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ABSTRACT

This review presents the most relevant investigations concerning the biocatalytic kinetic reso-
lution of racemic ketoprofen to dexketoprofen for the last 22 years. The advantages related to
the administration of the dex-enantiomer in terms of human health, the so called “chiral switch”
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in the pharmaceutical industry and the sustainability of biotransformations have been the driving

forces to develop innovative technology to obtain dexketoprofen. In particular, the kinetic reso-
lution of racemic ketoprofen through enantiomeric esterification and hydrolysis using lipases as
biocatalysts are thoroughly revised and commented upon. In this context, the biocatalysts, acyl-
acceptors (alcohols), reaction conditions, conversion, enantiomeric excess, and enantiomeric ratio
among others are discussed. Moreover, the investigations concerning scaling up processes in
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order to obtain an optically pure enantiomer of the profen are presented. Finally, some guide-
lines about perspectives of the technology and research opportunities are given.

Introduction

It is well known that non-steroidal anti-inflammatory
drugs (NSAIDs) cause a wide spectrum of adverse reac-
tions despite their broad acceptance and worldwide
use. The gastrointestinal side effects, mainly in the
stomach and duodenum, such as pyrosis, dyspepsia,
gastritis, or diarrhea have been clinically studied and
reported. The appearance of gastric or duodenal muco-
sal injuries in chronically treatments are of major con-
cern since those erosions and ulcers lead to bleeding
and/or perforations [1]. The renal functions that depend
on prostaglandin synthesis are also affected by NSAIDs
in patients with a kidney disease. In fact, the NSAIDS
might diminish renal blood flow and the rate of glom-
erular filtration which is associated with renal failure.
Hepatotoxicity and cardiovascular risk of NSAIDs has
also been reported [2,3]. Among the different NSAIDs
used topically, ketoprofen has often been associated to
photosensitivity including phototoxic and photo-allergic
reactions [4]. In addition, the asthmatic population is
sensitive to NSAIDs and presents a triad of rhinitis,
sinusitis, and asthma upon exposure to these drugs [5].
Last year, the U.S. Food and Drug Administration (FDA)
published a warning about the increased chance of

heart attack and strokes due to high doses and
extended intake of non-aspirin NSAIDs such as ketopro-
fen and ibuprofen, among others [6].

Ketoprofen contains a stereogenic center at the car-
bon alpha of the carboxyl function and therefore exists
as a racemate of the R- and S-enantiomers which are
equivalent in mass. The analgesic effect of ketoprofen
has been attributed exclusively to dexketoprofen that is
the S-enantiomer [7]. However, it is worth noticing
that recent clinical investigations demonstrated that
racemic  ketoprofen undergoes bio-inversion in
humans and that the equivalent efficacy with half the
dose of dexketoprofen compared with ketoprofen is
not straightforward.

Lorier et al. reported differences in the pharmacokin-
etics of the racemic ketoprofen enantiomers and pro-
vided evidence of their bio-inversion [8]. The authors
indicated that the ratio between the enantiomers S/R in
plasma increases if the administration of the profen was
followed by the intake of food. This observation was
attributed to pancreatic and/or intestinal and/or biliary
secretions of the drug, followed by reabsorption and
conversion of the R- to the S-isomer.

Barden et al. compared the efficacy of racemic
ketoprofen and dexketoprofen reviewing several
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placebo-controlled trials of single dose orally adminis-
tered ketoprofen (1510 participants) and dexketoprofen
(970 participants) in adults with moderate to severe
acute post-operative pain [9]. The authors did not
observe the expected 2:1 dose ratio between ketopro-
fen and dexketoprofen for an effective analgesia. They
attributed this result to the small number of trials that
directly compares both compounds. Previously, Barden
and Moore reported a systematic review of dexketopro-
fen versus ketoprofen and they arrived at a different
conclusion [10]. In this study, the authors found evi-
dence that analgesia with dexketoprofen is equivalent
to that obtained with double the dose of ketoprofen. In
acute pain, there is a hint of superior analgesic effect
than double dose ketoprofen. Additionally, a recent
investigation provided evidence that dexketoprofen
induces less pain than the racemic counterpart during
intravenous injection [11].

The clinical investigations concerning the medical
use of dexketoprofen provide evidence that the S-
enantiomer might be a healthier choice than the
racemic counterpart. This observation is highlighted
here as the motivation in terms of human health that
drove numerous investigations towards the synthesis of
pure dexketoprofen. The next section discusses eco-
nomical motivations.

From R-/S-ketoprofen to dexketoprofen: the
chiral switch strategy

The chiral switch occurs when a racemic drug is
replaced with a purified single enantiomer version in
the marketplace [12]. The new enantiopure drugs come
from well-known racemates that possess government
approval to be used as pharmaceuticals. The expiration
of the patent regarding the synthesis of the racemate is
the perfect opportunity to introduce a new patent of
the pure enantiomer.

