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The dynamical equations for the null surface formulation of general relativity for purely radiative
spacetimes are derived. Those asymptotically flat spacetimes describe the nonlinear evolution of
gravitational radiation and represent a classical graviton. The evolution equations constitute a set of
three partial differential equations in a six-dimensional space and the source term is the free initial data
of incoming gravitational radiation. The Huygens part of the wave propagation, backreaction terms, and
source terms are identified in the resulting equations. An analysis of the range of validity of these equations
based on the development of caustics is also given.
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I. INTRODUCTION

The null surface formulation of general relativity, or NSF
for short, presents Einstein’s theory of gravity as an
interaction between null surfaces and a scalar field. The
null surfaces yield the conformal structure and the scalar
field yields the conformal factor of a Ricci flat metric [1].
Although the resulting equations are technically involved

there is a well-defined perturbation scheme to obtain the
conformal structure at each order of the perturbation. This is
important when comparing perturbative approaches with
numerical evolution of the Einstein’s equations. For example,
a perturbative solution written in the harmonic gauge fixes
once and for all the conformal structure of the background
metric. However, the null geodesics of the backgroundmetric
either yield spacelike or timelike curves in terms of the full
solution.Quantities like gravitational radiation or Bondimass
or momentum are therefore difficult to interpret when
perturbing around a fixed background as the “null” curves
from the background metric end either at iþ or i0.
Another feature of NSF worth mentioning is that the

formulation explicitly includes the free data on the initial
characteristic surface and the NSF equations propagate
this free data into the spacetime. However, in the original
approach, it is very difficult to distinguish if all the
radiation data are given explicitly or it is hidden in its
many different terms of the final equation [1].
To improve the original formulation one needs to define

first the asymptotic structure of NSF and then derive an
equivalent set of field equations with a clear interpretation
of the different parts of the resulting equations together
with the range of validity of the intrinsic coordinates used
in the derivation. In this work we present an approach to the
NSF that follows these ideas.
Beyond the above mentioned motivations that one

might have for rederiving the Einstein’s equations for

asymptotically flat NSF it is worth mentioning another
reason that also motivated the present work.
This issue, very much related to the gravitational

radiation, is the quantization of a vacuum, globally hyper-
bolic, asymptotically flat spacetime containing no horizons.
Such a spacetime will be called a classical graviton. Many
years ago it was shown that both at future or past null
infinity one can perform a free field quantization of the two
degrees of freedom associated to the radiation data [2,3].
Later, the phase space for classical gravitons was derived
together with a complex structure, thus giving a Hilbert
space for quantum gravitons [4]. Although recently there
have been attempts to obtain a quantum scattering matrix
linking the fields at future and past null infinity [5,6], what
is missing is a dynamical evolution equation that could link
the Hilbert spaces associated with I− and Iþ to construct
an S-matrix theory for the quantum graviton. Linking the
radiative data with the fields inside the spacetime via the
NSF equations fulfills this need.
In this work, we derive the field equations for asymp-

totically flat NSF. These equations introduce the free Bondi
data, representing incoming gravitational radiation, as a
source term for the main variable of NSF. To avoid issues
with gravitational tails at future null infinity we assume the
free data is given on past null infinity, I− and the null cone
cuts are formed from the intersection of the past null cones
from points on the spacetime with I−. (Note that this is the
time reversed version of all the references of NSF).
In Sec. II, we first show that it is always possible to

obtain a region on past null infinity where the intersection
of the past null cone from a point with I− is a closed
2-surface with the topology of a sphere. We then present the
metricity conditions and the Einstein equations assuming
regularity conditions on the null cone cuts. In Sec. III, we
present a kinematical analysis of the main variable of NSF
using the available asymptotic structure of spacetimes with
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null boundaries and show its relationship to the free
radiation data at null infinity. We then derive the NSF
equations together with an analysis of the range of validity
of those equations and a comparison with previous results.
In particular, we analyze each term of the equation and
identify the one that is responsible for the appearance of
caustics. This is done by studying the range of validity of
the intrinsic coordinates used for the setting of the field
equations. Finally, in the Conclusion, we summarize our
results and discuss the advantages of using the derived set
of field equations in an asymptotic quantization procedure.

II. ASYMPTOTIC STRUCTURE AND
NULL CONE CUTS

The null surface formulation describes the conformal
structure of general relativity in terms of a function defined
on a six-dimensional space. In this section, we will review
the basic ideas and equations of NSF adding some new
results that are used in this work.
We first introduce the notion of asymptotic flatness at

null infinity. This concept appears as a need to define
isolated systems in general relativity and it was laid out
by the pioneering work of H. Bondi [7], R. Sachs [8],
R. Penrose [9], and R. Geroch [10].
If one moves far apart from an isolated body, we know

that the spacetime should be flat. Getting “apart from” is
not a trivial problem in general relativity; we have to take
into account what we want to observe and measure. In our
case, we are interested in gravitational radiation and all the
information that we can get of it, hence, we want to move
apart along a null geodesic. For this, we want to define a
parameter along that geodesic to measure the distance from
the source to our position, for example affine distance s,
and get far enough away is equivalent to s → �∞. At this
point is important to note that the points s ¼ �∞ do not
belong to our coordinate system. To “add” the points at
infinity we introduce a new coordinate Ω ¼ s−1 which
solves the problem since we can place infinity at Ω ¼ 0.
Thus, if the spacetime does not contains singularities,
every null geodesic reaches infinity at Ω ¼ 0 and the
set of all those endpoints form a null surface, called I ,
which is a boundary surface for the spacetime manifold M
itself.
More precisely, let (M, gab) be a spacetime, an asymp-

totically flat spacetime is defined as (M̂, ĝab), a manifold M̂
with its boundary I together with a smooth Lorentzian
metric ĝab and a smooth function Ω on M̂ such that:
(1) M̂ ¼ M∪I .
(2) At M, ĝab ¼ Ω2gab and Ω > 0.
(3) At I , Ω ¼ 0, ∇aΩ ≠ 0 and ĝab∇aΩ∇bΩ ¼ 0.

In this framework, ĝab is called the unphysical metric and
it is related to the physical metric gab via a conformal
transformation. The third condition asserts that I is a null
surface.

As was mentioned above, the future (past) end points of
null geodesics lie at future (past) null infnity, Iþ (I−).
Thus, I ¼ Iþ∪I−.
Let M be an asymptotically flat spacetime and I− its

past null boundary with Bondi coordinates (v, ζ, ζ̄) with
ðζ; ζ̄Þ ∈ S2 and v ∈ R. Consider a fixed point xa ∈ M and
denote by N−

x its past null cone. The intersection between
N−

x and I− defines a null cone cut. Locally this intersection
can be described by

v ¼ Zðxa; ζ; ζ̄Þ ð1Þ

where (v, ζ, ζ̄) are the Bondi coordinates on I−. The
function Z has a second interpretation. For fixed values of
(ζ, ζ̄) the level surface

Zðxa; ζ; ζ̄Þ ¼ v ¼ const; ð2Þ

i.e., the collection of points xa in the spacetime that satisfy
Eq. (2), represents the future null cone Nþ from a point
(v, ζ, ζ̄) at I−.
It is clear from its definition that Z can only be given

locally as a function of (ζ, ζ̄). We recall that a generic light
cone will have singularities due to the focusing effect of
the gravitational field. The appearance of those singularities
are described by the vanishing of the geodesic deviations
vectors associated with neighboring geodesics and are
called caustics of the null cones. Thus, its intersection
with I− will not be a regular function on the sphere [11].
There is however one class of spacetimes where Z can be

regarded as a smooth function. The framework we envisage
is a Ricci flat spacetime without singularities constructed
from the nonlinear dynamical evolution of incoming
gravitational radiation. We assume the smooth radiation
data at I− have compact support, so that it vanishes in a
neighborhood of i−. These data correspond to a spacetime
that is flat before the incoming radiation is turned on with a
well-defined past infinity i−.
The past null cone from a point xa in the spacetime will

be flat if for the unphysical metric the point xa is close to i−.
As the point xa gets further and further into the future of i−

the question is whether the null cone will develop caustics
or remain a smooth hypersurface up to its intersection
with I−.
To analyze the development of caustics in the past null

cone from xa we introduce the optical parameters, shear σ
and divergence ρ of a small pencil of null rays around a
given null geodesic la ¼ ð ∂∂sÞa, with s its affine length.
Since ρ blows up at a caustic point, to find those points one
looks for solutions of the evolution equation for those
parameters [12]

