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ABSTRACT

By solving the problem of a periodic distribution of point defects
in general anisotropic media, we give an alternative, more direct
proof, of the relatively recent procedure that extracts dipole tensors
from the stress acting on the cell of atomistic simulations performed
under periodic boundary conditions. Moreover, we show that naive
superposition of individual defect fields is not a solution of the
problem, though correction terms can be identified; as a byproduct,
analysis of the latter allows us to reveal a spurious contribution
to the elastic interaction energy as calculated in current literature
procedures, that therefore must be subtracted in order to obtain
correct results.
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Within the context of continuum elasticity theory, point defects are modelled through
the concept of dipole (or double force) tensor (see e.g. [1]): a set of three perpendicular,
opposite force couples, possessing zero resultant and torque, that fully determines the
displacement field. Experimentally, techniques such as the diffuse scattering of X-rays [2]
can be employed to measure those long-range fields, so that invaluable information on
defect structure at a fundamental level may be obtained. Since the rather early computer
simulations of the 1960s, simplified versions of the dipole were used to self-consistently
adjust the position of atoms at the super-cell boundary [3], thus improving the reliability
of the simulations and optimizing the computing resources then available. Approaches
of this sort, however, were rather biased towards simulations involving dislocations [4],
where application of the elastic field to the boundary atoms is intrinsic to the defect.
The calculation of point defect dipoles from atomistic simulations, was put in a more or
less definitive form by Schober and Ingle [5], who devised a methodology based on the
forces on the boundary atoms, fixed at their perfect lattice positions, that arise after static
relaxation of the defect. The aim was to determine the dipoles themselves, rather than
improving simulations, either as a predictive tool to aid experiment or as a test for the
force laws proposed. In the latter sense, for instance, the present authors [6] had worked
out a generalization of early ideas by Kanzaki [7], that allows to estimate the size of the
anharmonic region around a point defect.
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All of the previous simulations were static in nature and employed finite super-cells.
Closer in time, with the popularization and widespread availability of atomistic codes
implementing both, classicmolecular dynamics and electronic structure theory viaDensity
Functional Theory (DFT), periodic boundary conditions (PBC) have become the de facto
choice. However, until very recently, the problem of evaluating defect dipoles under PBC
remained basically unexplored, partially because of the flexible cell methods (such as
Parrinello and Rahman’s [8]) included in most codes, that allow immediate access to the
volume change induced by defects (one motivation to compute dipoles). Renewed interest
came from the DFT simulation of self-interstitials structure, mainly in connection with the
technologically important metal Zr [9]. Here, the marked structure polymorphism and the
limited size of feasible super-cells (order of 100 atoms), rendered the problem of finding
the most stable configuration virtually impossible. Differences among simulations per-
formed using rigid cells, flexible cells, or the in-between approach proposed in [10], shed
doubts on the reliability of the results. The issue has been finally cleared by Varvenne et
al. [11] who, by applying elastic dipole–dipole interaction corrections, were able to obtain
consistent results, independent on the way the cell is handled, as long as it is larger than a
minimum size. (Before continuing, we’d like to remark that the above succinct account is
only meant to set the scene, no claims to have done justice to the large body of literature
for such an aged subject are made.)

Those corrections rely on determining the dipole tensor directly from the residual stress
present in the (periodic) cell after static relaxation of the defect. The argument in support
of this procedure [12] is rather indirect: firstly, the minimum energy, zero stress, condition
reached by static relaxation with a flexible cell is identified, secondly, the dipole is extracted
from the (elastic) work done as the cell is uniformly strained back in order to reach its
starting size and shape. Besides, those corrections also involve a conditionally convergent
sumover all periodic images of the reference cell, that the authors handled via the technique
proposed in [13]. Here, we offer a more direct proof of the procedure to extract the dipole,
based on solving for the displacement field that stems from a periodic distribution of point
defects in a general anisotropic medium. Moreover, we show that naive superposition of
individual defect fields is not a solution of the problem; however, correction terms can be
identified, and from them we are able to derive an expression representing a correction to
the elastic interaction energy, as currently practiced in the literature.

