can also be seen as

feature selection on pre--trained RBMs.

4.3 Classifier

The scheme presented in Figure 2 outlines our approach

to network pruning. Here we apply a classifier to the

pruned network in order to evaluate how effective this

procedure has been. Several standard classifiers could

be applied in this block: K-nearest neighbors (KNN),

decision trees, multilayer perceptrons (MLP), and sup-

port vector machines (SVM), among others (cf. Haykin

et al (2009)).

In this work we apply 1--NN classifiers to the bi-

nary classification tasks described above. The results

reported in Section 5 are the averaged accuracy com-

puted based on the outputs of the pruned networks

taken into consideration. In order to determine if the

pruning process is beneficial in attaining adequate clas-

sification results, a baseline was defined by using the

initial unpruned RBM as input to the 1--NN classifier.

5 Results and Discussion

In this section, essentially three types of results are pre-

sented and discussed for each database, which consider

different aspects of the pruning process according to

Algorithm 1. The first type considers the classification

error in relation to the number of pruned hidden units,

for each of the discriminative measures described in Sec-

tion 3 (Figures 3 and 4). The second is concerned with

the percentage of hidden nodes required to obtain a

reasonable classification error (Figures 5 and 6 for two

of the measures). Finally, we introduce a quantitative

index, analogous to one used in principal component

analysis, to provide further information on the pruning

process (Figure 7).

For all the figures and tables, the information given

is the averaged outcomes of 10 randomly initialized

experiments. Using this repeated random validation

methodology, we can obtain more stable and reliable be-

haviors and tendencies in the error rates for the pruned

units. For both databases, five different RBM configu-

rations were initially implemented: the network's input

always consisted of 30 visible units, while the number

of hidden units were 15, 30, 60, 120 and 240 (that is,

0.5, 1, 2, 4 and 8 times the number of visible units).

Since the results presented here are the averaged out-

comes of 10 randomly initialized experiments, we use

confidence intervals (CI), defined by equation 21, and

calculated with a 95\% confidence level, as a way to de-

termine if the errors in Figures 3--6 are suitably close

to the baseline. The confidence intervals are calculated

using:

CI =

\biggl( 
\=x - t

\sigma \surd 
n
, \=x+ t

\sigma \surd 
n

\biggr) 
(21)

where \=x is the sample mean, \sigma is the sample standard

deviation, n is the number of samples and t is the 95\%

t--statistic with 9 degrees of freedom.

The baseline results are depicted in the figures by

a continuous line, whereas the confidence intervals are

represented by a dotted line.

Experiments using the TIMIT corpus are presented

in Figure 3. The first experiment, presented in Fig-

ure 3a, shows that when the RBM configuration has less

units than the dimensionality of the input vectors, none

of the pruned networks really improves on the baseline

result. The second experiment, presented in Figure 3b,

shows that using 30 units is more beneficial than 15
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since the baseline error is improved. At the same time,

the first better-than-baseline error is around 15 units,

intriguingly the same number of hidden units as in ex-

periment (a). Here we see that the result obtained is

better than the baseline and, in fact, better than all

the pruned networks in the first experiment. In spite

of this performance improvement, we can observe that

there is still room for further improvement, as shown in

Figures 3c,d,e.

The same experiments using the INTERFACE cor-

pus are presented in Figure 4. The general behavior of

these experiments is similar to those observed with the

TIMIT dataset: the baseline error is higher when 15 hid-

den units are initially used and, all 15 units are required

to attain it. In the same way as before, the experiments

that use more units (Figure 4b,c,d,e) benefit the most.

However, unlike the second TIMIT experiment (Fig-

ure 3b), it seems that 30 hidden units are not sufficient

to improve the performance. This may be caused by

several factors e.g. the variability between sentences,

the fact that the features vectors are computed for the

whole utterance and in general, the complexity of the

INTERFACE corpus.

A trend can be observed in the experiments pre-

sented in Figures 3, 5 and Figures 4, 6 for the Welch

and DCAF measures, and to a certain extent EMD,

where around 20\%-30\% of the ranked units are suf-

ficient to attain and even improve the error baseline,

thus giving a possible reduction of at least 70\% of the

hidden units. Welch and DCAF measures therefore pro-

duce networks with fewer neurons that reach acceptable

error rates faster.

Tables 1 and 2 provide further information on these

two measures. The information they give refers to the

smallest number of pruned units after which only ac-

ceptable classification errors are obtained. They show

the error rates, the percentage of saved units, the num-

ber of units retained after pruning, and the error base-

line for both the TIMIT and INTERFACE corpora. Af-

ter inspecting the Tables, we can observe that by us-

ing more initial units in the network, the baseline error

rates are generally improved.