∂ρ
∂s ¼ ρ2 þ σσ̄ ð3Þ
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∂σ
∂s ¼ 2ρσ þ ψ0; ð4Þ

with ψ0 ¼ Cabcdlamblcmd, and analyzes the regularity of
the solutions.
In Minkowski space ψ0 vanishes and the solution to the

optical equations is given by

ρ0 ¼ −
1

s − s0
; σ0 ¼ 0: ð5Þ

with s ¼ s0 representing the apex of the cone. Note that ρ0
vanishes when s → ∞, i.e., when the world line reaches
I−. Thus, the intersection of N−

x with I− is a smooth two
surface if one is sufficiently close to i−. However, as one
moves the apex further into the future, there will be a region
of the spacetime with nonvanishing Weyl scalar ψ0. In this
case the shear is nonvanishing, and it follows from Eq. (3)
that the derivative of ρðsÞ has an extra positive term. If there
is a value of swhere ρ ¼ 0 then, within a finite distance, the
divergence blows up at a caustic point. Considering that s
ranges from s0 to∞ it is a nontrivial question to see if for a
sufficiently small ψ0 one obtains regular solutions of the
optical equations on the entire range of s.
This problem is best analyzed if one introduces the

unphysical metric ĝab which is related to the physical
gab by

ĝab ¼ Ω2gab

with Ω > 0 on the spacetime. Since the past null cone from
xa is constructed from the conformal structure, and any
point of the spacetime is at a finite (unphysical) null affine
distance from I− it is more convenient to use the unphys-
ical metric to analyze the regularity of N−

x . The unphysical
affine parameter ŝ is defined by the unphysical geodesic
vector, l̂a ¼ ð ∂∂ŝÞa, and one can show that,

dŝ
ds

¼ Ω2: ð6Þ

The optical equations now read

∂ρ̂
∂ŝ ¼ ρ̂2 þ σ̂ ˆ̄σþϕ̂00; ð7Þ

and

∂σ̂
∂ŝ ¼ 2ρ̂ σ̂þψ̂0; ð8Þ

with ϕ̂00 ¼ R̂abl̂
al̂b and ψ̂0 ¼ Ĉabcdl̂

am̂bl̂cm̂d. By
assumption they are both regular functions of s. We now
apply the standard theorem on ODEs, if a regular solution
(for any value of (ζ, ζ̄)) exists for a finite distance ŝ when
ψ̂0 ¼ 0, then there will be a regular solution at this finite

distance for a sufficiently small value ψ̂0 ≠ 0. Since a
vanishing Weyl tensor yields a flat null cone with apex xa

with smooth cut at I−, the cut corresponding to an apex x0a
in the future of xa but with nonvanishing Weyl tensor will
also be smooth. Thus, the family of NC cuts are smooth
functions when the corresponding apexes are sufficiently
close to I−. In the remaining of this work we assume this
situation. After the field equations are obtained, we will
address again the issue of caustics analyzing the structure
of the equations.
Note that the unphysical Ricci term ϕ̂00 does not play a

dynamical role in the above result. It is just a kinematical
term constructed fromΩ. This can be seen from the relation
between the physical and the unphysical Ricci tensor,
which reads:

Rab ¼ R̂ab þ 2Ω−1ð∇a∇bΩÞ:

Setting Rab ¼ 0 and contracting with l̂al̂b we finally
obtain,

ϕ̂00 ¼ −Ω−1 ∂2Ω
∂ŝ2 :

Although it appears that ϕ̂00 diverges at null infinity in
fact it does not. Instead it is a regularity condition imposed
on any well-defined conformal factor. If we give a specific
form for Ω as a function of s we can then check the
prescribed behavior for its behavior. For example, if we use
the physical affine length as a radial coordinate, a suitable
function could be

Ω2ðsÞ ¼ 1

1þ s2

since when s → ∞ then Ω → 0 and it is positive every-
where. With this choice, the relationship between s and ŝ
can be obtained from (6) giving

s ¼ tanðŝÞ

Note that ŝ ¼ π
2
at null infinity. Note also that

ΩðŝÞ ¼ cosðŝÞ: ð9Þ

Therefore, ϕ̂00 ¼ 1 with this choice of conformal factor.
It is illustrative to go back and solve again the optical

parameters for the flat cone. Setting ψ̂0 ¼ 0 immediately
yields σ̂ ¼ 0 and the equation for the divergence becomes

∂ρ̂
∂ŝ ¼ ρ̂2 þ 1

whose solution, satisfying the appropriate initial and
boundary conditions is given by
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ρ̂ðŝÞ ¼ −
1

tanðŝÞ ð10Þ

When ŝ → 0 then ρ̂ → −∞, satisfying the initial divergence
of a null cone. Also when ŝ → π

2
then ρ̂ → 0 i.e., ρ̂ vanishes

at I− for this particular null cone. It is clear that a small ψ̂0

in (8) will induce a small σ̂ and ρ̂ will remain finite at past
null infinity.
For future reference, we note that if we consider a point

xa in a neighborhood of I− with nonvanishing but small
gravitational data, such that N−

x is a smooth null surface in
the spacetime, then by means of the reciprocity theorem,
the future null cone Nþ from a fixed point at I− that is
connected to xa by a null geodesic is also smooth. As the
point xa gets further away from i− the and the unphysical
affine length increases, a finite number of caustics could
develop. Since the NSF breaks down at the appearance of
caustics it is a valid question to ask if within the formalism
it is possible to spot the validity of the field equations. We
will return to this issue later.

A. Axiomatic description of NSF

In this subsection we derive kinematic and dynamic
equations of NSF. The function Z has been introduced
before and it is the main variable of the theory. We assume
the spacetime to be a classical graviton and the cut Z to be
sufficiently close to i− that it is a smooth, closed 2-surface.
We will show how to impose conditions such that
Z ¼ const. is a characteristic surface of a Lorentzian
metric. These are called metricity conditions. Using global
conditions on the sphere we will then present a set of real
equations equivalent to the original complex metricity
conditions.
A useful derivative that will be used throughout this

work is the covariant derivative on the unit sphere. Using
stereographic coordinates (ζ, ζ̄) we define the eth operator ð
as [13]

ðζfðšÞ ¼ 2P1−š ∂
∂ζ ðP

šfðšÞÞ ð11Þ

where P ¼ 1
2
ð1þ ζζ̄Þ and fðšÞ is a function with spin

weight š. Changing š by −š in the P factor, and ζ by ζ̄ the ð
turns into ð̄ and the derivative with respect to ζ̄ is thus
defined. Taking ð and ð̄ derivatives of Z we define four
(ζ, ζ̄)-dependent functions

θiðxa; ζ; ζ̄Þ ¼ ðZ; ðZ; ð̄Z; ð̄ðZÞ ¼ ðv;ω; ω̄; rÞ

for i ¼ 0;þ;−; 1. We assume the inverse transformation

xa ¼ xaðθi; ζ; ζ̄Þ: ð12Þ

is also defined for each value of the parameters (ζ, ζ̄).

The four functions θiðxa; ζ; ζ̄Þ have well-defined geo-
metrical meanings. For fixed values of (ζ, ζ̄),
Zðxa; ζ; ζ̄Þ ¼ v ¼ const.. yields the future null cone from
a point (v, ζ, ζ̄) at I−. On that cone, each geodesic is
labelled by ðZ ¼ ω ¼ const., ð̄Z ¼ ω̄ ¼ const. On a given
null geodesic, each point is labelled by ð̄ðZ ¼ r ¼ const.
We also introduce an important variable in NSF given by

Λðxa; ζ; ζ̄Þ≡ ð2Zðxa; ζ; ζ̄Þ: ð13Þ

[As we will see below, the conformal metric can be written
completely in terms of Λ and its derivatives.] This function
also has a well-defined meaning. As will be shown in
Sec. III, it is the difference between the shear of the Bondi
congruence and the shear of past the null cone from xa

evaluated at a null cone cut of I−.
A trivial observation follows from its definition, namely,

ð̄2Λðxa; ζ; ζ̄Þ ¼ ð2Λ̄ðxa; ζ; ζ̄Þ: ð14Þ

Now, if the change of coordinates (12) is performed, the
previous expression (13) can now be written as

ð2Z ¼ ΛðZ; ðZ; ð̄Z; ð̄ðZ; ζ; ζ̄Þ; ð15Þ

and can be regarded as a partial differential equation for Z
on the sphere. Likewise, Eq. (14) is no longer a trivial
equation but an integrability condition for Λ. Since Λ is
now a function of (θi, ζ, ζ̄), ð is now written as

ð ¼ ðζ þ ðθi∂i

(the explicit form is given in Sec. III) with ðζ given in (11).
Note also that the points of spacetime xa have disappeared.
They are recovered as the constants of integration of
Eq. (15), i.e., points of the solution space of Eq. (15).
In fact, we can take a completely different point of view

starting with an arbitrary function Λ which satisfies the
integrability conditions and asking what extra conditions
are needed on Λ so that given a solution Zðxa; ζ; ζ̄Þ of
Eq. (15) the level surface Zðxa; ζ; ζ̄Þ ¼ const is a null
surface for a metric in the solution space. The answer to this
problem yields many interesting results.
(1) A condition on Λ, a partial differential equation on

the six-dimensional space coordinatized by (θi, ζ, ζ̄),
which is a generalization of the Wünschmann
condition [14].

(2) The components of the conformal metric in the θi

coordinate system are completely algebraically
determined from the knowledge of Λ and its
derivatives.