Our point of departure is the relationship (see e.g. [14] p.147),

−
∫
S

�T ⊗ �x dS +
∫

�

¯̄σ dτ =
∫

�

�f ⊗ �x dτ ≡ ¯̄P , (1)

derived by applying Gauss’ theorem to the static equilibrium equations for the stress, ¯̄σ ,
acting on an elastic body of volume �, bounded by a surface S, and loaded with volume
forces of density �f . Here, ⊗ stands for tensor product, �x for position, Ti ≡ σijnj is the
surface traction, and ¯̄P is (by definition) the defect dipole. If the bounding surface is free,
tractions are zero, which leads to,

∫
�

¯̄σ dτ = ¯̄P (�T = 0), (2)
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apparently in contradiction to the relationship,

−�〈 ¯̄σ 〉 = ¯̄P, (3)

used in the simulations to obtain the defect dipole from the computed stress acting on the
cell (now of volume � and surface area S). This is however a deceiving conclusion. For an
infinite periodic array of defects, the displacement field, �u(�x), must possess the periodicity
implied by the cell; thus, considering its Fourier’s expansion and the fact that stress is given
in terms of displacement derivatives, one must have

∫
�

¯̄σ dτ = 0, so that under rigid cell
PBC, Equation (1) takes the form,

−
∫
S

�T ⊗ �x dS = ¯̄P (〈¯̄ε〉 = 0). (4)

The above indeed coincides with Equation (3), after realizing that the atomistic stress
calculated for a relaxed configuration, comes from the work, dU , done by the forces
crossing the boundary of the cell as the latter is distorted by a small (arbitrary) strain, δ ¯̄ε,
namely,

�〈 ¯̄σ 〉 : δ ¯̄ε ≡ dU =
∫
S
dS �T .δ ¯̄ε.�x = δ ¯̄ε :

∫
S
dS �T ⊗ �x , (5)

(note δ�u = δ ¯̄ε.�x here, and that dot and colon stand for the mathematical contraction of
one and two indexes respectively).

We turn now to obtaining an explicit representation for the displacement field of the
elastic problem, and effectively show that Equation (4) is fulfilled. The equations to be
solved are then,

Cjkil
∂2ui(�x)
∂xk∂xl

= −
∑
n

fj(�x −�ln) , (6)

where Cjkil is the tensor of elastic constants, and the right-hand side is a distribution of
forces centred about the origin and its periodic images (�ln stand for lattice vectors, re-
peated index summation implied). Under these conditions, all functions must be Fourier’s
expandable in terms of reciprocal lattice vectors �K , so that the PBC are automatically built
in, therefore,

ui( �K) = M∗
ij(K̂ )

K2 fj( �K) (7a)

fj( �K) =
∫

�

∑
n

fj(�x −�ln) exp{−i �K .�x} d�x =
∫ +∞

−∞
fj(�x) exp{−i �K .�x} d�x (7b)

∴ ui(�x) = 1
�

∑
�K 	=0

ui( �K) exp{i �K .�x} (7c)

The term �K = 0 is omitted because forces have zero resultant,M∗
ij is the inverse of matrix

CjkilK̂kK̂l (see e.g. [15]), and the hat accent indicates vectors of unit length. In the limit
of point-like dipoles, the exp{} function entering fj( �K) can be expanded about the origin
leading to,

fj( �K) ≈ −iKk

∫
fj(�x) xk d�x ≡ −iKk Pjk ; (8)
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this assumption is convenient and enough for our present purposes, though not strictly
needed for the validity of the results. Thus, after noticing displacements are real, Equation
(7c) may be rewritten as,

ui(�x) = 1
�

∑
�K 	=0

M∗
ij(K̂ )

K
K̂k sin ( �K .�x) Pjk . (9)

To establish contact with Equation (4), which left-hand side integral will be termed ¯̄�
for short, the above is transformed to strain and then contracted with the elastic constant
tensor, so that,

