
RESEARCH ARTICLE

Classification and Verification of Handwritten

Signatures with Time Causal Information

Theory Quantifiers

Osvaldo A. Rosso1,2,3*, Raydonal Ospina4, Alejandro C. Frery5

1 Instituto de Fı́sica, Universidade Federal de Alagoas (UFAL), Maceió, AL, Brazil, 2 Instituto Tecnológico de
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Abstract

We present a new approach for handwritten signature classification and verification based

on descriptors stemming from time causal information theory. The proposal uses the Shan-

non entropy, the statistical complexity, and the Fisher information evaluated over the Bandt

and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six

features are easy and fast to compute, and they are the input to an One-Class Support Vec-

tor Machine classifier. The results are better than state-of-the-art online techniques that

employ higher-dimensional feature spaces which often require specialized software and

hardware. We assess the consistency of our proposal with respect to the size of the training

sample, and we also use it to classify the signatures into meaningful groups.

Introduction

The word biometrics is associated to human traits or behaviors which can be measured and

used for individual recognition. In fact, the biometry recognition, as a personal authentication

signal processing, can be used in situations or instances where users need to be security identi-

fied [1]. These kind of systems can either verify or identify.

Two types of biometrics can be defined according to the personal traits considered: a) physi-
cal/physiological which take into account the biological traits of users, like fingerprints, iris,

face, hand, etc. b) behavioral, those which consider dynamic traits such as, voice, handwritten

evidence and particular expressions. Biometric systems are attractive because of the enhanced

security [1] provided by two main facts: (i) users do not have to remember passwords or carry

access keys, (ii) it is difficult to steal, imitate or generate genuine biometric data.

The way we sign has the widest social and legal acceptance among pure behavioral biomet-

ric traits [2–6]. People sign every day to verify their identity, as this does not require any inva-

sive measurement. Allegedly, this identification and identity verification modality is the most

attacked.
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Signatures are written by moving a pen over a surface, e.g., paper or a digitizing device.

Handwritten signature verification is a problem in which the input signature (a test signature)

is classified as genuine or forged. Although signatures are intended to serve as identity verifica-

tion, the same person’s signature varies due to a number of factors and conditions.

Hilton [7] found that signatures have three main attributes: form, movement, and variation;

movement being the most important. The author found that little variations occur over time

once a signature style has been adopted. The signing processes can be described at high level as

how the the brain recovers information from long term memory in which parameters such as

size, shape, timing, etc., are specified, without any particular attention to detail. Genuine signa-

tures are associated to a spurt of neural activity, whereas the forgery signatures are the result of

deliberate handwriting which is characterized by a conscious attempt to reproduce [8, 9].

Two opposite mechanisms describing the signing process can be found in the literature.

Longstaff and Heath [10] found evidence of chaotic behavior on the underlying dynamics of

time series related to velocity profiles of handwritten texts. In opposition, most of the research

in the field of signal verification considers the input information as well described by a random

process, e.g. Hidden Markov Models [2–6]. Then, the dynamic input information acquired

through a time sampling procedure must be considered as a discrete time random sequence.

Offline signature verification is based solely on the signature image, while online proce-

dures require additional information. Our procedure exploits only the temporal information

present in the signature coordinates and, thus, can be termed quasi-offline.
Following [2–6], we describe the three main stages of our work:

• Data acquisition and pre-processing. We perform quasi-offline recognition, as we only

employ information about coordinates and do not require pressure, speed or pen-up move-

ments data.

• Feature extraction. We tackle the problem with parameter features: signatures are character-

ized as a six-dimensional vector extracted from the original data.

• Classification. Our approach is related to distance-based classifiers, as we will make decisions

based on the similarity of the features extracted from the test signature to a description of an

ensemble of genuine signatures.

Our proposal relies on the use of time causal quantifiers based on information theory for

the characterization of quasi-offline handwritten signatures: normalized permutation Shannon
entropy, permutation statistical complexity and permutation Fisher information measure. These

quantifiers have proved to be useful in the identification of chaotic and stochastic dynamics

throughout the associated time series [11, 12]. Details and further references are provided in

the Supplementary Information S1 File. Their evaluation is simple and fast, making them apt

for the signature verification problem. We apply our proposal to the well-know MCYT online

signature data base [13], but we only use time causal information about their trajectories.

We refer to “time causal information” to attest that the only causal information we use

comes from the time ordering of the data. Mutual Information, Conditional Entropy, Transfer

Entropy and other similar measures are excellent for identifying and quantifying relationships

between processes, e.g. synchronization, causality, etc. [14]. This is not the case in our study, as

we do not employ any other process apart from the observed coordinates along time. Those

information theory measures would be of great value if we had data about, for instance, the

neural activity that leads to the signatures, but we do not.

Our proposal consists, thus, in using features extracted from a nonparametric transforma-

tion of two time series. Other recent techniques have been proposed for the analysis of time

series as, for instance, transforming them into complex networks [15–19], and using multiscale
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analysis [20]. These, and other similar approaches, produce excellent results at the price of

heavy computational overload.

Fig 1 sketches the complete workflow of our proposal. Signatures are the input; they are

first scaled to fit an unitary square, and interpolated in order to have same number of data for

all subjects. Then, the time series of both horizontal and vertical writing processes are

extracted. These time series are then represented in a nonparametric manner using a time

causal descriptor: the Bandt and Pompe symbolization [21]. A histogram of these symbols is

then built for each coordinate, and information theory quantifiers are computed from these

histograms: normalized Shannon entropy, Fisher’s information measure, and statistical com-

plexity. After an exploratory data analysis, we show that simple dendrograms based on these

quantifiers reveal meaningful groups of signatures. The signature stability of each of these

groups is also evaluated. Finally, we propose using a One-Class Support Vector Machine for

signature verification, and we show that this approach has better performance than state-of-

the-art classifiers defined in feature spaces ten times larger than ours. With this, our proposal

attains better results in less computational time for an application that, besides being relevant,

requires fast responses.

Next section describes the database used in this study. In addition to the usual data flow, we

present an exploratory data analysis (EDA) of the features that enhances their appropriateness

for this problem. The expressiveness and usefulness of these descriptors for the problem of sig-

nature classification and verification follows in the sequence: we experiment their application

to the test-bed.

Handwritten signatures database

The present study is carried out on the freely available and widely used handwritten signatures

database MCYT. In the following paragraph, we reproduce the main protocol and

Fig 1. Diagram of the proposed procedure: original signature, interpolation, X and Y coordinates as time series, Band & Pompe histograms,

entropy, statistical complexity and Fisher information.

doi:10.1371/journal.pone.0166868.g001
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methodological details of the MCYT data base acquisition published by Ortega-Garcia and

coworkers in [13, 22, 23].

“The acquisition of each on-line signature is accomplished dynamically using a graphics

tablet. The signatures are acquired on a WACOM© graphic tablet, model INTUOS A6 USB.

The tablet resolution is 2540 lines/in (100 lines/mm), and the precision is ±0.25 mm. The

maximum detection height is 10 mm (so also pen-up movements are considered), and the

capture area is 127 mm (width) × 97 mm (height). This tablet provides the following dis-

crete-time sequences: a) position xt in the x-axis, b) position yt in the y-axis, and c) also the

time series corresponding to the pressure pt applied by the pen, as well as the azimuth γt
and altitude φt angles of the pen with respect to the tablet, not used in the present work.

The sampling frequency is set to 100 Hz. Taking into account the Nyquist sampling crite-

rion and that the maximum frequencies of the related biomechanical sequences are always

under 20-30 Hz [24], this sampling frequency leads to a precise discrete-time signature

representation. The signature corpus comprises genuine and shape-based highly skilled

forgeries with natural dynamics [13, 23]. The forgeries are produced requesting each con-

tributor to imitate other signers by writing naturally. For this task, they were given the

printed signature to imitate and were asked not only to imitate the shape, but also to gener-

ate the imitation without artifacts such as breaks or slow-downs. Each signer contributes

with 25 genuine signatures in five groups of five signatures each, and is forged 25 times by

five different imitators. Since signers are concentrated in a different writing task between

genuine signature sets, the variability between client signatures from different acquisition

sets is expected to be higher than the variability of signatures within the same set. The total

number of contributors in the MCYT is 330, and the total number of signatures present in

the signature database is 16,500, half of them genuine signatures and the rest forgeries.”

We used the MCYT-100 subset of the database, which includes 100 subjects and for each

one, 25 genuine and 25 skilled forged signatures. The only data we use are the x- and y-coordi-

nates time series.