The detailed calculations of the NSF approach are
given in many references. Below we outline the relevant
equations and results.
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Since the level surfaces of Z are null, the derivative with
respect to xa, ∂aZ, must be a null covector field over M. It
then follows that

gabðxdÞ∂aZðxd; ζ; ζ̄Þ∂bZðxd; ζ; ζ̄Þ ¼ 0: ð16Þ

The idea is to algebraically determine the metric compo-
nents by fixing xa and selecting different values of (ζ, ζ̄).
Note however, that a solution of (16) can only be obtained
up to an arbitrary rescaling, i.e., the solution yields a
conformal metric. Taking ð and ð̄ derivatives of the above
equation, one writes down nine linearly independent
equations from which the components of the conformal
metric are obtained. All the nontrivial components can be
written in terms of ΛðZ; ðZ; ð̄Z; ð̄ðZ; ζ; ζ̄Þ and its deriva-
tives [15]. In fact, one can see that the explicit form of these
components is gab ¼ g01hab½Λ� where hab is the Λ depen-
dent part of gab (see Appendix A for details).
It is clear that once all the components have been

obtained extra ð and ð̄ derivatives will impose conditions
onΛ since all the components are algebraically related toΛ.
These conditions, called metricity conditions, were origi-

nally given as follows [15–17]. Introducing the functions

g00 ¼ gab∂aZ∂bZ; g01 ¼ gab∂aZ∂bðð̄Z;

the complex metricity conditions then read

ðg01 ¼ gabðð∂aZ∂bðð̄ZÞ
ð3g00 ¼ 0

Note that since ðg01 has s:w: ¼ 1, an expansion in spherical
harmonics only contains terms with l ≥ 1 while ð3g00 being
a s:w:3 object has terms l ≥ 3. They read

ðg01 ¼ g01ðhþ1 þ ∂1ð̄ΛÞ; ð17Þ

ð3g00 ¼ g01ð3hþi∂iΛþ ∂1ðΛÞ ¼ 0: ð18Þ

It is worth mentioning that (18), the generalization of the
Wünschmann condition to four dimensions [14], is solely a
condition on Λ. We will always assume this condition is
satisfied; otherwise, the metric is not Lorentzian.1

The metric gab can be written as gab ¼ g01hab½Λ� where
hab depends only on Λ and its derivatives. The conformal
factor g01 has a gauge freedom since the ζ derivative given
by (17) is invariant under multiplication by an arbitrary
positive function of xa.

The first metricity condition, Eq. (17), is a complex pde
for a single real variable g01. A solution exists only if the
integrability conditions are identically satisfied. This is
indeed the case. Taking ð̄ of (17) we obtain

2ð̄ððg01Þ ¼ g01ð∂1ð̄2Λ − hij∂iΛ∂jΛ̄Þ: ð19Þ

Thus, ð̄ðg01 ¼ ðð̄g01 if ð̄2Λ ¼ ð2Λ̄, but this is true from the
starting assumption, Eq. (14). Note also that we could use
the real Eq. (19) instead of the complex Eq. (17) if we are
interested in regular solutions for g01. This follows from
the fact that the only regular solution of an equation such
as ð̄fð1Þ ¼ 0 for a š ¼ 1 function fð1Þ is fð1Þ ¼ 0. Thus, we
could either use (17) or (19) as our first metricity condition.
It is possible to obtain a similar equivalent equation for

the complex second metricity condition (18). From

ð̄3ðð3g00Þ ¼ 0;

we obtain a real metricity condition,

0 ¼ hab½ð∂að̄ðð̄2Λþ 6∂að̄2ΛÞ∂bZ þ 3∂að̄3Λ∂bðZ

þ 3∂að3Λ̄∂bð̄Z þ 9∂að̄2Λ∂bð̄ðZ − 4∂aΛ∂bΛ̄

þ 8∂aðΛ̄∂bð̄Λþ 2∂aðð̄Λ∂bΛ̄þ 2∂að̄ðΛ̄∂bΛ� ð20Þ

(The derivation is given in Appendix A). Note that these
equations are completely equivalent to the original met-
ricity conditions and they have some nice features: they are
manifestly real whereas the original equations are complex.
In Sec. IV, we will use the spin weight zero equations to
derive equations for g01 and Λ that are equivalent to the
Ricci flat Einstein’s equations including the free gravita-
tional data that represent the gravitational radiation at null
infinity.
Finally we impose the Einstein’s field equations on g01

and Λ. It can be shown that the trace free Ricci flat
equations can be written as

∂2
rν − νR11ðΛÞ ¼ 0 ð21Þ

where g01 ¼ ν2 and R11ðΛÞ is the a ¼ b ¼ 1 component of
RabðhÞ, which explicitly reads:

R11ðΛÞ ¼ RabðΛÞθa1θb1
¼ 1

4q
∂2
rΛ∂2

rΛ̄þ 3

8q2
ð∂rqÞ2 −

1

4q
∂2
rq; ð22Þ

with

q ¼ 1 − ∂rΛ∂rΛ̄

where θa1 ¼ ð ∂∂rÞa is the null vector which defines the
parameter r as the affine parameter with respect to hab.

1The Wünschmann condition, also obtained by E. Cartan, was
originally derived to find an equivalence class of solutions to a
third-order ODE. E. Cartan then showed that, if the condition was
satisfied, it was possible to introduce a conformal metric on the
solution space and the equivalence class was then given as the
class of conformal isometries.
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The Einstein’s equations represents an PDE for ν and Λ.
Note also that trace-free equations have an arbitrary
cosmological constant λ which can be positive, negative
or zero depending on which cosmology we are dealing
with. In the next section, we will assume asymptotically flat
spacetime where λ ¼ 0.
Summarizing, the NSF is a theory of hypersurfaces and a

scalar field on a six-dimensional space. Two metricity
conditions yield a Lorentzian metric and a real PDE the
Einstein’s equations.

III. PEELING AND THE NSF

As stated in Sec. II, we assume that the spacetime is
asymptotically flat along past null directed directions with
past null boundary I−, and coordinates (v, ζ, ζ̄). In this
framework we analyze the peeling behavior of g01 and Λ.
Asymptotically gab goes to ηab at null infinity, thus,
hab → ηab and g01 → 1.
To obtain the asymptotic behavior of Λ we first give a

kinematical property directly related to its geometrical
meaning. Using Sach’s theorem, one can show that

ð2Z ¼ σBðZ; ζ; ζ̄Þ − σZðxa; ζ; ζ̄Þ ð23Þ

where σB and σZ are the leading parts of the Bondi and
null cone shear respectively evaluated at I−. (The leading
part of σ is defined as σZ ≡ lims→∞s2σ with s the affine
length along a null geodesic of the past null cone and σ
the shear of the null cone. A similar definition for the
Bondi null congruence yiels σBðv; ζ; ζ̄Þ) In this frame-
work, the peeling of Λ means to obtain its behavior when
the apex xa approaches I− along one null geodesic that
ends at the point (v, ζ, ζ̄). It is clear from (23) that σB does
not change as the apex is moved to I−. Likewise, one
could argue that the shear of a null cone vanishes when
the apex of the cone moves to null infinity but we would
like to present here a direct proof analyzing the geomet-
rical parameters associated with the past null cone from a
point xa.
We assume that the apex of the null cone is near I− along

some null direction, and that the Ricci tensor vanishes.
Thus, the optical equations,

∂ρ
∂s ¼ ρ2 þ σσ̄ ð24Þ

∂σ
∂s ¼ 2ρσ þ ψ0 ð25Þ

can be solved in the linearized approximation. The linear-
ized solution for ρ of Eq. (24) is given by

ρ ¼ −
1

s − s0
ð26Þ

since the first nontrivial correction in ρ is quadratic in a
perturbation scheme The Eq. (25) for σ now reads

∂σ
∂s ¼ −2

σ

s − s0
þ ψ0:

Multiplying both sides by ðs − s0Þ2 yields

ðs − s0Þ2
∂σ
∂s þ 2σðs − s0Þ ¼ ψ0ðs − s0Þ2:

We thus have

∂
∂s ½ðs − s0Þ2σ� ¼ ψ0ðs − s0Þ2

which can be integrated as

ðs − s0Þ2σ ¼
Z

s

s0

½ψ0ðs − s0Þ2�ds

Finally, using σZ ≡ lims→∞s2σ, we get

σZ ¼ lim
s→∞

s2

ðs − s0Þ2
Z

s

s0

ψ0ðs − s0Þ2dsþ � � �

¼
Z

∞

s0

½ψ0ðs − s0Þ2�dsþ � � � ð27Þ

The above equation gives the dependence of σZ on the
Weyl tensor. Remembering that the apex is labelled by s0
and that ψ0ðsÞ goes as s−5 the integral has a finite value
at I−. It also follows from the above equation that if we let
the apex go to I−, i.e., s0 → ∞, σx vanishes.
Note that the above result does not change if we

replace the affine length s by the coordinate r since they are
related by

dr
ds

¼ g01: ð28Þ

Since g01 is positive and goes to 1 at null infinity, r is a
monotonically increasing function of s.
We thus have,

lim
r→∞

Λ ¼ σBðv; ζ; ζ̄Þ: ð29Þ

It follows from the above equation that Λ is a free field
at I−. This could play an important role at a classical or
quantum scattering of gravitons.
It is also important to obtain the peeling behavior of other

scalars like limr→∞ ð̄Λ or limr→∞ð̄2Λ, or equivalently, the
behavior of ð̄σZ or ð̄2σZ in the asymptotic region since
they are needed to obtain the field equations for Λ. Using
the explicit form of ð̄ acting on an arbitrary function
Fðu;ω; ω̄; r; ζ; ζ̄Þ given by
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ð̄ ¼ ð̄þ ω̄∂v þ r∂ω þ Λ̄∂ω̄ þ ððΛ̄ − 2ω̄Þ∂r ð30Þ

it is clear that we need to solve the integral in expression
(27) in order to have an explicit form of σZ in terms of s

or r. We thus take the peeling form of ψ0 ¼ ψ0
0

s5
in the

asymptotic region, obtaining

σZ ¼ Oðr−2Þ ð31Þ
where r represents the location of the apex of the light cone
with shear σZ (see the Appendix B for the calculations).
Applying the operator (30) over expression (31) for σZ it is
easy to show that,

ð̄σZ ¼ Oðr−1Þ

and

ð̄2σZ ¼ Oðr0Þ:
Following the above results the desired limits are:

lim
r→∞

ð̄Λ ¼ ð̄σB ð32Þ

and

lim
r→∞

ð̄2Λ ¼ ð̄2σB − ð̄2σZ ð33Þ

To obtain the explicit form Oðr0Þ we use this peeling
behavior together with the field equations (19), (20)
and (21).

IV. FREE DATA AND EINSTEIN EQUATIONS

So far, we showed that there exists a nonempty region on
a Ricci flat, asymptotically flat spacetime where the null
cone cuts are smooth closed surfaces. Furthermore, the
asymptotic behavior of Λ and its derivatives have been
studied. Now, we will derive a set of real, spin weight zero
equations equivalent to the vacuum Einstein’s equations.
The original derivation of the field equation for Λ in

terms of the free data σBðv; ζ; ζ̄Þ is very involved [1]. The
final equation itself has many terms and its complexity
makes it virtually impossible to check the validity of all
the terms. The aim of this section is to develop a real,
spin-weight zero equation for Λ that we think has several
advantages over the previous result. We assume Eq. (20),
the generalized Wünschmann condition, is satisfied to have
a Lorentzian metric and concentrate on the coupled set of
equations,

0 ¼ 2ð̄ððν2Þ − ν2ð∂rð̄2Λ − hij∂iΛ∂jΛ̄Þ ð34Þ

∂2
rν − νR11ðΛÞ ¼ 0 ð35Þ

Eq. (34) and (35) are a coupled system for Λ and ν
equivalent to the vacuum Einstein’s equations. As a guide-
line to the steps needed to obtain the final set of field
equations we first apply the procedure to derive the
linearized version.

A. The linearized approximation

In this section, we only keep up to linear terms in the
Bondi free data and Λ. This represents the first-order
deviation from flat Minkowski space. Since the Ricci flat
equation contains quadratic terms in Λ and the asymptotic
flatness condition implies that g01 ¼ 1 at null infinity, then
up to second order, g01 ¼ 1 in the linearized approximation.
Thus, the remaining equations are the complex metricity
conditions,

∂rð̄Λþ ∂ωΛ ¼ 2
ðg01

g01
¼ 0 ð36Þ

∂rðΛ − 3∂ω̄Λ ¼ 0 ð37Þ

from which one should obtain three real conditions since
the integrability conditions for (36) is identically satisfied.
Instead of taking the real and imaginary parts of the

metricity conditions we take ð and ð̄ derivatives on the
above equations until sw 0 quantities are obtained.
The procedure is quite involved but straightforward. The
reader may skip the derivation and advance to the summary
of the equations at the end of the subsection.
We first obtain two real equations,

∂rð̄2Λ ¼ 2
ð̄ðg01

g01
¼ 0

�
4∂v − ∂ω̄ð̄ − ∂ωð − 4∂r þ

1

2
ð̄ð∂r

�
ð̄2Λ ¼ 0 ð38Þ

Inserting (38) we get

½4∂v − ∂ω̄ð̄ − ∂ωð�ð̄2Λ ¼ 0 ð39Þ

The next step is to find relations between Λ and σ. Since
(36) and (37) are two complex equations of a different
spin weight, we can equate their spin weight (applying
adequately ∂ω and ∂ω̄) and then write a new set of complex
metricity conditions, i. e., two equivalent equations
obtained adding and subtracting them. Combining these
two new equations, it can be shown that the wave equation
for Λ is obtained (see Appendix C). It must be noticed that
if we keep only the “sum equation,” we are setting an
integrability condition between (36) and (37), which is
equivalent to computing the commutator ½∂ω; ∂ω̄� of Λ as it
follows:

3½∂ω; ∂ω̄�Λ ¼ ∂r½3∂ω̄ð̄Λþ ∂ωðΛ� ¼ 0: ð40Þ
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Integrating in r gives

3∂ω̄ð̄Λþ ∂ωðΛ ¼ 4∂vσB: ð41Þ

Taking ð̄2 of the above equation, using the reality condition
ð̄2Λ ¼ ð2Λ̄ together with (38) yields

ð−6∂v þ 3∂ω̄ð̄þ ∂ωðÞð̄2Λ ¼ 4∂vð̄2σB: ð42Þ

The previous equation is complex; hence, it is equivalent to
the following real equations:

ð−3∂v þ ∂ω̄ð̄þ ∂ωðÞð̄2Λ ¼ ∂vðð̄2σB þ ð2σ̄BÞ ð43Þ

ð∂ω̄ð̄ − ∂ωðÞð̄2Λ ¼ 2∂vðð̄2σB − ð2σ̄BÞ: ð44Þ

Adding (43) and (39) gives

∂vðð̄2Λ − ð̄2σB − ð2σ̄BÞ ¼ 0; ð45Þ

which is an equation relating the free data σ and our
variable Λ via a spin-weight zero and real equation.
Furthermore, one can also show that (see Appendix A),

∂ω̄ðð̄2Λ − ð̄2σB − ð2σ̄BÞ ¼ 0: ð46Þ

We summarize below the main results of the linearized
NSF formulation:

g01 ¼ 1

∂rð̄2Λ ¼ 0

∂vðð̄2Λ − ð̄2σB − ð2σ̄BÞ ¼ 0:

∂ω̄ðð̄2Λ − ð̄2σB − ð2σ̄BÞ ¼ 0: ð47Þ

It follows from the above equations that Λ satisfies

ð̄2Λ ¼ ð̄2σB þ ð2σ̄B þ Fðζ; ζ̄Þ; ð48Þ

where Fðζ; ζ̄Þ is a real function on the sphere involving
terms with l ≥ 2 and represents the supertranslation
invariance of Eq. (48).
It can also be shown (see Appendix C) that a solution of

Eq. (48) automatically satisfies the imaginary equation (44).
Thus, (47) and (48) are the complete set of linearized
Einstein’s equations in the NSF formulation.
One can also directly obtain the field equation for the

light cone cut function Z by simply replacing u and Λ by Z
and ð2Z in (48), obtaining

ð̄2ð2Z ¼ ð̄2σBðZ; ζ; ζ̄Þ þ ð2σ̄BðZ; ζ; ζ̄Þ þ Fðζ; ζ̄Þ: ð49Þ

Although one can fix a gauge and thus set F ¼ 0, one can
also keep this arbitrary function since the physical observ-
ables do not depend on F.

One can also write F in terms of the Bondi shear as
follows. We first note that

Fðζ; ζ̄Þ ¼ ½ð̄2ðΛ − σBÞ − ð2σ̄B�v→∞:

Also from Sach’s theorem, we have

lim
v→−∞

ðΛ − σBÞ ¼ lim
v→−∞

σx ¼ 0;

since the light cone shear vanishes for flat space. We thus
have

Fðζ; ζ̄Þ ¼ −½ð2σ̄B�v→−∞ ¼ −½ð2σ̄inB�:

Since the imaginary part of the Bondi shear vanishes when
there is no incoming radiations we finally obtain

Fðζ; ζ̄Þ ¼ −½ð2σ̄inReB�:

As we mentioned before, F is irrelevant for the metric
reconstruction since any derivatives involved in the calcu-
lations of the metric components will annihilate this term.
Equation (49) can be thought of as the real spacetime

version of the good cut equation originally obtained for
self-dual (or anti-self-dual) complex spacetimes. Although
it was derived following a linearized version of NSF, it is
clear that Eq. (49) is nonlinear in Z as the Bondi shear is an
arbitrary function of Z.