The smallest number of pruned units, after which

only acceptable classification errors are obtained, gives

an adequate pruning of the network, without necessar-

ily giving the pruned network with the smallest possi-

ble error rate, as we might expect. For initial networks

with more than 15 units, we see from Figures 3 and 4

that this is the case for all the measures. With this in

mind, we try to estimate a suitable pruning value using

Equation 22. This attempts to provide a trade-off be-

tween the error rate and the number of pruned units,

instead of solely focusing on the number of pruned neu-

rons. This equation calculates the Relative Discrimina-

tive Cumulative Gain (RDCG) and is analogous to a

similar equation used in Principal Component Anal-

ysis (Jolliffe 2002) for dimensionality reduction. The

RDCG is calculated using:

RDCGj =

\sum j
i=1 di\sum 30
i=1 di

(22)

where di is the value of one of the measures on the

ranked unit i.

Figure 7 illustrates RDCG for the five measures

on both databases using 240 hidden unit RBMs. This

provides useful information for determining a possi-

ble pruning point. We can explore this idea further

by constructing Tables 3 and 4, which are similar to

Tables 1 and 2, but are formed using three values of

RDCG, .7, .8, and .9 for the Welch and DCAF mea-

sures. Here, .8 seems to be a reasonable compromise

for both databases.

Table 1 Classification results on TIMIT using the best two
measures.

Welch
RBM units Retained \% Saved \% Error \% Baseline

15 7 53.33\% 39.23\% 37.87\%
30 13 56.66\% 35.18\% 34.03\%
60 15 75.00\% 31.74\% 30.98\%
120 18 85.00\% 29.64\% 29.01\%
240 12 95.00\% 30.00\% 29.45\%

DCAF
15 5 66.66\% 39.26\% 37.87\%
30 9 70.00\% 35.23\% 34.03\%
60 10 83.33\% 31.73\% 30.98\%
120 17 85.83\% 29.68\% 29.01\%
240 13 94.58\% 30.22\% 29.45\%

Table 2 Classification results on INTERFACE using the
best two measures.

Welch
RBM units Retained \% Saved \% Error \% Baseline

15 7 53.33\% 14.63\% 11.94\%
30 17 43.33\% 8.65\% 6.84\%
60 17 71.66\% 4.84\% 3.91\%
120 35 70.83\% 3.83\% 3.23\%
240 67 72.08\% 2.63\% 2.41\%

DCAF
15 7 53.33\% 15.01\% 11.94\%
30 13 56.66\% 8.71\% 6.84\%
60 18 70.00\% 5.04\% 3.91\%
120 23 80.83\% 3.72\% 3.23\%
240 73 69.58\% 2.63\% 2.41\%
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6 Conclusions and future work

In this work, a post-training pruning method for re-

stricted Boltzmann machines was proposed. The hidden

units were ranked and then pruned using five discrimi-

native measures: mutual information, Kullback-Leibler

divergence, Wasserstein distance, Difference of Condi-

tional Activation Frequency and Welch's t-test. In con-

trast to the work of Berglund et al (2015), which ex-

plored the application of mutual information to all the

visible neurons and each individual hidden neuron with-

out considering class information, that is, in an unsu-

pervised fashion, our approach has included class in-

formation in the ranking algorithm (c.f. Algorithm 1).

This can be considered as a method of feature extrac-

tion from the hidden units of a RBM. We employed two

well-known speech corpora, given our previous interest

in this area: a speech recognition corpus TIMIT, from

which we used the phonemes /eh/ and /ih/ due to their

closeness in formant space, and the emotional speech

corpus INTERFACE, from which we took the Spanish

utterances of the spoken emotions of anger and neutral.

We found that the adoption of the ranking approach

in the pruning methodology presented in this work is

very promising. The results indicate that once a suit-

able number of initial neurons has been chosen, pruned

networks with less than 50\% of the neurons produce

better-than-baseline error results.

Results show that the two best measures in terms of

achieving an acceptable error rate with fewer neurons,

are Welch's t--test and the DCAF, with EMD coming

closely behind. This is interesting, given that in previ-

ous work on pruning neural networks, MI has been the

preferred measure.

Almost all the pruned networks use less units than

the full RBM in the previous row, and give better classi-

fication rates. This suggests the advantages of training

a larger net and pruning, rather than trying to find an

'exact' architecture.

Finally, as the smallest number of pruned units

doesn't necessarily give the pruned network with the

smallest possible error rate, we introduced the RDCG

index as an alternative way to find a suitable prun-

ing value. The results suggest that an RDCG value of

.8 for Welch or DCAF gives an acceptable error rate

while still providing savings of at least 50\% for each

RBM architecture.
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(b) Error rate, pruning on RBM with 30 hidden units.
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(c) Error rate, pruning on RBM with 60 hidden units.
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(d) Error rate, pruning on RBM with 120 hidden units.
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(e) Error rate, pruning on RBM with 240 hidden units.