Fig 2 presents examples of six subjects, being the first two columns genuine and the third

column forgery signatures. In particular, one must note that the time series’ lengths are quite

variable. We pre-processed each time series as follows: a) the coordinates were re-scaled into

the unit square [0, 1] × [0, 1]; b) the original total number of data for each time series is

expanded to M = 5000 points using a cubic Hermite polynomial. In this way, for each subject k
(k = 1, . . ., 100) and associated signatures j (j = 1, . . ., 25) we will analyze two time series,

denoted by Xðk;aÞ

j ¼ f0 � ~xðk;aÞ

j;i � 1; i ¼ 1; . . . ;Mg and Yðk;aÞ

j ¼ f0 � ~yðk;aÞ

j;i � 1; i ¼ 1; . . . ;Mg,
in which the supra-index α = G, F denotes genuine and forgery signature, and ~x and ~y are the

interpolated values, respectively.

Signature features and exploratory data analysis

Handwritten classification and verification is an important and challenging problem due to

two main factors. First, intra-personal variation in speed, pressure and inclination can be

large, as signature consistency is often poor. Second, we can only obtain few samples from one

person and no forgeries in practice. The reliability of extracted features is, thus, difficult to

assess.

Developing an efficient and effective system for data acquisition is a challenging task. The

volume of their databases grows boundlessly and soon becomes unmanageable, so reducing

the raw data to parsimonious forms, without loosing important information, is at the core of

Handwritten Signatures and Time Causal Information Theory Quantifiers
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Fig 2. Six different subjects signatures from the MCYT database. Two genuine signatures (left, blue) and

a skilled forgery (right, red). The two first signatures were classified as H1A and H1B, the following two to

types H2A and H2B, and the last two to types H3A and H3B; cf. Sec. Signature classification.

doi:10.1371/journal.pone.0166868.g002
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intelligent solutions. We aim at discovering relevant low-dimensional features that, albeit pro-

moting the reduction of data, are able to differentiate forgery from authentic signatures.

In this work we employ time causal information theory quantifiers; see details in the Sup-

plementary Information S1 File. For each of the k subjects (k = 1, . . ., 100) in the database and

its j associated signatures (25 genuine and 25 skilled forgery), two time series Xðk;aÞ

j and Yðk;aÞ

j

are extracted and transformed into Bandt and Pompe’s PDFs with pattern length (embedding

dimension) D = 5 and time lag τ = 1 [21].

We denoted these PDFs as:

Pðk;aÞ

X;j ¼ Bandt and Pompe0s PDF of Xðk;aÞ

j jD;t; and

Pðk;aÞ

Y;j ¼ Bandt and Pompe0s PDF of Yðk;aÞ

j jD;t;

in which j = 1, . . ., 25, and α = G, F identify genuine and skilled forgery signatures,

respectively.

We chose D = 5 after trying other values: D = 3, 4 led to too coarse histograms (not enough

bins), while D = 6 (that requires counting 720 cases) produced too many zero-count bins. Note

that the condition M� D! is satisfied with D = 5. We used unlagged data (τ = 1) after checking

that there were not significant changes with lagged τ = 2, 3 series.

We computed the normalized permutation Shannon entropy H, the permutation statistical

complexity C, and the permutation Fisher information measure F from these PDFs, and the

obtained values are denoted as:

Hðk;aÞ

X;j ¼ H½Pðk;aÞ

X;j �; Hðk;aÞ

Y;j ¼ H½Pðk;aÞ

Y;j �;

Cðk;aÞ

X;j ¼ C½Pðk;aÞ

X;j �; Cðk;aÞ

Y;j ¼ C½Pðk;aÞ

Y;j �;

F ðk;aÞ

X;j ¼ F ½Pðk;aÞ

X;j �; F ðk;aÞ

Y;j ¼ F ½Pðk;aÞ

Y;j �:

We performed Exploratory Data Analysis (EDA) on these information theory quantifiers

looking for simple descriptions of the data. We also used the Pearson correlation to measure

the association between features. This analysis was performed using the R language and plat-

form version 3.2.1 (http://www.R-project.org).

Fig 3 shows a scatterplot of the entropy for both the genuine and skilled forgery signatures.

The 5000 points correspond to 25 genuine signatures (in blue) and 25 forgery signatures (in

red) for each of the 100 subjects. Both types of signatures show similar association (Correla-

tion): CorrðHðk;GÞ
X;j ;H

ðk;GÞ
Y;j Þ ¼ 0:9665 and CorrðHðk;FÞ

X;j ;H
ðk;FÞ
Y;j Þ ¼ 0:9770. The entropies of both

types of signatures are overlapped and scattered elliptically. However, the bivariate mean and

dispersion values differ.

Entropies are less dispersed in the genuine than in the skilled forgery signatures, a signal of

the separability between them. Marginal density plots show the distribution of entropy for

each coordinate of both types of signatures. These plots, in spite of being limited due to its

marginal nature, reveal several modes, and suggest different dispersion patterns.

Fig 4 shows the contour plots of bivariate kernel density estimates for the entropy in genu-

ine and forgery signatures. A number of features are immediately noticeable. The dispersion

in the former group is much smaller than in the latter (less than 0.4). The kernel density esti-

mates reveal skewness and a mild multimodality in the joint distribution of the data. Quite

many points that are far from these curves and cluster centers. These points correspond to

abnormal local estimates obtained in heterogeneous blocks, possibly induced by the presence

of clusters. The modes in genuine signatures are smaller than in forgery signatures, and this

may be used as discriminatory measure. Similar results are obtained for the Complexity and

Handwritten Signatures and Time Causal Information Theory Quantifiers
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Fig 3. Scatter plot with marginal kernel density estimates of entropy quantifiers in both trajectory coordinates time series X and Y. Genuine (blue)

and skilled forgery signatures (red points), 100 subjects. Marginal kernel densities depict the distribution of entropy quantifiers along both axes.

doi:10.1371/journal.pone.0166868.g003
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the Fisher information; these are reported in the Supplementary Information, see Figs A, B, C

and D in S3 File, respectively.

Signature classification

As pointed out by Boulétreal et al. [25], a signature is characterized by two aspects: a) a con-

scious one associated to the pattern signature; and b) an unconscious one which leads spontane-

ous movements constituting the drawing. These two factors produce high variability, being the

amount of signature variability strongly writer-dependent. In fact, the signature variability or,

conversely, the signature stability can be considered an important indicator for writer character-

ization [26]. Houmani and Garcia-Salicetti [26] argue that signature stability is required in gen-

uine signatures to characterize a writer: signature variability reduces the ability to identify

forgery. Also, complex enough signatures are required to guarantee a certain level of security, in

the sense that the more complex a signature is, the more difficult it will be to forge it [26].

Boulétreal and collaborators [25, 27] propose a signature complexity measure related to sig-

nature legibility and based on fractal dimension. They classify writer styles into: highly cursive,

very legible, separated, badly formed, and small writings, using only genuine signatures.

Unfortunately, such resulting categories were not confronted to classifiers for performance

analysis.

We classified the one hundred genuine signatures in the MCYT-100 data base with causal

information theory quantifiers: Normalized permutation Shannon entropy, permutation sta-

tistical complexity and permutation Fisher information measure of both X and Y trajectories.

The mean and standard deviation values were clustered using the neighbor-joining method

Fig 4. Contour plot superimposed on the scatterplot of entropy quantifiers for genuine (right panel) and skilled forgery signatures (left panel).

doi:10.1371/journal.pone.0166868.g004
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and an automatic Hierarchical Clustering with the Euclidean distance-based dissimilarity

matrix. Each feature was treated independently, and the results are shown as circular dendro-

grams. Fig 5 shows the results of clustering the entropy. With this, we distinguish three classes

of genuine signatures denoted by H1, H2, and H3.

The H1 group is the first group to form, i.e., the one comprised of the most similar individ-

uals. It is formed below the 25% level, and it is composed by two subgroups: H1A and H1B.

The H1A group is formed exclusively by oversimplified signatures made by mere loops with-

out identifiable letters. It encompasses the following subjects: 1, 16, 17, 22, 23, 27, 29, 37, 83.

The same group is formed when the other features are used. The H1B group is comprised of

the following subjects: 2, 5, 8, 10, 19, 21, 24, 28, 32, 35, 36, 39, 43, 48, 49, 51, 55, 58, 59, 64, 69,

70, 74, 77, 89. Although these are simplified signatures, traces of letters and/or more complex

curves appear and differentiate them from the members of H1A.

The H2 group is formed approximately at the 32% level, and, again, it is comprised of two

distinct groups: H2A and H2B. The subjects that make the H2A group are: 4, 7, 12, 15, 18, 20,

30, 31, 34, 38, 40, 41, 42, 52, 57, 60, 62, 66, 67, 68, 71, 73, 75, 79, 80, 81, 86, 87, 91, 96, 100. It is

composed by signatures with traces that resemble letters, but that are not perfectly identifiable,

and that include circling traces of large or moderate size. Signatures in this group are kind of

framed by large loops. The H2B group is similar to the previous one, i.e., it is formed by signa-

tures with large and medium size circling traces, but with more identifiable letters than in the

previous groups. Names and surnames are more readable in this group than in previous ones.