B. Exact Einstein’s equations

We follow the previous procedure to obtain the full
equations. Writing (19) as

∂rð̄2Λ ¼ 2
ð̄ððg01Þ
g01

þ hij∂iΛ∂jΛ̄ ð50Þ

and integrating over r, we have

ð̄2Λ ¼ ðð̄2ΛÞr→∞ −
Z

∞

r

�
2
ð̄ððg01Þ
g01

þ hij∂iΛ∂jΛ̄

�
dr0:

ð51Þ

This is our main equation for Λ. To obtain the asymptotic
value of ðð̄2ΛÞr→∞ in terms of the free data, we first rewrite
Eq. (20) as

�
4∂v − ∂ω̄ð̄ − ∂ωðþ 4∂r þ

1

2
ð̄ð∂r

�
ð̄2Λþ 1

2
MIIRe ¼ 0;

ð52Þ

where the higher-order terms are included in MIIRe (see
Appendix D for the full form ofMIIRe). We are interested in
calculating the explicit behavior of all the terms of Eq. (52)
when r → ∞. Using the peeling behavior given in the
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previous section, we can determine the asymptotic value
of every one of them, except for ∂ω̄ð̄3Λ and c.c. For this
reason, an auxiliary expression must be obtained.
Combining the metricity conditions and following a cal-
culation given in Appendix D, we obtain

½∂ω̄ð̄þ ∂ωð − 3∂v þ 6∂r�ð̄2Λ − NRe ¼ ð̄2 _σB þ ð2 _̄σB;

ð53Þ

which is an expression that will be referred to as the
auxiliary condition, with NRe a real expression containing
second- and higher-order terms arising in the algebraic
manipulation (see Appendix D for the full form of NRe).
Adding Eq. (52) and Eq. (53) gives

�
∂v þ 10∂r þ

1

2
ð̄ð∂r

�
ð̄2Λþ 1

2
MII − NRe ¼ ð̄2 _σB þ ð2 _̄σB:

ð54Þ

This equivalent metricity condition has the advantage that it
is written in terms of the free data. The term _σB is called the
Bondi news function since it can be used as asymptotic
initial data for the gravitational radiation field.
Although the terms NRe and MIIRe are quite long, it is

straightforward to show that

�
1

2
MII − NRe

�
r→∞

¼ _σ _̄σ :

This term also has physical meaning; it is the rate of change
of the mass aspect and arises from the Bianchi identities at
null infinity when written in Bondi coordinates. Since the
limr→∞ and the ∂v operator commute we have

lim
r→∞

∂vðð̄2Λ − ð̄2σB − ð2σ̄BÞ ¼ _σ _̄σ jl≥2: ð55Þ

Before integrating the above expression between the upper
limit u and lower limit v → −∞, we note the following
peeling property (C16):

lim
r→∞

∂ω̄ðð̄2Λ − ð̄2σB − ð2σ̄BÞ ¼ 0: ð56Þ

Thus, integrating (55) gives

lim
r→∞

ð̄2Λ ¼ ð̄2σB þ ð2σ̄B þ
Z

v

−∞
_σ _̄σ jl≥2du0 þ Fðζ; ζ̄Þ;

ð57Þ

with Fðζ; ζ̄Þ a real function on the sphere involving only
terms with l ≥ 2. Finally, inserting (57) in Eq. (51), we get

ð̄2Λ ¼ ð̄2σB þ ð2σ̄B þ
Z

v

−∞
_σ _̄σ jl≥2du0 þ Fðζ; ζ̄Þ

−
Z

∞

r

�
2
ð̄ððg01Þ
g01

þ hij∂iΛ∂jΛ̄

�
dr0; ð58Þ

where σB ¼ σBðv; ζ; ζ̄Þ.
This is our main equation for Λ in terms of the free data,

which together with equation (21), and the Wünschmann
condition (18) or (20) constitutes a coupled system of three
real PDEs for Λ and ν.
It is possible to distinguish three different terms on

Eq. (58) following the dependence of the solution on the
initial data. If the data are related to the solution along null
characteristics, one often refers to them as Huygens data,
following the principle of the Dutch physicist of light
propagation on wavefronts. The solution of the wave
equation in flat space at a point xa only depends on the
data given in the intersection of the past light cone from xa

with the initial surface. Such data are called Huygens data.
If the metric is not flat, the solution also depends on the data
given inside this intersection. Note that in this case a
timelike curve connects the initial data with the solution
and will be called non-Huygens. Usually the main part of
the gravitational radiation travels along null characteristics.
It thus propagates Huygens data from the source of the
gravitational radiation. Finally, back reaction terms arise
from the nonlinearity of the field equations and are given at
and inside the past light cone from xa. The three different
terms on equation (58) can then be given by,
(1) Huygens data: the first two terms on the rhs of

Eq. (58) which was previously obtained in linear-
ized NSF.

(2) Non-Huygens data: the u integral term in Eq. (58).
It corresponds to the initial radiation data that is
timelike connected to the solution. In the time
reversed version of this construction, i.e., using
Iþ instead of I−, this corresponds to the falloff
of gravitational tails.

(3) Back Reaction term: given by the r integral in
Eq. (58). It plays the role of a source for the solution
of the field equation (even though we only have
incoming radiation as the free data).

It is worth mentioning that the above equation should be
equivalent to Eq. (15) of Ref. [1] which reads

ð̄2Λ ¼ ð̄2σB þ ð2σ̄B þ 1

2

Z
v

−∞
N du0; ð59Þ

where the quantity N is a long and involved expression in
terms of Λ and derivatives (N is explicitly given in the
Appendix E). However, the terms involved in N of
expression (59) are quite complicated and it is not easy
to check if they are the same. Nevertheless, Eq. (58) is more
tractable and, what is more important, one can clearly keep
track of how the gravitational data enter in the source term
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and what information from the spacetime is included.
Furthermore, (58) is a regular equation on the sphere with
coordinates (ζ, ζ̄) whereas Eq. (15) of Ref. [1] is only given
for a neighborhood of the sphere.
One should also point out that this equation is only valid

whenever ðu;ω; ω̄; rÞ are well behaved. Hence, it is
important to know the range of validity of (58) and to
analyze where the singulary problems are hidden in this
equation. This is analyzed in the following section.

V. ANALYSIS OF THE SINGULARITIES AND
THE ROLE OF THE CAUSTICS

It is important to note that the rhs of (57) is a smooth
function over the sphere. Thus, any singular behavior of
this equation must come from the r integral term of
Eq. (58). In this section, we will discuss the appearance
of singularities and caustic regions in Eq. (58).
We first state a theorem on conjugate points, adapted

to our construction, that is extremely important for the
results below.
Theorem 1: Consider two null cone congruences

defined along a single null geodesic, one future pointing
and the other one past pointing. Assume the future
congruence with apex at an affine point s0 has a conjugate
point (a point where the geodesic deviation vector of the
congruence vanishes) at a future point s1. Then the past
directed null cone congruence with apex at s1 has a
conjugate point at s0.
This reciprocity theorem applies directly to our con-

struction since the same function u ¼ Z describes the null
cone cuts at I− or the future null cone from a point at I−.
Using this theorem, one can show [11] that the ðu;ω; ω̄Þ

coordinates are well behaved in a caustic region but
r → −∞ and Λ → −∞ there, with the following relation,

Λ ¼ αr; ð60Þ

where α ¼ αðu;ω; ω̄; ζ; ζ̄Þ is well behaved around a con-
jugate point. It then follows that ∂rΛ is well behaved
around a singular point.
One can also show [11] that near a conjugate point,

the conformal factor g01 is proportional to the divergence
ρþ of the future null con from the point (v, ζ, ζ̄) at I−.
Thus, in the neighborhood of a singularity, one has

g01 ¼ βρþ ð61Þ

with β ¼ βðu;ω; ω̄; ζ; ζ̄Þ. Furthermore, using the relation

dr
ds

¼ g01;

one can compute the behavior of derivatives like

∂rg01 ¼
1

g01
∂sg01 ∝

1

ρþ
∂sρþ ∝ ρþ:

Thus, the r derivatives of g01 also diverge at a conju-
gate point.
Using the above results one can make several remarks.

Our first observation is that in the domain of validity of the
coordinate system ðu;ω; ω̄; rÞ our main equation (58) never
sees the singularities; i.e., if we start with a regular solution,
then the term

Z
∞

r
ð2ð̄ðg01 þ gab∂aΛ∂bΛ̄Þ

dr0

g01

is always finite for a finite value of the coordinate r. To see
the singularity one must take the limit r → −∞ or use the
affine length s and rewrite the integral term as

Z
∞

s
ð2ð̄ðg01 þ gab∂aΛ∂bΛ̄Þds0:

It follows immediately from the above equation that at a
singular affine distance s ¼ sc the integrand diverges, at
least as the divergence ρ.
Thus, it appears that one can follow two different

approaches to obtain the solution of Eq. (58). Either one
restricts oneself to a regular region, i.e., finite values of r or
one decides to include singular points and the development
of caustics. In that case one should rewrite the metricity
conditions as well as the Einstein equation using the affine
length s.