�mt = −Pjk
�

∑
�K 	=0

Cmnil M∗
ij(K̂ ) K̂k K̂l

∫
S
dSK̂S

nx
S
t cos ( �K .�xS) (10)

where the superscript S indicates a point on the faces of the cell parallelepiped, and K̂S
n

is the outer perpendicular to each face. The integral on the right is decomposed in pairs
of parallel faces (and opposite normals), noting the points, �xS and (�xS + �aS), associated
through the cell edge, �aS, where the cosine takes the same value; therefore,

∫
S
dSK̂S

nx
S
t cos ( �K .�xS) =

S=3∑
S=1

∫
S
dSK̂S

na
S
t cos ( �K .�xS) . (11)

Due to the cosine periodicity, the above selects only the �K vectors perpendicular to the
faces, then the integral evaluates trivially to K̂S

n aSt AS cos ( �KS.�xS0), being �xS0 a point on the
face and AS its area. Moreover, after noting that CmnilK̂nK̂l M∗

ij = δmj, Equation (10) is
reduced to,

�mt = −Pmj

�

S=3∑
S=1

ASaSt K̂
S
j

∑
�KS 	=0

cos ( �KS.�xS0) . (12)

Becauseof the conditionon �KS, the cosine’s argument takes values that are integermultiples
of some angle, ν φS

0 ; thus we add and subtract the term for ν = 0, and note that the so
completed sum evaluates to zero, for symmetry reasons. The sought for result �mt = Pmt
follows immediately after the identity (relationship between reciprocal cells),

1
�

S=3∑
S=1

ASaSt K̂
S
j = δjt . (13)

In the last part of the article we analyse the problem from the point of view of individual
defect fields. In particular, it isworthnoticing that the concept of elastic interactionbetween
defects, can hardly be defined within the previous approach, because displacements do not
recognize contributions from the different images; lattice information enters only through
reciprocal vectors. An example suffices to convince oneself that a naive superposition of
displacements cannot be a solution to the problem of Equation (6). A correct solution
must not change the cell’s volume; then imagine a lattice of isotropic defects embedded



PHILOSOPHICAL MAGAZINE LETTERS 5

in an isotropic medium, for which it is well known [1] that displacement fields behave
as ∼ r̂/r2, where r is the distance to the sources. Considering a reference cell, it is also
known that the defect it contains entails a volume change, which cannot be countered by
the fields of the images, because the previous form possesses zero divergence. Thus we hit
a contradiction. Pictorially, as soon as the field of the defects is turned on, the periodic cell
undergoes a uniform strain; the lattice still remains periodic but with a changed unit cell.
This virtual strain can be calculated rather easily. First, notice that the sum in Equation (7c)
is now replaced by an integral in reciprocal space,

∑
�K → �/8π3 ∫

d�k; second, consider
the following strain integral (point-like defect model assumed),

Eil ≡
∫

εil dτ = 1
8π3 Pjk

∫
φ1

sin θ1dθ1dϕ1 k̂kk̂l M∗
ij(k̂) J(k̂) , (14)

with,
J(k̂) ≡

∫ ∞

0
k2dk

∫ ∞

0
r2dr

∫
φ2

sin θ2dθ2dϕ2 cos (k r k̂.r̂) , (15)

where an isolated defect is located at the centre of a large sphere, and φi stand for spheres
of unit radius. Calculation of J(k̂) needs some care and it is postponed till the Appendix 1,
where we show it equals 2π2. Because the above is shared among all the cells of the lattice
and there is one defect per cell, the referred strain amounts to 〈¯̄ε〉 = ¯̄E/�. Moreover,
this impacts the summed elastic interaction energy of a given defect with all its images by
adding an extra self-term given by,