It is formed by the following signatures: 6, 9, 13, 25, 33, 45, 50, 63, 65, 76, 78, 82, 84, 85, 88, 92,

94, 95, 97, 99.

The H3 group is formed at, approximately, the 43% level by the fusion of two other highly

unbalanced subgroups: one, H3A, with only two subjects (44, 46) and the other, H3B, with

thirteen subjects (3, 11, 14, 26, 47, 53, 54, 56, 61, 72, 90, 93, 98). These two clusters form at

approximately the same level. The former is composed of calligraphic signatures where vertical

traces predominate over horizontal ones. The latter is composed of highly cursive signatures,

with separation between the surname and the family name.

The same results of clustering was obtained with the Manhattan (norm L1) and Maximum

distances (L1 norm), showing that entropy is an expressive and stable quantifier. Similar anal-

yses were carried with the permutation statistical complexity and permutation Fisher informa-

tion (presented in Supplementary Information Figs A and B in S4 File). Complexity produces

the same clusters identified by entropy, so it adds no new information. The Fisher information

measure forms the same H1A group that was identified by the entropy, but with less cohesion,

at about 15%. In other words, these nine subjects are more similar locally than globally. As

with entropy, three main groups form at similar levels. The members of these clusters are slight

variations of those identified using entropy, with very similar structure.

Table 1 presents the mean and standard deviation of the three quantifiers over the 25 genu-

ine and 25 skilled forgery signatures (X and Y time series) for each of the typical subjects, split

in types H1, H2, and H3. These data reveal interesting tendencies. Genuine signatures present

quantifiers values lower than those corresponding to forgery signatures, and the latter also

exhibit larger standard deviation. This may be explained by the imitative character of these sig-

natures, however it deserves closer studies.

The classification into subclasses of genuine signatures was also carried by the parallelepi-

ped algorithm [28], arguably the simplest model-free classification procedure. Entropy leads to

clusters with nice interpretability. Fig 6 shows the regions that define the three classes identi-

fied by the dendrogram based on entropy presented in Fig 5. All subclasses are well separated

by disjoint boxes, except H1B and H2A that overlap slightly but without compromising the

Handwritten Signatures and Time Causal Information Theory Quantifiers
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Fig 5. Neighbor-joining, rooted, circular dendrogram clustering of genuine signatures by entropy: H1, H2, and H3, in red, blue, and green,

respectively.

doi:10.1371/journal.pone.0166868.g005
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discrimination. The classes are preserved using this classification superimposed with Com-

plexity and Fisher information features; see Figs C and D in S4 File.

Signature stability measure

We now assess the stability of the features the classification procedure will use as input. Two

measures of instability are computed over the PDFs obtained for each time series: one global

(the Jensen-Shannon divergence [29–31]) and another local (the Jensen-Fisher divergence

[32, 33]).

We propose using, for each subject, the square root of the Jensen-Shannon divergence over

his/her 25 genuine signatures (denoted by η(k)) as a global index of instability

Z
ðkÞ
X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S
1

25

X25

j¼1

Pðk;GÞ
X;j

" #

�
1

25

X25

j¼1

S Pðk;GÞ
X;j

h i
v
u
u
t ; ð1Þ

Z
ðkÞ
Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S
1

25

X25

j¼1

Pðk;GÞ
Y;j

" #

�
1

25

X25

j¼1

S Pðk;GÞ
Y;j

h i
v
u
u
t ; ð2Þ

Table 1. Sample mean and standard deviation (S.D.) of the time series quantifiers for the 25 genuine (G) and 25 skilled forged (F) signatures, for

each of the typical subjects: H1A, H1B, H2A, H2B, H3A, and H3B (same order as in Fig 2).

Entropy Complexity Fisher Information

Type Sub–Type Subject Coordinate Class Mean S.D. Mean S.D. Mean S.D.

H1 H1A 22 X F 0.1568 0.0052 0.1490 0.0039 0.4688 0.0070

G 0.1519 0.0019 0.1457 0.0015 0.4766 0.0035

Y F 0.1595 0.0071 0.1511 0.0052 0.4665 0.0097

G 0.1512 0.0042 0.1447 0.0037 0.4734 0.0046

H1B 39 X F 0.2212 0.0384 0.1941 0.0257 0.4286 0.0147

G 0.1749 0.0037 0.1620 0.0028 0.4497 0.0029

Y F 0.2270 0.0449 0.1980 0.0296 0.4277 0.0153

G 0.1776 0.0043 0.1644 0.0031 0.4491 0.0035

H2 H2A 60 X F 0.2482 0.0593 0.2112 0.0365 0.4212 0.0107

G 0.2010 0.0056 0.1803 0.0040 0.4331 0.0031

Y F 0.2442 0.0544 0.2090 0.0339 0.4219 0.0134

G 0.2079 0.0043 0.1861 0.0030 0.4315 0.0024

H2B 6 X F 0.2621 0.0584 0.2194 0.0334 0.4143 0.0137

G 0.2337 0.0149 0.2032 0.0095 0.4205 0.0066

Y F 0.2648 0.0538 0.2218 0.0304 0.4136 0.0134

G 0.2314 0.0102 0.2018 0.0067 0.4211 0.0050

H3 H3A 98 X F 0.3236 0.0646 0.2529 0.0320 0.3937 0.0208

G 0.2707 0.0101 0.2268 0.0064 0.4106 0.0032

Y F 0.3204 0.0794 0.2497 0.0388 0.3970 0.0208

G 0.2664 0.0124 0.2243 0.0077 0.4105 0.0034

H3B 46 X F 0.3514 0.0641 0.2691 0.0294 0.3940 0.0156

G 0.3480 0.0282 0.2720 0.0156 0.4019 0.0047

Y F 0.3419 0.0681 0.2639 0.0323 0.3940 0.0163

G 0.3270 0.0263 0.2599 0.0148 0.4008 0.0052

doi:10.1371/journal.pone.0166868.t001
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Fig 6. Classification by the rule of the parallelepiped of genuine signatures using entropy (one signature example from each of the three

groups is shown). Each subject is identified by its ID.

doi:10.1371/journal.pone.0166868.g006
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in which, S[•] represents the Shannon entropy, Pðk;GÞ
X;j and Pðk;GÞ

Y;j are the Bandt-Pompe’s PDF

associated to time series of coordinates ~x and ~y of the j genuine signature (α = G, j = 1, . . ., 25)

of subject k (k = 1, . . ., 100).

Analogously, we define a local instability index using the Fisher information measure, F ½��,
and evaluating the Jensen-Fisher divergence. We then have

x
ðkÞ
X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

25

X25

j¼1

F Pðk;GÞ
X;j

h i
� F

1

25

X25

j¼1

Pðk;GÞ
X;j

" #v
u
u
t ; ð3Þ

x
ðkÞ
Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

25

X25

j¼1

F Pðk;GÞ
Y;j

h i
� F

1

25

X25

j¼1

Pðk;GÞ
Y;j

" #v
u
u
t : ð4Þ

Fig 7 shows the plots of mean with standard error bars of instability index calculated by

each type of genuine signatures by subclasses as obtained from preclasification. The first obser-

vation is that the Jensen-Fisher local measure of instability (bottom) is the same in the hori-

zontal (left) and right (left) time series, whereas it changes when measured by the Jensen-

Shannon global measure (top).

The global measure of instability indicates that the most unstable group of genuine signa-

tures is H3B, but only two samples are available in this class. Both H2 classes exhibit similar

instabilities in both horizontal and vertical time series X and Y. The X and Y time series show

a symmetrical behavior in class H1: X is more stable than Y in H1A, whereas Y is more stable

than X in H1B. The least variable instability is observed in the H2 class.

All mean local stabilities, except that of H3B, are similar in the horizontal and vertical direc-

tions. The subclass H3B is, again, the most unstable, but it is more stable in the vertical

direction.

Overall, the measured instability is small in all subclasses granting, thus, stable classification

results based on these features.

Quasi-offline signature verification

The problem we have at hand consists of identifying suspicious signatures given that we only

have examples from genuine signatures. In practice, it is too expensive, too hard or even

impossible to obtain a significant number of good quality forgery signatures for every possible

individual in the data base. This, thus, configures a One-Class classification problem.

Support Vector Machines (SVMs) are suitable for solving machine learning problems even

in large dimensional feature spaces [34–36]. We provide a brief description of SVMs and One-

Class SVMs in the Supplementary Information S2 File along with a toy example with simulated

data. We used the libsvm (version 2.0) tool, linked with the R software that implements

SVM classification and regression, and One-Class SVMs (OC-SVM) [37] tools, with the

default parameters.