VI. CONCLUSIONS

We begin with a brief exposition of our main results.
(i) It was first shown that, when the null cone cuts are

smooth 2-surfaces, one can write a set of two real
metricity conditions that are equivalent to the origi-
nal complex ones.

(ii) We then derived the concept of “peeling” for the
main variables of the NSF and the asymptotic values
of all the different fields in our formalism.

(iii) Using the above results, we obtained the field
equation for Λ. The equation explicitly contains
the free radiation data that play the role of a source
term for the solution.

A brief comparison with the original derivation con-
tained in Ref. [1] shows that the new derivations is less
involved and contains an extra quadratic term in the
radiation data. Furthermore, the radiation data contribute
to the regular part of Eq. (58) and one can isolate and give
an easier caustic analysis of the extra integral term in the
equation.
One first shows that for any finite values of the

coordinates ðv;ω; ω̄; rÞ the solution is regular; i.e., its
solution allows us to build a region of spacetime close
to null infinity. To analyze the breakdown of regularity, one
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performs a change of variables, writing the main equation
for Λ in terms of the affine parameter s. It is important to
explore the development of caustics and this issue will be
dealt with in the future.
It is also worth mentioning a few words on the use of this

equation on an asymptotic quantization of the gravitational
field, i.e., the quantum graviton. As it has been recently
suggested by S. Hawking, classical black holes might not
exist since black hole evaporation appears to be a generic
feature of quantum gravity. If so, then this scenario with a
regular asymptotically flat spacetime which develops from
the solution of Eq. (58) might be useful in a quantization
procedure. To implement the procedure, one would start
with a free field quantization of the radiation data and
propagate this quantum fields into the developing space-
time via Eq. (58).
Although it is very premature to compare our proposal

with well-established approaches for quantum gravity such
as loop quantum gravity, we could make a few remarks,
mostly intended to highlight its differences. The starting
approach behind loop quantum gravity is Ashtekar’s
canonical formulation in terms of new variables [18].
One of the difficult issues in the canonical approach is
obtaining a well-defined procedure to define semiclassical
states. The asymptotic quantization [2], on the other hand,
has a well-defined meaning of “in” and “out” states. What
was missing many years ago was an operator that would
mediate between the incoming and outgoing states. We
believe that, after providing an analogous description from
Iþ, we can construct an S-matrix theory for the quantum
graviton. If this can be done, then it would certainly be a
useful contribution to the subject.
Another problem worth pursuing is the evaporation of

“black holes.” A starting approach would be an upside
down quantization on Iþ together with a classical geom-
etry. As was recently pointed out by Hawking and
collaborators [19], the gauge group on the event horizon
has many similarities with the BMS group. The super-
traslation symmetries would provide the needed degrees of
freedom for the gravitational radiation that escapes to Iþ.
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APPENDIX A: METRIC COMPONENTS AND
THE WÜNSCHMANN CONDITION

From the equation

gab∂aZ∂bZ ¼ 0; ðA1Þ

we can extract all the metric components and the conditions
for Z to be the null surfaces of gab. It is clear that
gab∂aZ∂bZ ¼ gabθ0aθ0b ¼ g00 and, hence,

g00 ¼ 0:

Computing ððA1Þ and ð̄ðA1Þ, we get

g0þ ¼ g0− ¼ 0:

From ð̄ð over (A1), we get

gþ− ¼ −g01:

Calculating ð2ðA1Þ and ð̄2ðA1Þ, we find

gþþ ¼ g−− ¼ g01hþþ

with

hþþ ¼ h−− ¼ −∂rΛ:

Applying ð̄ð2ðA1Þ and ðð̄2ðA1Þ, we obtain the following
two components:

gþ1 ¼ g−1 ¼ g01hþ1;

where hþ1 is given by

hþ1 ¼ h−1 ¼ 1

2

A − 1
2
Ā∂rΛ

1 − 1
4
∂rΛ∂rΛ̄

with

A ¼ −∂rð̄Λþ ∂ωΛ − h−−∂ω̄Λ:

Finally, applying ð̄2ð2 on (A1),

g11 ¼ g01h11

with

h11¼−2−
1

2
ð∂rð̄2Λþhij∂iΛ∂jΛ̄Þþh−i∂ið̄Λþhþj∂jðΛ̄:

It is important to note that the conformal structure
gij ¼ g01hij½Λ� arises naturally. The metric just obtained,
however, will be in general (ζ, ζ̄) dependent. To make sure
it does not, we impose extra conditions on Λ. Here we
obtain the real version of the metricity condition (the
Wünschmann condition), Eq. (20). We start with

ð3½gabðxdÞ∂aZ∂bZ� ¼ 0;

which gives

gab½∂aðΛ∂bZ þ 3∂aΛ∂bð0Z� ¼ 0:

Applying now ð̄3 to the previous result, we obtain
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0 ¼ gab½∂að̄ðð̄2Λ∂bZ þ 6∂að̄2Λ∂bZ þ 3∂að̄3Λ∂bðZ

þ 3∂að3Λ̄∂bð̄Z þ 9∂að̄2Λ∂bðð̄Z þ 3∂að̄ðΛ∂bΛ̄

þ 3∂aðð̄ Λ̄ ∂bΛþ 9∂að̄Λ∂bðΛ̄

þ 6∂aΛ∂bΛ̄þ ∂aðΛ∂bð̄ Λ̄�;

where the commutation relation

½ð̄; ð�FðšÞ ¼ 2šFðšÞ ðA2Þ

and the condition ð̄2Λ ¼ ð2Λ̄ were used.
Since gab¼g01hab, the above equation becomes Eq. (20)

of the main text.

APPENDIX B: BEHAVIOR OF σZ AT THE
ASYMPTOTIC REGION

In this Appendix, we will obtain the asymptotic behavior
of σZðu;ω; ω̄; r; ζ; ζ̄Þ together with the asymptotic values
of ð̄σZ and ð̄2σZ, and ð̄Λ and ð̄2Λ. To do this, we use the
physical affine parameter s. We start with expression (27)
of the main text,

σZ ¼
Z

∞

s0

½ψ0ðs − s0Þ2�ds: ðB1Þ

Inserting the asymptotic scalar ψ0 ¼ ψ0
0

s5
in the previous

expression gives

σZ ¼
Z

∞

s0

�
ψ0
0

s5
ðs − s0Þ2

�
ds ¼ −

ψ0
0

12s20
; ðB2Þ

where ψ0
0 ¼ ψ0

0ðu;ω; ω̄; ζ; ζ̄Þ. Using dr ¼ g01ds0 gives

σZ ¼ −
ψ0
0

12r2
¼ Oðr−2Þ:

This last expression corresponds to Eq. (31) of the main
text. To obtain the asymptotic behavior of ð̄σZ and ð̄2σZ, we
apply the ð̄ operator on σZ and then take their limit r → ∞.
We take the OðΛ0Þ terms of the ð̄ operator, namely,
ð̄ ¼ ð̄ζ̄ þ ω̄ð∂v − 2∂RÞ þ R∂ω, in order to obtain the lowest
decay power of ð̄σZ and ð̄2σZ. Analyzing ð̄σZ term by term,
we have

ð̄ζ̄σZ ¼ −
ð̄ζ̄ψ

0
0

12r2
→ r−2

ω̄∂uσZ ¼ −
ω̄∂uψ

0
0

12r2
→ r−2

r∂ωσZ ¼ −
r∂ωψ

0
0

12r2
→ r−1

−2ω̄∂rσZ ¼ 2ω̄∂r
ð̄0ψ0

0

12r2
→ r−3:

Since r∂ωσZ is the leading term in the asymptotic region,
we have

lim
r→∞

ð̄ σZ ¼ Oðr−1Þ:

In the same way, we apply ð̄ to ð̄σZ. Following a similar
analysis, we find

lim
r→∞

ð̄2σZ ¼ Oðr0Þ

as it is asserted in the main text.