Fig. 3 Classification results using TIMIT corpus. Test were performed using 15, 30, 60, 120 and 240 neurons in the RBM.
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(a) Error rate, pruning on RBM with 15 hidden units.
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(b) Error rate, pruning on RBM with 30 hidden units.
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(c) Error rate, pruning on RBM with 60 hidden units.
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(d) Error rate, pruning on RBM with 120 hidden units.
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(e) Error rate, pruning on RBM with 240 hidden units.

Fig. 4 Classification results using INTERFACE corpus. Test were performed using 15, 30, 60, 120 and 240 neurons in the
RBM.
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(a) DCAF-only error curves for 15, 30, 60, 120 and 240 hidden
units.
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(b) Welch-only error curves for 15, 30, 60, 120 and 240 hidden
units.

Fig. 5 Error curves for DCAF and Welch using TIMIT corpus. Test were performed using 15, 30, 60, 120 and 240 neurons in
the RBM.
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(a) DCAF-only error curves for 15, 30, 60, 120 and 240 hidden
units.
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(b) Welch-only error curves for 15, 30, 60, 120 and 240 hidden
units.

Fig. 6 Error curves for DCAF and Welch using INTERFACE corpus. Test were performed using 15, 30, 60, 120 and 240
neurons in the RBM.
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(a) Evaluation using TIMIT data.
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(b) Evaluation using INTERFACE data.

Fig. 7 Relative Discriminative Cumulative Gain (RDCG) on RBMs with 240 hidden units.

Table 3 Classification results on TIMIT using the best two measures and RDCG as pruning point estimator.

Welch
0.7 RDCG 0.8 RDCG 0.9 RDCG

RBM units Retained \% Saved \% Error Retained \% Saved \% Error Retained \% Saved \% Error \% Baseline
15 4 73.33\% 39.69\% 5 66.67\% 38.91\% 7 53.33\% 39.24\% 37.87\%
30 8 73.33\% 35.98\% 10 66.67\% 35.11\% 14 53.33\% 34.28\% 34.03\%
60 15 75.00\% 31.74\% 20 66.67\% 31.17\% 28 53.33\% 30.03\% 30.98\%
120 30 75.00\% 28.69\% 41 65.83\% 28.06\% 56 53.33\% 28.39\% 29.01\%
240 59 75.42\% 27.64\% 79 67.08\% 27.44\% 109 54.58\% 27.64\% 29.45\%

DCAF
0.7 RDCG 0.8 RDCG 0.9 RDCG

RBM units Retained \% Saved \% Error Retained \% Saved \% Error Retained \% Saved \% Error \% Baseline
15 6 60.00\% 39.86\% 7 53.33\% 39.71\% 9 40.00\% 38.06\% 37.87\%
30 11 63.33\% 34.50\% 14 53.33\% 34.22\% 18 40.00\% 33.41\% 34.03\%
60 24 60.00\% 30.65\% 30 50.00\% 29.96\% 39 35.00\% 30.57\% 30.98\%
120 47 60.83\% 28.53\% 60 50.00\% 28.77\% 77 35.83\% 29.13\% 29.01\%
240 96 60.00\% 27.34\% 121 49.58\% 27.63\% 155 35.42\% 27.99\% 29.45\%

Table 4 Classification results on INTERFACE using the best two measures and RDCG as pruning point estimator.

Welch
0.7 RDCG 0.8 RDCG 0.9 RDCG

RBM units Retained \% Saved \% Error Retained \% Saved \% Error Retained \% Saved \% Error \% Baseline
15 5 66.67\% 16.77\% 7 53.33\% 14.63\% 9 40.00\% 13.07\% 11.94\%
30 9 70.00\% 12.16\% 11 63.33\% 10.16\% 15 50.00\% 9.09\% 6.84\%
60 17 71.67\% 4.84\% 22 63.33\% 4.38\% 30 50.00\% 4.65\% 3.91\%
120 32 73.33\% 3.91\% 42 65.00\% 3.26\% 58 51.67\% 2.84\% 3.23\%
240 65 72.91\% 2.82\% 86 64.16\% 2.46\% 117 51.25\% 1.97\% 2.41\%

DCAF
0.7 RDCG 0.8 RDCG 0.9 RDCG

RBM units Retained \% Saved \% Error Retained \% Saved \% Error Retained \% Saved \% Error \% Baseline
15 6 60.00\% 16.00 \% 7 53.33\% 14.01\% 10 33.33\% 14.27\% 11.94\%
30 11 63.33\% 9.53\% 14 53.33\% 8.13\% 18 40.00\% 7.26\% 6.84\%
60 23 61.67\% 4.82\% 29 51.67\% 4.32\% 38 36.67\% 4.16\% 3.91\%
120 47 60.83\% 3.15\% 60 50.00\% 2.95\% 76 36.67\% 3.01\% 3.23\%
240 98 59.17\% 2.32\% 124 48.33\% 2.30\% 158 34.17\% 1.97\% 2.41\%
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