We assess the consistency of our procedure in a reproducible manner by evaluating the per-

formance of the proposed verification system for different training samples. Were selected ran-

dom samples of size n = 5, 10, 14, 18, 22 of genuine signatures for each user. Table 2 presents

the average value of all performance metrics using σ2 = 10 (see Supplementary Information S2

File). The observed Accuracy (ACC) suggests that the larger the training sample is the better

the performance is. The Area Under the ROC Curve (AUC) presents a similar tendency, and

its average is larger than 0.88, indicating that our verification system produces excellent

classification.
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Table 2. Performance of the system trained with varying number n of samples of genuine signatures;

" and # denote measures of quality (the higher the better) and of error (the smaller the better),

respectively.

n ACC (") AUC (") EER(%) (#)

5 0.6940 0.8816 0.1890

10 0.7678 0.8940 0.1711

14 0.8144 0.8975 0.1634

18 0.8250 0.8866 0.1731

22 0.8389 0.8909 0.1632

doi:10.1371/journal.pone.0166868.t002

Fig 7. Global Jensen-Shannon (top) and local Jensen-Fisher (bottom) measures of instability in genuine signatures. Bars show the mean, and

lines show the standard error over the subjects. The standard error of H3B is not plotted because there are only two subjects in this class.

doi:10.1371/journal.pone.0166868.g007
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As mentioned in the introduction, the two methodologies with best results are those based

on Dynamic Time Warping (DTW) and Hidden Markov Models (HMM). In the following we

compare our proposal with these two recent state-of-the-art methods using the Equal Error

Rate, EER(%) over the same data base:

• Fierrez-Aguilar et al. [38], ERR(%) = 2.12 (five training signatures; Global (Parzen WC) and

local (HMM) experts function);

• Fierrez-Aguilar et al. [22], ERR(%) = 0.74 (ten training signatures; HMM based algorithm);

• Pascual-Gaspar et al. [39], ERR(%) = 1.23 (five training signatures; DTW-bases algorithm,

result with scenario-dependent optimal features.

The results of our proposal using five (ten, respectively) training samples, are ERR(%) =

0.19 (0.17, respectively). Our system, thus, provides better performance using similar number

of training signatures (see Table 2 for more details).

In the following we analyze the performance of the proposed procedure applied selectively

to the pre-classified samples. Table 3 presents the performance of the system when applied to

genuine pre-classified signatures. For all classes, larger training samples lead to larger average

ACC. The best average AUC are observed for the class H2, followed by H1 and H3. This indi-

cates that H2 signatures are easily identifiable. Note that the mean values of ERR(%) for H2 are

smaller than H1 and H3. The ERR(%) values in H3 indicate that identifying forgeries in this

class is hard.

Conclusions

We proposed a quasi-offline procedure for identifying skilled forgery of handwritten signa-

tures using time causal information Theory quantifiers and One-Class Support Vector

Machines. This is a competitive proposal from the computational viewpoint as it uses only the

signatures coordinates, and it produces better results than state-of-the-art techniques. The

improvement is obtained in a six-dimensional feature space, while other techniques employ

forty or more features. As a consequence, the processing time, memory and storage required

Table 3. Performance of the classification of pre-classified samples varying the number n of samples

of genuine signatures used for training; same coding as in Table 2.

Class n ACC (") AUC (") EER(%) (#)

H1 5 0.6758 0.8692 0.1976

10 0.7566 0.8828 0.1812

14 0.8039 0.8857 0.1717

18 0.8217 0.8894 0.1662

22 0.8277 0.8788 0.1631

H2 5 0.7059 0.8945 0.1784

10 0.7819 0.9079 0.1548

14 0.8284 0.9096 0.1509

18 0.8327 0.8900 0.1734

22 0.8515 0.8996 0.1608

H3 5 0.6948 0.8653 0.2053

10 0.7450 0.8720 0.2036

14 0.7907 0.8832 0.1874

18 0.8062 0.8686 0.1874

22 0.8214 0.8889 0.1716

doi:10.1371/journal.pone.0166868.t003
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are reduced and, at the same time, the procedure is less prone to the problems induced by the

curse of dimensionality. Such improvements make our proposal apt for becoming stand-alone

application in, e.g., mobile banking.

The technique also produces meaningful classification of the input data, as it is able to sepa-

rate different types of signatures. To the best of our knowledge, this is the first time informa-

tion theory quantifiers have been used for this problem.

The central contribution is the use of the Bandt and Pompe (BP) PDF symbolization which

is invariant to a number of transformations of the input data. In fact, the original time series

are pre-processed only to facilitate the signal sampling, and this scaling has no effect on the BP

PDFs. This representation, which is sensitive to the time causality, is able to capture essential

dynamical characteristics of the signatures that lead to excellent discrimination between skilled

forgery and genuine handwritten signatures, despite the high variability the data possess.

Additionally, obtaining the BP PDFs is computationally simple and efficient.

Only six information theory features are required for the classification, three from each hor-

izontal and vertical direction: Shannon entropy, statistical complexity, and Fisher information.

This contrasts many state-of-the-art works that require features in high-dimensional spaces,

e.g. forty or even more. As said, our proposal does not require highly specialized hardware

able to capture signature speed, pressure, orientation, etc.

The classification was performed by a One-Class Support Vector Machine trained with gen-

uine signatures. The learned rule is consistent with respect to the number of training samples,

and with as few as five examples it surpasses the performance of recent successful techniques.

We assessed the performance of our proposal using the same data base employed in the cur-

rent literature, with also the same measures of quality and error.

Future work includes the use of other variables already available in the MCYT data base

(pressure, and azimuth and altitude angles), along with other features, e.g. clustering coeffi-

cient entropy, network clustering coefficient, permutation min-entropy [40–42], and cluster-

ing and classification techniques as, for instance, deep learning [43].

Supporting Information

S1 File. Supporting Information file that contains additional material about Information

Theory Quantifiers.

(PDF)

S2 File. Supporting Information file that contains additional material about Support Vec-

tor Machines and One-Class Support Vector Machines.
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S3 File. Supporting Information file that contains additional material about Exploratory

Data Analysis.

(PDF)

S4 File. Supporting Information file that contains additional material about Signature

Classification.

(PDF)
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25. Boulétreau V, Vincent N, Sabourin R, Emptoz H. Handwriting and signature: one or two personality

identifiers? In: Proceedings. Fourteenth International Conference on Pattern Recognition. vol. 2; 1998.

p. 1758–1760.

26. Houmani N, Garcia-Salicetti. Quality measures for online handwritten signatures. In: Scharcanski J

et al., editors. Signal and Image Processing for Biometrics. No. 292 in Lecture Notes in Electrical Engi-

neering. Springer; 2014. p. 255–283. doi: 10.1007/978-3-642-54080-6_10
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Information Theory quantifiers

Physics, as well as, other scientific disciplines like biology or finance, can be considered observa-
tional sciences, that is, they try to infer properties of an unfamiliar system from the analysis of
measured time record of it behavior (time series). Dynamical systems are systems that evolve
in time. In practice, one may only be able to measure a scalar time series X (t) which may be a
function of variables V = {v1, v2, · · · , vk} describing the underlying dynamics (i.e. dV/dt = f(V).
Then, the natural question is, from X (t) how much we can learn about the dynamics of the sys-
tem. In a more formal way, given a system, be it natural or man-made, and given an observable
of such system whose evolution can be tracked through time, a natural question arises: how much
information is this observable encoding about the dynamics of the underlying system? The infor-
mation content of a system is typically evaluated via a probability distribution function (PDF) P
describing the apportionment of some measurable or observable quantity, generally a time series
X (t). Quantifying the information content of a given observable is therefore largely tantamount
to characterizing its probability distribution. This is often done with the wide family of measures
called Information Theory quantifiers [1]. We can define Information Theory quantifiers as mea-
sures able to characterize relevant properties of the PDF associated with these time series, and
in this way we should judiciously extract information on the dynamical system under study.

Shannon entropy, Fisher Information measure, and Statistical Complexity

Entropy is a basic quantity with multiple field-specific interpretations: for instance, it has been
associated with disorder, state-space volume, and lack of information [2]. When dealing with
information content, the Shannon entropy is often considered as the foundational and most natural
one [3, 4].

Entropy, regarded as a measure of uncertainty, is the most paradigmatic example of these
information quantifiers. Given a continuous probability distribution function (PDF) ρ(x) with
x ∈ Ω ⊂ R and

∫
Ω ρ(x) dx = 1, its associated Shannon Entropy S [3, 4] is defined by

S[ρ] = −
∫

Ω
ρ(x) ln [ρ(x)] dx. (S1.1)

It is a global measure, that is, it is not too sensitive to strong changes in the distribution taking
place on a small-sized region of Ω. Such is not the case with Fisher’s Information Measure (FIM)
F [5, 6], which constitutes a measure of the gradient content of the distribution ρ, thus being quite
sensitive even to tiny localized perturbations. It reads

F [ρ] =

∫
|~∇ρ(x)|2

ρ(x)
dx = 4

∫
|~∇ψ(x)|2 dx, where ψ(x) =

√
ρ(x) . (S1.2)

The Fisher Information Measure can be variously interpreted as a measure of the ability
to estimate a parameter, as the amount of information that can be extracted from a set of
measurements, and also as a measure of the state of disorder of a system or phenomenon[6], its
most important property being the so-called Cramer-Rao bound. It is important to remark that
the gradient operator significantly influences the contribution of minute local ρ-variations to the
Fisher information value, accordingly, this quantifier is called “local” [6]. Note that the Shannon
entropy decreases with the distribution skewness, while the Fisher information increases.