APPENDIX C: THE LINEARIZED
APPROXIMATION

The commutation relation between the operators ∂ω and
∂ω̄ applied over Λ is needed in Sec. IVA. There it was
claimed that the commutator ½∂ω; ∂ω̄�Λ ¼ 0 yields the wave
equation for Λ. In this appendix, we will demonstrate this
assertion. For this, we recall the following commutation
relations:

½∂i; ∂j� ¼ 0

½∂i; ð̄� ¼ δ−i ð∂u − 2∂rÞ þ δ1i ∂ω þ ∂iΛ̄∂ω̄ þ ∂iðΛ̄∂r

≡ ½∂i; ð̄�0 þ ½∂i; ð̄�1 ðC1Þ

½∂i; ð� ¼ δþi ð∂u − 2∂rÞ þ δ1i ∂ω̄ þ ∂iΛ∂ω þ ∂ið̄Λ∂r

≡ ½∂i; ð�0 þ ½∂i; ð�1; ðC2Þ

where ½∂i; ð̄�0 and ½∂i; ð̄�1 represents the ½OðΛÞ0� and the
½OðΛÞ1� terms respectively of the commutator, namely,

½∂i; ð�0 ≡ δþi ð∂v − 2∂rÞ þ δ1i ∂ω̄

and

½∂i; ð�1 ≡ ∂iΛ∂ω þ ∂ið̄Λ∂r:

This split is essential when these commutation relations
are used either in the linear approximation or in the context
of the exact equations. To write the wave equation for Λ at a
linear level, we start with the set of the complex metricity
conditions, Eqs. (36) and (37) of the main text, i.e.,

∂rð̄Λþ ∂ωΛ ¼ 0 ðC3Þ

∂rðΛ − 3∂ω̄Λ ¼ 0: ðC4Þ

Using the relation ½∂r; ð̄�0 and its c.c from expressions (C1)
and (C2), we rewrite the previous equations as

ð̄∂rΛþ 2∂ωΛ ¼ 0 ðC5Þ
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ð∂rΛ − 2∂ω̄Λ ¼ 0: ðC6Þ

Since (C5) and (C6) are complex, we can obtain another
set of two equations totally equivalent from their sum and
difference. Before this we must equate their spin weight.
We first perform

∂rð̄ðC6Þ − ∂rððC5Þ ¼ 0 ðC7Þ

which gives

4∂2
rΛ − 2∂r½ð̄∂ω̄ þ ð∂ω�Λ ¼ 0: ðC8Þ

We use ½∂ω̄; ð̄�0 and its c.c of (C1) and (C2) to commute out
∂ω̄ and ∂ω in the last two terms to obtain

4∂rð∂v − ∂rÞΛ − 2∂r½∂ω̄ð̄Λþ ∂ωðΛ� ¼ 0 ðC9Þ

Now, we apply ∂ω̄ðC3Þ and ∂ωðC4Þ to equate the spins
weight of the system (C3)–(C4), and calculate ∂ω̄ðC3Þ þ∂ωðC4Þ to have

∂rð∂ω̄ð̄Λþ ∂ωðΛÞ − 2∂ω̄∂ωΛ ¼ 0: ðC10Þ

Inserting (C10) in (C9) gives

4ð∂r∂v − ∂2
r − ∂ω̄∂ωÞΛ ¼ 0;

which, in our coordinates, corresponds to

2ηab∂a∂bΛ ¼ 0

and, finally,

□Λ ¼ 0: ðC11Þ

Thus, as was asserted in Sec. IVA, the wave equation for Λ
can be obtained from the complex metricity equations.
Thus, Eq. (37) in the main text is equivalent to show that Λ
satisfies the wave equation and, hence, (37) has a well-
established physical meaning. In previous works, we have
explicitly used the wave equation for Λ to obtain the
linearized equation for Z. In this work, we integrate in u the
expression (42) of the main text for ∂vð̄2Λ, giving Eq. (47).
We also claimed that the boundary value after integrating

(42) is only (ζ, ζ̄)—dependent. To show this we first look at
for a spin weight 1 expression for Λ containing the required
terms. Basically, we will find a sw ¼ 1 version of the
second complex metricity condition and the auxiliary
equation, expression (41), which relates Λ and σ, calculat-
ing ð̄2ð3g00 and ð̄ð41Þ respectively. Starting with ð̄2ð3g00,
we obtain

2∂vð̄Λ − ð∂ωð̄Λ − ∂ω̄ð̄2Λ ¼ 0: ðC12Þ

Now, ð̄ð41Þ gives

−2∂vð̄Λþ ð∂ωð̄Λþ 3∂ω̄ð̄2Λ ¼ 4∂vð̄σB: ðC13Þ

Adding (C12) and (C13), we get

∂ω̄ð̄2Λ ¼ 2∂vð̄σB: ðC14Þ

Taking the OðΛ0Þ of the operator ð̄, in the commutation
relations one shows that 2∂vð̄σB ¼ ∂ω̄ð̄2σB. Thus,

∂ω̄ðð̄2Λ − ð̄2σBÞ ¼ 0: ðC15Þ

Furthermore, since ∂ω̄ð2σ̄B ¼ 0 (at a linear level in Λ
and σ), we have that

∂ω̄ðð̄2Λ − ð̄2σB − ð2σ̄BÞ ¼ 0 ðC16Þ

and its c.c. Finally, the real equation relating σ and Λ is
given by

ð̄2Λ ¼ ð̄2σB þ ð2σ̄B þ Fðζ; ζ̄Þ; ðC17Þ

which corresponds to Eq. (48) of the main text.
In order to show that the solution for the real equation,

Eq. (C17) is also the solution to the imaginary equa-
tion (44), we write additional equations, namely,

ð̄2σB ¼ ½∂2
ζ̄
þ 2ω̄∂v∂ ζ̄ þ ω̄2∂2

u�σB
ð2σ̄B ¼ ½∂2

ζ þ 2ω∂u∂ζ þ ω2∂2
u�σ̄B

and, for a function F ¼ Fðu;ω; ω̄; ζ; ζ̄Þ,

ð∂ω̄ð̄ − ∂ωðÞF ¼ ð∂ ζ̄ þ ω̄∂vÞ∂ω̄F − ð∂ζ þ ω∂vÞ∂ωF:

ðC18Þ

Inserting ð̄2σB and ð2σ̄B in ð̄2Λ given by expression (48)
of the main text, we obtain

ð̄2Λ ¼ ½∂2
ζ̄
þ 2ω̄∂v∂ ζ̄ þ ω̄2∂2

u�σB
þ ½∂2

ζ þ 2ω∂v∂ζ þ ω2∂2
u�σ̄B;

and substituting Fðu;ω; ω̄; ζ; ζ̄Þ ¼ ð̄2Λ in the above equa-
tions, we get

ð∂ω̄ð̄ − ∂ωðÞð̄2Λ ¼ 2ð∂ ζ̄ þ ω̄∂vÞð∂v∂ ζ̄ þ ω̄∂2
uÞσB

− 2ð∂ζ þ ω∂vÞð∂v∂ζ þ ω∂2
uÞσ̄B;

ðC19Þ

which corresponds to the left-hand side of (44). For the rhs,
we have
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∂uð̄2σB ¼ ½∂2
ζ̄
þ 2ω̄∂v∂ ζ̄ þ ω̄2∂2

u�∂vσB

¼ ð∂ ζ̄ þ ω̄∂vÞð∂v∂ ζ̄ þ ω̄∂2
uÞσB ðC20Þ

∂uð2σ̄B ¼ ½∂2
ζ þ 2ω∂v∂ζ þ ω2∂2

u�∂vσ̄B

¼ ð∂ζ þ ω∂vÞð∂v∂ζ þ ω∂2
uÞσ̄B; ðC21Þ

which shows that the solution of the real equation for Λ
satisfies the imaginary condition.

APPENDIX D: EXACT EINSTEIN’S EQUATION

In this Appendix we perform the extra calculations
belonging to Sec. IV B. We first obtain the explicit form
of the termMIIRe in Eq. (52) of the main text. In order to do
this, we split the linear and upper-order terms in Λ of the
Eq. (20) as follows:

∂rð̄ðð̄2Λþ6∂rð̄2Λþ9∂vð̄2Λ−3∂ω̄ð̄3Λ−3∂ωð3Λ̄

þ3ðhþþ∂ωð̄3Λþhþ1∂rð̄3Λþh−−∂ω̄ð3Λ̄þh−1∂rð3Λ̄Þ
−2hijð2∂iΛ∂jΛ̄−4∂iðΛ̄∂jð̄Λ−∂iðð̄Λ∂jΛ̄−∂ið̄ðΛ̄∂jΛÞ
þ9ðh1þ∂ωð̄2Λþh1−∂ω̄ð̄2Λþh11∂rð̄2ΛÞ¼0: ðD1Þ

We use the full commutation relations (C1) and (C2) to
reexpress the first term of (D1), ∂rð̄ðð̄2Λ, as

∂rð̄ðð̄2Λ¼ ð̄ð∂rð̄2Λþ∂ω̄ð̄3Λþ∂ωð3Λ−∂vð̄2Λþ2∂rð̄2Λ

þ½∂r; ð̄�1ðð̄2Λþ ð̄½∂r;ð�1ð̄2Λþ½ð̄;∂ω̄�1ð̄2Λ

and replacing it in (D1), we get

4∂vð̄2Λ − ∂ω̄ð̄3Λ − ∂ωð3Λ̄þ 4∂rð̄2Λ

þ 1

2
ð̄ð∂rð̄2Λþ 1

2
MIIRe ¼ 0; ðD2Þ

which is Eq. (52) in the main text, with

MIIRe ¼ 9ðh1þ∂ωð̄2Λþ h1−∂ω̄ð̄2Λþ h11∂rð̄2ΛÞ
þ 3ðhþþ∂ωð̄3Λþ hþ1∂rð̄3Λ

þ h−−∂ω̄ð3Λ̄þ h−1∂rð3Λ̄Þ
þ hijð−4∂iΛ∂jΛ̄þ 8∂iðΛ̄∂jð̄Λ

þ 2∂iðð̄Λ∂jΛ̄þ 2∂ið̄ðΛ̄∂jΛÞ þ CðΛÞ; ðD3Þ

where

CðΛÞ ¼ ½∂r; ð̄�1ðð̄2Λþ ð̄½∂r; ð�1ð̄2Λþ ½ð̄; ∂ω̄�1ð̄2Λ
¼ ½∂r; ð̄�1ð3Λþ ½∂r; ð�1ð̄3Λþ ½ð̄; ∂ω̄�1ð̄2Λ
þ ½ð; ∂ω�1ð2Λ̄þ ð½ð̄; ∂r�1Λ∂ω þ ½ð̄; ∂1r�1ð̄Λ∂r