USLF = 1
2
Pil

Eil
�

= 1
2�

PilPjk 〈k̂kk̂l M∗
ij(k̂)〉φ1 , (16)

where 〈.〉φ1 stands for average on the unit sphere, and the factor 1/2 accounts for the
fact that ¯̄P and ¯̄E stem from the same source. Again, the case of pure dilation centres
embedded in isotropic media is illustrative. As is well known, their interaction energy is
zero; however, calculations with tools from the literature ([11], supplementary material)
obtain values thatmatch those fromEquation (16) but for numerical errors. In otherwords,
for correct results Equation (16) must be subtracted, and to obtain the total correction (to
be subtracted) for the defect formation energy, Ef , a term ¯̄P : 〈 ¯̄ε〉 − 1/2 �〈¯̄ε〉 : C : 〈 ¯̄ε〉
must be added back, accounting for the cell strain 〈¯̄ε〉 that would otherwise take place if not
hindered by the PBC. Interestingly, in the special case of both, defect and medium, being
isotropic, such a non-null result comes fully from the so-called aperiodic correction for
conditionally convergent lattice sums introduced in [13]. A further representative example
is reported in Table 1 for the case of standard self-interstitial configurations in Zr and Zn,
from simulations performed by the authors [16], using rigid hexagonal cells comprising
96 sites (4 × 4 × 3). The values correspond to the total elastic correction and its partial
interaction contribution, to be subtracted from the bare defect formation energy, in order
to account for PBC effects. The Zr example is particularly relevant because it has been
shown that a reliable prediction of formation energies and their relative ordering, requires
larger than 96 sites cells [11,17,18]. The issue chiefly involves configurations Bo, Bs and
O, the current consensus being Ef (Bo) < Ef (Bs) < Ef (O); in any case, our results from
Table 1, though more precise than previous approaches [11], are unlikely to change that
conclusion. The example of Zn is less critical in this sense; from our current perspective its
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Table 1. Elastic correction (to be subtracted, meV rounded) to the formation energy of typical self-
interstitial configurations in Zr and Zn; interaction component on the right. See main text for details.

Metal O Bo C S Bs

Zr 118/8 165/48 125/8 145/21 218/77
Zn 205/−6 570/194 188/−13 224/2 764/288

interest resides in showing that what in principle would be taken as a repulsive interaction
between defects, might turn into attractive after consideration of Equation (16), most likely
due the enhanced anisotropy of Zn as compared to Zr.

Two closing remarks are worth mentioning; firstly, for stronger defects such as clusters,
dislocation dipoles, inclusions, etc., the size of the elastic interaction becomes more
important than Table 1 may suggest, notice the P2 dependence; secondly, the analyses
around Equation (14) and its consequence Equation (16), apply generally, not only to
point defects.
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Appendix 1. Evaluation of Equation (15)
We start by performing the integral over φ2 (z-axis aligned with k̂),

J(k̂) = 4π
∫ ∞

0
kdk

∫ ∞

0
rdr sin (kr) , (A1)

the dependence on k̂ is then gone, so that just J will be written in what follows. The above
is interpreted as an integral on the first quadrant, thus by switching to polar coordinates, k =
ρ sin θ , r = ρ cos θ , sin θ cos θ = 1

2 sin 2θ , and setting 2θ = ϕ, one obtains,

J = 2π
∫ ∞

0
ρ3dρ

∫ π

0
dϕ

sin ϕ

2
sin

(
ρ2 sin ϕ

2

)

= 2π
∫ ∞

0
ρdρ

∫ π

0
dϕ tan ϕ

ρ2 cosϕ
2

sin
(

ρ2 sin ϕ

2

)
. (A2)

After integrating by parts on ϕ,

J = 2π
∫ ∞

0
ρdρ

∫ π

0
dϕ

1
cos2 ϕ

cos
(

ρ2 sin ϕ

2

)

= 2π
∫ π

0
dϕ

1
cos2 ϕ

∫ ∞

0
ρdρ cos

(
ρ2 sin ϕ

2

)

= 2π2
∫ π

0

1
cos3 ϕ

δ( sin ϕ) cosϕ dϕ

= 2π2 , (A3)

where we have used
∫ ∞
0 dμ cosμx = π δ(x), and the last line by noting that δ( sin ϕ) peaks at the

ends of the interval where only half peak is sampled, so that both, ϕ = 0 and ϕ = π , contribute 1
2

each, the latter because sin ϕ runs backwards there but cosπ = −1.