Local sensitivity is useful in scenarios whose description necessitates an appeal to a notion
of “order”. In the previous definition of FIM (Eq. (S1.2)) the division by ρ(x) is not convenient
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if ρ(x) → 0 at certain points of the support Ω. We avoid this if we work with real probability
amplitudes, by means of the alternative expression that employs ψ(x) [5, 6]. This form requires
no divisions, and shows that F simply measures the gradient content in ψ(x).

Let now P = {pi; i = 1, . . . , N} with
∑N

i=1 pi = 1, be a discrete probability distribution,
with N the number of possible states of the system under study. The Shannon’s logarithmic
information measure reads

S[P ] = −
N∑
i=1

pi ln [pi] . (S1.3)

This can be regarded to as a measure of the uncertainty associated (information) to the physical
process described by P . For instance, if S[P ] = Smin = 0, we are in position to predict with com-
plete certainty which of the possible outcomes i, whose probabilities are given by pi, will actually
take place. Our knowledge of the underlying process described by the probability distribution
is maximal in this instance. In contrast, our knowledge is minimal for a uniform distribution
Pe = {pi = 1/N,∀i = 1, . . . , N} since every outcome exhibits the same probability of occurrence,
and the uncertainty is maximal, i.e., S[Pe] = Smax = lnN . In the discrete case, we define a
“normalized” Shannon entropy, 0 ≤ H ≤ 1, as

H[P ] = S[P ]/Smax . (S1.4)

The concomitant problem of loss of information due to the discretization has been thoroughly
studied (see, for instance, [7, 8] and references therein) and, in particular, it entails the loss of
Fisher’s shift-invariance, which is of no importance for our present purposes. For the FIM we take
the expression in terms of real probability amplitudes as starting point, then a discrete normalized
FIM, 0 ≤ F ≤ 1, convenient for our present purposes, is given by

F [P ] = F0

N−1∑
i=1

[√
pi+1 −

√
pi
]2
. (S1.5)

It has been extensively discussed that this discretization is the best behaved in a discrete envi-
ronment [9, 10]. Here the normalization constant F0 reads

F0 =

{
1, if pi∗ = 1 for i∗ = 1 or i∗ = N and pi = 0,∀i 6= i∗,

1/2, otherwise .
(S1.6)

Complexity denotes a state of affairs that one can easily appreciate when confronted with
it; however, is rather difficult to define it quantitatively, probably due to the fact that there is
no universal definition of complexity. In between the two special instances of perfect order and
complete randomness, a wide range of possible degrees of physical structure exists that should be
reflected in the features of the underlying probability distribution P . One would like to assume
that the degree of correlational structures would be adequately captured by some functional C[P ]
in the same way that Shannon’s entropy S[P ] [3] “captures” randomness.

Clearly, the ordinal structures present in a process is not quantified by randomness measures,
and consequently, measures of statistical or structural complexity are necessary for a better un-
derstanding (characterization) of the system dynamics represented by their time series [11]. The
opposite extremes of perfect order and maximal randomness are very simple to describe, because
they do not have any structure. The complexity should be zero in these cases. At a given distance
from these extremes, a wide range of possible ordinal structures exists. Complexity can be charac-
terized by a certain degree of organization, structure, memory, regularity, symmetry, and patterns
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[12]. The complexity measure does much more than satisfy the boundary conditions of vanishing
in the high- and low-entropy limits. In particular the maximum complexity occurs in the region
between the system’s perfectly ordered state and the perfectly disordered one. Complexity is
allows us to detect essential details of the dynamics, and more importantly to characterize the
correlational structure of the orderings present in the time series.

The perfect crystal and the isolated ideal gas are two typical examples of systems with mini-
mum and maximum entropy, respectively. However, they are also examples of simple models and
therefore of systems with zero complexity, as the structure of the perfect crystal is completely
described by minimal information (i.e., distances and symmetries that define the elementary cell)
and the probability distribution for the accessible states is centered around a prevailing state of
perfect symmetry. On the other hand, all the accessible states of the ideal gas occur with the
same probability and can be described by a “simple” uniform distribution.

Statistical complexity is often characterized by the paradoxical situation of a complicated
dynamics generated from relatively simple systems. Obviously, if the system itself is already in-
volved enough and is constituted by many different parts, it clearly may support a rather intricate
dynamics, but perhaps without the emergence of typical characteristic patterns [13]. Therefore, a
complex system does not necessarily generate a complex output. Statistical complexity is there-
fore related to patterned structures hidden in the dynamics, emerging from a system which itself
can be much simpler than the dynamics it generates [13].

According to López-Ruiz, Mancini and Calbet [14], and using an oxymoron, an object, a
procedure, or system is said to be complex when it does not exhibit patterns regarded as simple.
It follows that a suitable complexity measure should vanish both for completely ordered and for
completely random systems and cannot only rely on the concept of information (which is maximal
and minimal for the above mentioned systems). A suitable measure of complexity can be defined
as the product of a measure of information and a measure of disequilibrium, i.e. some kind of
distance from the equiprobable distribution of the accessible states of a system. In this respect,
Rosso and coworkers [16] introduced an effective Statistical Complexity Measure (SCM) C, that
is able to detect essential details of the dynamical processes underlying the dataset.

Based on the seminal notion advanced by López-Ruiz et al. [14], this statistical complexity
measure[15, 16] is defined through the functional product form

C[P ] = QJ [P, Pe] · H[P ] (S1.7)

of the normalized Shannon entropy H, see Eq. (S1.4), and the disequilibrium QJ defined in terms
of the Jensen-Shannon divergence J [P, Pe]. That is,

QJ [P, Pe] = Q0J [P, Pe] = Q0{S[(P + Pe)/2]− S[P ]/2− S[Pe]/2}, (S1.8)

the above-mentioned Jensen-Shannon divergence and Q0, a normalization constant such that
0 ≤ QJ ≤ 1:

Q0 = −2

{
N + 1

N
ln(N + 1)− ln(2N) + lnN

}−1

, (S1.9)

are equal to the inverse of the maximum possible value of J [P, Pe]. This value is obtained when
one of the components of P , say pm, is equal to one and the remaining pj are zero.

The Jensen-Shannon divergence, which quantifies the difference between probability distribu-
tions, is especially useful to compare the symbolic composition between different sequences[17, 18,
19]. Note that the above introduced SCM depends on two different probability distributions: one
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associated with the system under analysis, P , and the other the uniform distribution, Pe. Fur-
thermore, it was shown that for a given value of H, the range of possible C values varies between
a minimum Cmin and a maximum Cmax, restricting the possible values of the SCM [20]. Thus, it
is clear that important additional information related to the correlational structure between the
components of the physical system is provided by evaluating the statistical complexity measure.

If our system, with associated discrete PDF, lies in a very ordered state, will be represented by
an extremely narrow PDF, that is almost all the pi–values are almost zero except for a particular
state k 6= i with pk ∼= 1,then both the normalized Shannon entropy and statistical complexity are
close to zero (H ≈ 0 and C ≈ 0), and the normalized Fisher’s information measure is close to one
(F ≈ 1). On the other hand, when the system under study is represented by a very disordered
state, that is when all the pi–values oscillate around the same value, we have H ≈ 1 while
C ≈ 0 and F ≈ 0. One can state that the general FIM–behavior of the present discrete version
(Eq. (S1.5)), is opposite to that of the Shannon entropy, except for periodic motions. The local
sensitivity of FIM for discrete–PDFs is reflected in the fact that the specific “i−ordering” of the
discrete values pi must be seriously taken into account in evaluating the sum in Eq. (S1.5). This
point was extensively discussed by Rosso and co-workers [21, 22]. The summands can be regarded
to as a kind of “distance” between two contiguous probabilities. Thus, a different ordering of the
pertinent summands would lead to a different FIM-value, hereby its local nature. In the present
work, we follow the Lehmer lexicographic order [23] in the generation of Bandt and Pompe PDF
(see next section). Given the local character of FIM, when combined with a global quantifier as the
normalized Shannon entropy, conforms the Shannon–Fisher plane, H×F , introduced by Vignat
and Bercher [24]. These authors showed that this plane is able to characterize the non-stationary
behavior of a complex signal.

The Bandt and Pompe approach to the PDF determination

The evaluation of the Information Theory derived quantifiers, like those previously introduced
(Shannon entropy, Fisher information and statistical complexity), suppose some prior knowledge
about the system; specifically, a probability distribution associated to the time series under analy-
sis should be provided beforehand. The determination of the most adequate PDF is a fundamental
problem because the PDF P and the sample space Ω are inextricably linked.