þ ∂rΛ½ð̄; ∂ω�1 þ ∂rð̄Λ½ð̄; ∂r�1Þð̄2Λ
¼ ½∂r; ð̄�1ð3Λþ ½∂r; ð�1ð̄3Λþ ½ð̄; ∂ω̄�1ð̄2Λ
þ ½ð; ∂ω�1ð2Λ̄ − ½ð∂rΛ̄∂ω̄Λþ ∂rðΛ̄∂rΛÞ∂ωð̄2Λ

þ ð∂rΛ̄∂ω̄ð̄Λþ ∂rðΛ̄∂rð̄ΛÞ∂rð̄2Λþ c.c.�; ðD4Þ

which is manifestly real. From the peeling behavior
analyzed in Sec. III, it is possible to determine the decay
in r of every term contained in MIIRe. This is a lengthy but
straightforward calculation. On the other hand, the r decay
of the terms ∂rð̄2Λ and ð̄ð∂rð̄2Λ of Eq. (D2) is analyzed
from Eq. (50) considering that g01 ¼ ν2 is given by

g01 ¼ 1þOðΛ2Þ þ…:

Nevertheless, the peeling tools applied directly over the
terms ∂ω̄ð̄3Λþ ∂ωð3Λ̄ do not give us the r decay unless
these terms are written as functions of σ. It is possible to
relate these two terms with the free data by an algebraic
manipulation of the first and second metricity conditions.
First, we equate their spin weight and factors performing
3∂ω̄ð17Þ∶

3∂r∂ω̄ð̄Λþ 3∂ω̄∂ωΛ ¼ 3∂ω̄MI ðD5Þ

∂ωð18Þ∶

∂r∂ωðΛ − 3∂ω̄∂ωΛ ¼ ∂ωMII ðD6Þ

with

MI ¼ 2

�
1 −

1

4
∂rΛ̄∂rΛ

�
ð ln g01 − ∂rΛ̄∂ω̄Λ

−
1

2
ð∂rðΛ̄ − ∂ω̄Λ̄ − ∂rΛ∂ωΛ̄ − ∂rΛ̄∂rð̄ΛÞ∂rΛ

ðD7Þ

and

MII ¼ 3∂rΛð∂ωΛþ hþ1Þ:

Any manipulation between (D5) and (D6) results in a
equivalent metricity condition too. In this case, we perform
the sum of (D5) and (par2), obtaining

∂rð3∂ω̄ð̄Λþ ∂ωðΛÞ ¼ 3∂ω̄MI þ ∂ωMII

and integrating over the variable r,
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3∂ω̄ð̄Λþ∂ωðΛ¼4_σBþ
Z

r

∞
ð3∂ω̄MIþ∂ωMIIÞdr0: ðD8Þ

We see that this equation is a š ¼ 2 expression and we
apply ð̄2 to Eq. (D8) to turn it into a š ¼ 0 one. Carrying out
the corresponding permutations using the full relations
(A2), (C1), (C2) and the substitution of ð̄2Λ ¼ ð2Λ̄, the
resulting ð̄2ðD8Þ can be expressed in the following manner:

3∂ω̄ð̄3Λþ∂ωð3Λ̄−6∂vð̄2Λþ12∂rð̄2Λ¼4ð̄2 _σBþN; ðD9Þ

where

N ¼ −ð̄2
Z

r

∞
ð3∂ω̄MI þ ∂ωMIIÞdr0 − 3½∂v; ð̄�1ð̄Λ

þ ½∂ω; ð̄�1ðð̄Λþ ð̄½∂ω; ð̄�1ðΛþ 3ð̄½∂ω̄; ð̄�1ð̄Λ
þ 3½∂ω̄; ð̄�1ð̄2Λþ 6½∂r; ð̄�1ð̄Λþ 4½∂ω; ð̄�1Λ:

Although Eq. (D9) is a complex equation, we keep the real
part of it since we want to rewrite the terms ∂ω̄ð̄3Λþ
∂ωð3Λ̄ which are evidently real. Hence, adding to (D9) its
complex conjugate, we obtain

∂ω̄ð̄3Λþ ∂ωð3Λ̄ − 3∂vð̄2Λþ 6∂rð̄2Λ

¼ ð̄2 _σB þ ð2 _̄σB þ NRe ðD10Þ

with

NRe ¼
1

4
ðN þ N̄Þ; ðD11Þ

representing second- and upper-order terms in Λ. Adding
(D10) and (D2), the following result is obtained

∂vð̄2Λþ 10∂rð̄2Λþ 1

2
ð̄ð∂rð̄2Λ

¼ ð̄2 _σB þ ð2 _̄σB þ NRe −
1

2
MIIRe;

which is Eq. (54) in the main text. After a carefully study
of the peeling behavior of the terms NRe − 1

2
MIIRe, we

find that the higher-order term in Λ of Eq. (54) behaves
like ðNRe− 1

2
MIIReÞ→ _σB _̄σ in the asymptotic region.

Commuting ð̄2 and ∂v using the full commutation relation
(C1) and integrating over the u variable (in the gauge
where Λ, σB, and its derivatives vanishes when v → −∞),
we can write

ðð̄2ΛÞr→∞ ¼ ð̄2σB þ ð2σ̄B þ
Z

v

−∞
_σB _̄σB

which corresponds to Eq. (57) in the main text.

APPENDIX E: TRANSCRIPTION
OF PREVIOUS RESULTS

In this appendix, we explicitly give Eq. (15) obtained in
[1], which relates the variable Λ with the free data,

ð2ð̄2Z ¼ ð̄2σR þ ð2σ̄R þ 1

2

Z
v

−∞
N du0; ðE1Þ

with N given by

N ¼ Λ̄;0

�
Λ;1 − Λ;0 − ðð̄ΛÞ;− þ

Z
R

∞

1

2
Sþ K;−dR0

�
þ Λ;0

�
Λ̄;1 − Λ̄;0 − ððΛ̄Þ;þ þ

Z
R

∞

1

2
S̄þ K̄;þdR0

�

þ ð̄2
Z

R

∞

1

2
Sþ K;−dR0 þ ð2

Z
R

∞

1

2
S̄þ K̄;þdR0 þ 1

2
ðð̄2ðΛ̄;1Λ.− þ Λ;1ððΛ̄Þ;1Þ

− ð̄3
�
Λ;1
4

ð3ðΛ̄;1Λ;− − Λ;1ððΛ̄Þ;1 þ 2Λ;1ð̄ lnΩÞ − KÞ
�
− ð̄2ðΛ;−Λ̄;− þ Λ;1ððΛ̄Þ;−Þ −

1

2
ðð̄2K

− ðð̄ðΛ;−Λ̄;þ þ Λ;1ððΛ̄Þ;þÞ − ðð−Λ̄;þðΛ;0 − Λ;1 − ðð̄ΛÞ;−Þ þ ððΛ̄Þ;þððð̄ΛÞ;1 − Λ;þÞ
− Λ̄;1ððð̄ΛÞ;0 − ðð̄ΛÞ;1Þ þ K̄ − ðð̄ΛÞ;þððΛ̄Þ;1Þ þ 2Λ̄;0ðð̄ΛÞ;− þ 2ððΛ̄Þ;0ðð̄ΛÞ;1 þ 2ð̄ðΛ̄;0Λ;− þ Λ;1ððΛ̄Þ;0Þ ðE2Þ

with

S≡ −3L;þ þ K;− −
1

2
ð3ð̄Lþ ðK þ Λ2

;þ þ 2Λ;1ðð̄ΛÞ;þ þ Λ;−Λ̄;− þ Λ;1ððΛ̄Þ;− − ððΛÞ;−Λ̄;1 þ ðð̄ΛÞ2;1
þ ððΛÞ;1ðð̄ΛÞ;1Þ;1 ðE3Þ

K ≡ 4

�
1 −

1

4
Λ;1Λ̄;1

�
ð lnΩþ 1

2
Λ;1Λ̄;1ðð̄ΛÞ;1 − Λ;−Λ̄;1 þ

1

2
Λ;1Λ̄;− þ 1

2
Λ2
;1Λ̄;þ þ 1

2
Λ;1ððΛ̄Þ;1 ðE4Þ

and
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L≡ −Λ;1Λ;þ −
1

2
Λ;1ð̄Λ;1 − Λ2

;1ð̄ lnΩ: ðE5Þ

The above equation should be equivalent to (58) obtained in our work, but it is not easy to check whether or not they are
actually the same.
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