Usual methodologies assign to each time point of the series X (t) a symbol from a finite
alphabet A, thus creating a symbolic sequence that can be regarded to as a non causal coarse
grained description of the time series under consideration. As a consequence, order relations
and the time scales of the dynamics are lost. The usual histogram technique corresponds to this
kind of assignment. Causal information may be duly incorporated if information about the past
dynamics of the system is included in the symbolic sequence, i.e., symbols of alphabet A are
assigned to a portion of the phase-space or trajectory.

Many methods have been proposed for a proper selection of the probability space (Ω, P ).
Among others, of type non causal coarse grained, we can mention frequency counting [25], pro-
cedures based on amplitude statistics [26], binary symbolic dynamics [27], Fourier analysis [28],
or wavelet transform [29]. The suitability of each of the proposed methodologies depends on the
peculiarity of data, such as stationarity, length of the series, the variation of the parameters, the
level of noise contamination, etc. In all these cases, global aspects of the dynamics can be somehow
captured, but the different approaches are not equivalent in their ability to discern all relevant
physical details. Bandt and Pompe (BP)[30] introduced a simple and robust symbolic methodol-
ogy that takes into account time causality of the time series (causal coarse grained methodology)
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by comparing neighboring values in a time series. The symbolic data are: (i) created by ranking
the values of the series; and (ii) defined by reordering the embedded data in ascending order,
which is tantamount to a phase space reconstruction with embedding dimension (pattern length)
D and time lag τ . In this way, it is possible to quantify the diversity of the ordering symbols
(patterns) derived from a scalar time series.

Note that the appropriate symbol sequence arises naturally from the time series, and no model-
based assumptions are needed. In fact, the necessary “partitions” are devised by comparing the
order of neighboring relative values rather than by apportioning amplitudes according to different
levels. This technique, as opposed to most of those in current practice, takes into account the
temporal structure of the time series generated by the physical process under study. As such,
it allows us to uncover important details concerning the ordinal structure of the time series
[31, 32, 33, 34] and can also yield information about temporal correlation [35, 36].

It is clear that this type of analysis of a time series entails losing details of the original se-
ries’ amplitude information. Nevertheless, by just referring to the series’ intrinsic structure, a
meaningful difficulty reduction has indeed been achieved by BP with regard to the description of
complex systems. The symbolic representation of time series by recourse to a comparison of con-
secutive (τ = 1) or nonconsecutive (τ > 1) values allows for an accurate empirical reconstruction
of the underlying phase-space, even in the presence of weak (observational and dynamic) noise
[30]. Furthermore, the ordinal patterns associated with the PDF are invariant with respect to
nonlinear monotonous transformations. Accordingly, nonlinear drifts or scaling artificially intro-
duced by a measurement device will not modify the estimation of quantifiers, a nice property if
one deals with experimental data (see, e.g., [37]). These advantages make the BP methodology
more convenient than conventional methods based on range partitioning, i.e., a PDF based on
histograms.

To use the BP methodology[30] for evaluating the PDF, P , associated with the time series
(dynamical system) under study, one starts by considering partitions of the D-dimensional space
that will hopefully “reveal” relevant details of the ordinal structure of a given one-dimensional
time series X (t) = {xt; t = 1, . . . ,M} with embedding dimension D > 1 (D ∈ N) and time lag τ
(τ ∈ N). We are interested in “ordinal patterns” of order (length) D generated by

(s) 7→
(
xs−(D−1)τ , xs−(D−2)τ , . . . , xs−τ , xs

)
, (S1.10)

which assign to each time s the D-dimensional vector of values at times s− (D− 1)τ, . . . , s− τ, s.
Clearly, the greater D, the more information on the past is incorporated into our vectors. By
“ordinal pattern” related to the time (s), we mean the permutation π = (r0, r1, . . . , rD−1) of
[0, 1, . . . , D − 1] defined by

xs−rD−1τ ≤ xs−rD−2τ ≤ · · · ≤ xs−r1τ ≤ xs−r0τ . (S1.11)

In this way the vector defined by Eq. (S1.10) is converted into a unique symbol π. We set
ri < ri−1 if xs−ri = xs−ri−1 for uniqueness, although ties in samples from continuous distributions
have null probability.

In order to illustrate BP method, we will consider a simple example: a time series with seven
(M = 7) values X = {4, 7, 9, 10, 6, 11, 3} and we evaluate the BP-PDF for D = 3 and τ = 1.
In this case the state space is divided into 3! partitions and 6 mutually exclusive permutation
symbols are considered. The triplet (4, 7, 9) and (7, 9, 10) represent the permutation pattern
[012] since they are in increasing order. On the other hand, (9, 10, 6) and (6, 11, 3) correspond
to the permutation pattern [201] since xs+2 < xs < xs+1, while (10, 6, 11) has the permutation
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pattern [102] with xs+1 < xs < xs+2. Then, the associated probabilities to the 6 patterns are:
p([012]) = p([201]) = 2/5; p([102]) = 1/5; p([021]) = p([120]) = p([210]) = 0.

Fig A illustrates the construction principle of the ordinal patterns of length D = 2, 3 and 4
with τ = 1[38]. Consider the sequence of observations {x0, x1, x2, x3}. For D = 2, there are only
two possible directions from x0 to x1: up and down. For D = 3, starting from x1 (up) the third
part of the pattern can be above x1, below x0, or between x0 and x1. A similar situation can be
found starting from x1 (down). For D = 4, for each one of the six possible positions for x2, there
are four possible localizations for x3, yielding D! = 4! = 24 different possible ordinal patterns. In
Fig A, full circles and continuous lines represent the sequence values x0 < x1 > x2 > x3, which
leads to the pattern π = [0321]. A graphical representation of all possible patterns corresponding
to D = 3, 4 and 5 can be found in Fig 2 of Parlitz et al.[38].

For all the D! possible orderings (permutations) πi when embedding dimension is D, and time-
lag τ , their relative frequencies can be naturally computed according to the number of times this
particular order sequence is found in the time series, divided by the total number of sequences,

p(πi) =
#{s|s ≤ N − (D − 1)τ ; (s) is of type πi}

N − (D − 1)τ
, (S1.12)

where # denotes cardinality. Thus, an ordinal pattern probability distribution P = {p(πi), i =
1, . . . , D!} is obtained from the time series.

The embedding dimension D plays an important role in the evaluation of the appropriate
probability distribution, because D determines the number of accessible states D! and also condi-
tions the minimum acceptable length M � D! of the time series that one needs in order to work
with reliable statistics [39]. In the present work, we follow the Lehmer lexicographic order [23] in
the generation of Bandt and Pompe PDF.

Regarding the selection of the parameters, Bandt and Pompe suggested working with 4 ≤
D ≤ 6, and specifically considered a time lag τ = 1 in their cornerstone paper [30]. Nevertheless,
it is clear that other values of τ could provide additional information. It has been recently shown
that this parameter is strongly related, if it is relevant, to the intrinsic time scales of the system
under analysis [40, 41, 42].

Additional advantages of the method reside in i) its simplicity (it requires few parameters: the
pattern length/embedding dimension D and the time lag τ), and ii) the extremely fast nature of
the calculation process. The BP methodology can be applied not only to time series representative
of low dimensional dynamical systems, but also to any type of time series (regular, chaotic, noisy,
or reality based). In fact, the existence of an attractor in the D-dimensional phase space in not
assumed. The only condition for the applicability of the BP method is a very weak stationary
assumption: for k ≤ D, the probability for xt < xt+k should not depend on t. For a review of
BP’s methodology and its applications to physics, biomedical and econophysics signals see Zanin
et al. [43]. Moreover, Rosso et al. [31] show that the above mentioned quantifiers produce better
descriptions of the process associated dynamics when the PDF is computed using BP rather than
using the usual histogram methodology.

The BP proposal for associating probability distributions to time series (of an underlying
symbolic nature) constitutes a significant advance in the study of nonlinear dynamical systems
[30]. The method provides univocal prescription for ordinary, global entropic quantifiers of the
Shannon-kind. However, as was shown by Rosso and coworkers [21, 22], ambiguities arise in
applying the BP technique with reference to the permutation of ordinal patterns. This happens
if one wishes to employ the BP-probability density to construct local entropic quantifiers, like
the Fisher information measure, which would characterize time series generated by nonlinear
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dynamical systems.
The local sensitivity of the Fisher information measure for discrete PDFs is reflected in the

fact that the specific “i-ordering” of the discrete values pi must be seriously taken into account
in evaluating Eq. (S1.5). The numerator can be regarded to as a kind of “distance” between two
contiguous probabilities. Thus, a different ordering of the summands will lead, in most cases, to
a different Fisher information value. In fact, if we have a discrete PDF given by P = {pi, i =
1, . . . , N}, we will have N ! possibilities for the i-ordering.

The question is, which is the arrangement that one could regard as the “proper” ordering?
The answer is straightforward in some cases, like the one that pertains to histogram-based PDFs.
For extracting a time-series PDF P via an histogram procedure, one first divides the interval
[a, b] (with a and b the minimum and maximum amplitude values in the time series) into a finite
number Nbin (N ≡ Nbin in Eqs. (S1.3) and (S1.5)) of non overlapping equal sized consecutive
subintervals Ak : [a, b] =

⋃Nbin
k=1 Ak and An

⋂
Am = ∅ ∀n 6= m. Then, recourse to the usual

histogram method, based on counting the relative frequencies of the time series’ values within
each subinterval, is made. Of course, in this approach the temporal order in which the time-series
values emerge plays no role at all. The only pieces of information we have here are the xt-values
that allow one to assign inclusion within a given bin, ignoring just where they are located (this is,
the subindex i). Note that the division procedure of the interval [a, b] provides the natural order
sequence for the evaluation of the PDF gradient involved in Fisher’s information measure.

From now on, we assume that the all Information Theory quantifiers will be evaluated with
BP-PDF’s, by this reason usually they are called permutation quantifiers or time causal Infor-
mation Theory quantifiers. In our current paper, we chose the lexicographic ordering given by
the algorithm of Lehmer [23], among other possibilities, due to its better distinction of different
dynamics in the Shannon–Fisher plane, H×F (see [21, 22]).

Causal information planes

In statistical mechanics one is often interested in isolated systems characterized by an initial,
arbitrary, and discrete probability distribution. Evolution towards equilibrium is to be described,
as the overriding goal. At equilibrium, we can suppose, without loss of generality, that this state is
given by the equiprobable distribution Pe = {pi = 1/N,∀i = 1, . . . , N}. The temporal evolution of
the above introduced Information Theory quantifiers, Shannon entropy H, statistical complexity
C and Fisher information measure F , can be analyzed using a two-dimensional (2D) diagrams of
the corresponding quantifiers versus time t. However, the second law of thermodynamics states
that, for isolated systems, entropy grows monotonically with time (dH/dt ≥ 0) [44]. This implies
that entropy H can be regarded as an arrow of time, so that an equivalent way to study the
temporal evolution of these quantifiers is using the normalized entropy H as substitute for the
time-axis.

Two causal information planes are defined (the term causality remembers the fact that tempo-
ral correlations between successive samples are taken into account through the Bandt and Pompe
PDF recipe used to estimate both Information Theory quantifiers): a) The causality entropy–
complexity plane, H×C, is based only on global characteristics of the associated time series PDF
(both quantities are defined in terms of Shannon entropies); while b) the causality Shannon-Fisher
plane, H × F , is based on global and local characteristics of the PDF. In the case of H × C the
variation range is [0, 1]× [Cmin, Cmax] (with Cmin and Cmax the minimum and maximum statistical
complexity values, respectively, for a given H value [20]), while in the causality plane H×F the
range is [0, 1]× [0, 1].
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These two diagnostic tools were shown to be particularly efficient to distinguish between the
deterministic chaotic and stochastic nature of a time series since the permutation quantifiers have
distinctive behaviors for different types of motion. According to the findings obtained by Rosso et
al. [31, 22, 45], chaotic maps have intermediate entropyH and Fisher F values, while complexity C
reaches larger values, very close to those of the limit. For regular processes, entropy and complexity
have small values, close to zero, while the Fisher is close to one. Finally, totally uncorrelated
stochastic processes are located in the planar location associated withH near one and, C, F near to
zero, respectively. It has also been found that 1/fα correlated stochastic processes with 1 ≤ α ≤ 3
are characterized by intermediate permutation entropy and intermediate statistical complexity
values [31], as well as, intermediate low Fisher information [31, 22, 45]. Moreover, note that in
both causal information planes the localization of these stochastic behavior look like a separation
border with respect to chaotic, which are localized above of it. In addition, these two causal
information planes have been profitably used to visualization and characterization of different
dynamical regimes when the system parameters vary [21, 22, 46, 47, 48, 49, 50, 51, 52, 53, 54];
to study time dynamic evolution [39, 55, 56]; identifying periodicities in natural time series [57];
identification of deterministic dynamics contaminated with noise [32, 33]; estimating intrinsic time
scales and delayed systems [40, 41, 42, 58]; characterization of pseudo-random number generators
[59, 60] measure of complexity of two-dimensional patterns [61] among other biomedical and
econophysics applications (see [43] and references therein).
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paradigm of forbidden/missing patterns: a detailed analysis Eur. Phys. J. B 85: 419–430.

[34] Rosso OA, Olivares F, Zunino L, De Micco L, Aquino ALL, Plastino A, Larrondo HA
(2013) Characterization of chaotic maps using the permutation Bandt-Pompe probability
distribution. Eur. Phys. J. B 86: 116–129.

[35] Rosso OA, Masoller C (2009) Detecting and quantifying stochastic and coherence resonances
via information-theory complexity measurements. Phys. Rev. E 79: 040106(R).

[36] Rosso OA, Masoller C (2009) Detecting and quantifying temporal correlations in stochastic
resonance via information theory measures. Eur. Phys. J. B 69: 37–43.

[37] Saco PM, Carpi LC, Figliola A, Serrano E, Rosso OA (2010) Entropy analysis of the dy-
namics of El Niño/Southern Oscillation during the Holocene. Physica A 389: 5022–5027.

[38] Parlitz U, Berg S, Luther S, Schirdewan A, Kurths J, Wessel N (2012) Classifying cardiac
biosignals using ordinal pattern statistics and symbolic dynamics. Comput. Biol. Med. 42:
319–327.

[39] Kowalski AM, Mart́ın MT, Plastino A, Rosso OA (2007) Bandt-Pompe approach to the
classical-quantum transition. Physica D 233: 21–31.

[40] Zunino L, Soriano MC, Fischer I, Rosso OA, Mirasso CR (2010) Permutation information-
theory approach to unveil delay dynamics from time-series analysis. Phys. Rev. E 82:
046212.

[41] Soriano MC, Zunino L, Rosso OA, Fischer I, Mirasso CR (2011) Time scales of a chaotic
semiconductor laser with optical feedback under the lens of a permutation information
analysis. IEEE J. Quantum Electron. 47: 252–261.

[42] Zunino L, Soriano MC, Rosso OA (2012) Distinguishing chaotic and stochastic dynamics
from time series by using a multiscale symbolic approach. Phys. Rev. E 86: 046210.

[43] Zanin M, Zunino L, Rosso OA, Papo D (2012) Permutation entropy and its main biomedical
and econophysics applications: A review. Entropy 14: 1553–1577.

[44] Plastino AR, Plastino A (1996) Symmetries of the Fokker-Plank equation and Fisher-Frieden
arrow of time. Phys. Rev. E 54: 4423 – 4326.

[45] Rosso OA, Olivares F, Plastino A (2015) Noise versus chaos in a causal Fisher-Shannon
plane. Papers in Physics 7 070006.

[46] Rosso OA, De Micco L, Plastino A, Larrondo H (2010) Info-quantifiers’ map-
characterization revisited. Physica A 389: 249–262.

[47] Kowalski AM, Mart́ın MT, Plastino A, Rosso OA (2011) Fisher-information description of
the classical-quantal transition. Physica A 390:2435–2441.

[48] De Micco L, Fernández JG, Larrondo HA, Plastino A, Rosso OA (2012) Sampling period,
statistical complexity, and chaotic attractors. Physica A 391: 2564–2575.

11



[49] Lange H, Rosso OA, Hauhs M (2013) Ordinal pattern and statistical complexity analysis of
daily stream flow time series Eur. Phys. J. Special Topics 222: 535–552.

[50] Serinaldi F, Zunino L, Rosso OA (2014) Complexity-entropy analysis of daily stream flow
time series in the continental United States Stochastic Environmental Research and Risk
Assessment 28: 1685–1708.

[51] Montani F, Deleglise EB, Rosso OA (2014) Efficiency characterization of a large neuronal
network: a causal information approach Physica A 401:58–70.

[52] Montani F, Rosso OA (2014) Entropy-Complexity Characterization of Brain Development
in Chickens. Entropy 16: 4677–4692.

[53] Montani F, Rosso OA, Matias F, Bressler SL, Mirasso CR (2015) A symbolic information
approach to determine anticipated and delayed synchronization in neuronal circuit models.
Phil. Trans. R. Soc. A 373: 20150110.

[54] Montani F, Baravalle R, Montangie L, Rosso OA (2015) Causal information quantification
of prominent dynamical features of biological neurons. Phil. Trans. R. Soc. A 373: 20150109.

[55] Bariviera A, Guercio MB, Martinez LB, Rosso OA (2015) The (in)visible hand in the Libor
market: an Information Theory approach. Eur. Phys. J. B 88: 208.

[56] Bariviera A, Guercio MB, Martinez LB, Rosso OA (2015) A permutation Information The-
ory tour through different interest rate maturities: the LIBOR case. Phil. Trans. R. Soc. A
373: 20150119.

[57] Bandt C (2005) Ordinal time series analysis. Ecol. Modell. 182: 229–238.

[58] Aquino ALL, Cavalcante TSG, Almeida ES, Frery A, Rosso OA (2015) Characterization of
vehicle behavior with information theory. Eur. Phys. J. B 85: 257.
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Support Vector Machines and One-Class Support Vector Machines

Support Vector Machines (SVMs) were introduced by Vapnik and co-workers [1, 2, 3, 4], and
extended by a number of other researchers. Their remarkably robust performance with respect to
sparse and noisy data makes them the choice in several applications. A SVM is primarily a method
that performs classification tasks by constructing hyperplanes in a multidimensional space that
separates cases of different class labels. SVMs perform both regression and classification tasks and
can handle multiple continuous and categorical variables. To construct an optimal hyperplane, a
SVM employs an iterative training algorithm, which is used to minimize an error function.

One-Class Support Vector Machines (OC-SVMs) are a natural extension of SVMs [5, 6]. In
order to identify suspicious observations, an OC-SVM estimates a distribution that encompasses
most of the observations, and then labels as “suspicious” those that lie far from it with respect to a
suitable metric. An OC-SVM solution is built estimating a probability distribution function which
makes most of the observed data more likely than the rest, and a decision rule that separates these
observation by the largest possible margin. The computational complexity of the learning phase
is intensive because the training of an OC-SVM involves a quadratic programming problem [2],
but once the decision function is determined, it can be used to predict the class label of new test
data effortlessly.

In our case, the observations are six-dimensional vectors: Entropy, Complexity and Fisher
Information in each of the two directions, horizontal and vertical, and we train the OC-SVM with
genuine signatures. Let Z = {z1, z2, . . . , zN} be the six-dimensional training examples of genuine
signatures. Let Φ: Z → G be a kernel map which transforms the training examples to another
space. Then, to separate the data set from the origin, one needs to solve the following quadratic
programming problem:

min
w∈G,ξi,b∈R

{
1

2
‖w‖2 +

1

νN

N∑
i=1

ξi − b

}
(S2.1)

subject to

ν ∈ (0, 1], ξi ≥ 0, ∀i = 1, . . . , N, and (S2.2)

(w · Φ(zi)) ≥ b− ξi, ∀i = 1, . . . , N, (S2.3)

where ξi are nonzero slack variables which allow the procedure to incur in errors. The parameter
ν characterizes the solution as a) it sets an upper bound on the fraction of outliers (training
examples regarded out-of-class) and, b) it is a lower bound on the number of training examples
used as Support Vectors. We used ν = 0.1 in our proposal.

Using Lagrange techniques and a kernel function K(z, zi) = Φ(z)TΦ(zi), for the dot-product
calculations, the decision function f(z) becomes:

f(z) = sign {(w · Φ(z))− b} = sign

{
N∑
i=1

αi K(z, zi)− b

}
. (S2.4)

This method thus creates a hyperplane characterized by w and b which has maximal distance from
the origin in the feature space G and separates all the data points from the origin. Here αi are
the Lagrange multipliers; every αi > 0 is weighted in the decision function and thus “supports”
the machine; hence the name Support Vector Machine. Since SVMs are considered to be sparse,
there will be relatively few Lagrange multipliers with a nonzero value.
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Our choice for the kernel is the Gaussian Radial Base function:

K(zi, zj) = exp
(
− 1

2σ2
‖zi − zj‖2

)
, (S2.5)

where σ ∈ R is a kernel parameter and ‖zi − zj‖2 is the dissimilarity measure; we used Euclidean
distance.

The parameter σ2 = 10 was selected by 5-fold-cross validation, that its, the dataset is divided
into five disjoint subsets, and the method is repeated five times. Each time, one of the subsets is
used as the test set and the other four subsets are put together to form the training set. Then the
average error across all trials is computed. Every observation belongs to a test set exactly once,
and belongs to a training set four times. Accuracy (ACC), Area Under the ROC Curve (AUC)
and Equal Error Rate (EER) are used as performance measures [7].

In the context of signature verification one-class classification problems, a false positive occurs
when a genuine signature is erroneously classified as being atypical. The probability of false
positive misclassification is the false positive rate, which is controlled by the parameters ν in the
aforementioned OC-SVM formulation. The parameter ν can be fixed a priori and it corresponds
to the percentage of observations of the typical data which will be assigned as the Type I Error.

The R interface to libsvm in package e1071 is designed to be as intuitive as possible. In the
following we generate a toy dataset in R2, and show how to train and test an SVM classifier.

n <- 150 # number of data points

p <- 2 # dimension

sigma <- 1 # variance of the distribution

meanpos <- 0 # centre of the distribution of true signatures

meanneg <- 3 # centre of the distribution of false signatures

npos <- round(n/2) # number of true signatures

nneg <- n-npos # number of false signatures

# Generate the true and false signatures

xpos <- matrix(rnorm(npos*p, mean=meanpos, sd=sigma),npos,p)

xneg <- matrix(rnorm(nneg*p, mean=meanneg, sd=sigma),npos,p)

x <- rbind(xpos, xneg)

# Generate the labels of signatures

y <- matrix(c(rep(1, npos),rep(-1, nneg)))

Now we split the data into a training set (80%) and a test set (20%)

## Prepare a training and a test set ##

ntrain <- round(n*0.8) # number of training examples

tindex <- sample(n,ntrain) # indices of training samples

xtrain <- x[tindex,]; xtest <- x[-tindex,]

ytrain <- y[tindex]; ytest <- y[-tindex]

istrain=rep(0,n); istrain[tindex]=1

Training a SVM (one-class) using the radial basis function kernel with fixed hyper-parameters
ν = 0.1 and σ = 0.05:

library(e1071)# Functions for support vector machines

library(rpart) # Recursive Partitioning and Regression Trees
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svm.model <- svm(Type ~ ., data = trainset, type=’one-classification’,

nu=0.10, scale=TRUE, kernel="radial", gamma=0.05)

Prediction of class signatures

svm.pred <- predict(svm.model, testset[,-10])

For more details, see the Reproducible research material available at http://www.de.ufpe.br/

~raydonal/ReproducibleResearch/Signatures/Signatures.html
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Exploratory data analysis

Figs A, B, C, and D present the supplementary exploratory data analysis of those features that
were not presented in the body of the article.
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Figure A: Scatter plot with marginal kernel density estimates of complexity quantifiers in both
trajectory coordinates time series X and Y. Genuine (blue) and skilled forgery signatures (red
points), 100 subjects. Marginal kernel densities depict the distribution of statistical complexity
along both axes.
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Figure B: Contour plot superimposed on the scatterplot of statistical complexity for genuine (right
panel) and skilled forgery signatures (left panel).
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Figure C: Scatter plot with marginal kernel density estimates of Fisher information quantifiers in
both trajectory coordinates time series X and Y. Genuine (blue) and skilled forgery signatures
(red points), 100 subjects. Marginal kernel densities depict the distribution of Fisher information
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Figure D: Contour plot superimposed on the scatterplot of Fisher information quantifiers for
genuine (right panel) and skilled forgery signatures (left panel).
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Signature classification

Figs A and B present the circular dendrograms of the two additional features: statistical com-
plexity and Fisher information.

Figs C and D show the classification by the rule of the parallelepiped of genuine signatures
using statistical complexity and Fisher information obtained as result of the application of entropy
classification.
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Figure A: Neighbor-joining, rooted, circular dendrogram clustering of genuine signatures by sta-
tistical complexity: H1, H2, and H3, in red, blue, and green, respectively.
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Figure B: Neighbor-joining, rooted, circular dendrogram clustering of genuine signatures by Fisher
information: H1, H2, and H3, in red, blue, and green, respectively.
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Figure C: Classification by the rule of the parallelepiped of genuine signatures using statistical
complexity obtained as result of the application of entropy classification. Each subject is identified
by its ID.

3



1

1617

22
23

27

29

37

83

2

5

8

10

19

21

24

28

32

3536

39

43

48

49
51

55

58

59

64
69

70

74

77

89

4

7

12

15
18

20

30

31 34

38

40

41

42

52

57

6062

66
67

68
71

73

75

79

80

81

86

87
91

96

100

6

9

13
25

33

45

5063 65
76

78

82

8485
88

92

94

95

97
99

3

11

14

26 47

53

54

56

61

72

90

93
98

44

460.40

0.42

0.44

0.46

0.48

0.40 0.42 0.44 0.46 0.48

 Fisher Information of X(t) 

F
is

he
r 

In
fo

rm
at

io
n 

of
 Y

(t
) 

Type

H1A

H1B

H2A

H2B

H3A

H3B

Figure D: Classification by the rule of the parallelepiped of genuine signatures using Fisher infor-
mation obtained as result of the application of entropy classification. Each subject is identified
by its ID.
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