This strategy provides an extended profit for the
pharmaceutical company that is producing the racem-
ate, new opportunities to other manufactures and
allows bridging studies that would lead to an easier
pathway for approval. Ketoprofen and ibuprofen are
examples of racemic NSAIDs that underwent the chiral
switch. Dexketoprofen and a salt with tromethamine
(dexketoprofen trometamol) were introduced in Europe
in 1998 and are currently marketed by Menarini
Pharmaceuticals in several European countries [12].
However, a careful review of the reports concerning the
novel drugs approval of the US Drug Evaluation and
Research (CDER) between 2011 and 2017 and a similar
survey by Gellad et al. in the 2001-2011 period, allowed

to conclude that dexketoprofen has not been approved
by the US Food and Drug Administration [13-15].

A short history of such a chiral switch starts with
the synthesis of the racemic ketoprofen described for
the first time in a British patent in 1966. This was fol-
lowed by the US patent No. 4,845,281 in 1989
granted to the Italian company Blaschim S.P.A. [16].
In 1996, the company Menarini Pharmaceuticals
patented the preparation of dexketoprofen through
the kinetic resolution of ketoprofen ethyl ester using
a biocatalyst [17]. Simultaneously, that company
patented the synthesis of the dexketoprofen trometh-
amine salt and its use as analgesic and anti-inflamma-
tory agent [18]. By the expiration date of that patent
(about twenty years later), other companies such as
Galenicum Health S.L. and Lesvi S.L. Laboratories,
filled applications for new patents on formulations
based on that pharmaceutical [19,20].

Enzymes in biocatalytic processes: more pros
than cons

Enzymes are macromolecular biological catalysts that
catalyze biochemical reactions in vivo. Almost all meta-
bolic processes in the cell need enzymes in order to
occur at rates fast enough to sustain life.

They have been naturally adapted to perform under
physiological conditions. However, when used as bioca-
talyst in kinetic resolution they perform in artificial con-
ditions (in vitro). Therefore, a major challenge is to
transform these physiological catalysts into process cata-
lysts able to perform under reaction conditions of an
industrial process. Enzymes as any catalyst diminish the
energy barrier of the chemical reaction. Their chemo-,
regio-, diastereo-, and enantioselectivity allow obtaining
highly complex molecules which may require multiple
steps of protection and de-protection if the reaction is
performed through chemical synthesis. Additionally,
enzymes are active under mild conditions (temperature,
pH, atmospheric pressure) which minimize possible
unwanted side reactions. Furthermore, biocatalytic
processes are environmentally acceptable since they are
completely degradable.

Even though enzymes are complex molecular struc-
tures, labile and costly to produce, nowadays these dis-
advantages have been or are being solved through
research and development in different areas. In fact,
several strategies have been developed to improve
enzyme stability including chemical modification,
immobilization to solid matrices, crystallization, aggre-
gation, and techniques of protein engineering. Lipases
(EC 3.1.1.3) are one of the most important enzymes
employed in organic synthesis. They are hydrolytic
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enzymes and exert their activity on the carboxyl ester
bonds of triacylglycerols and other substrates. Their nat-
ural substrates are insoluble lipid compounds prone to
aggregation in aqueous solution. In vitro, they can form
ester bonds which enable lipases to catalyze various
other types of reactions such as esterification, transes-
terification, interesterification, alcoholysis, and acidolysis
[21,22].

Lipases are highly widespread in nature, and are
isolated from microorganisms, plants, and animals.
Microbial lipases, the most important in biocatalysis,
are produced by submerged or solid-state fermenta-
tion. The range of optimum temperature is wide,
generally between 30 and 60°C. In terms of pH,
most lipases show high activity in neutral or alkaline
media. They accept a broad range of non-natural
substrates and are versatile for application in organic
synthesis [23].

The excellent enantioselectivity of lipases make them
useful for obtaining enantiomerically pure compounds
as discussed in the next section.

Kinetic resolution of ketoprofen: green
biocatalytic strategy

The previous sections provide evidence of the dexke-
toprofen relevance from the medical side and the
importance of producing the pure enantiomer from
the racemic ketoprofen with an economical point of
view. Additionally, it was discussed that the former
synthesis of dexketoprofen patented in 1996 by
Menarini Pharmaceuticals involved the biotransform-
ation of the racemic compound assisted by a micro-
organism. This is not casual at all since the synthesis
of enantiomerically pure active pharmaceutical ingre-
dients and their intermediates through bioprocesses
are preferred due to the benefit these systems offer
as described in the previous section. In fact, the bio-
assisted and dynamic kinetic resolution are the most
widespread methodologies to produce S-ketoprofen
[24,25]. A recent review by Godoy Dahia et al. [26]
indicated that lipases are the most applied biocatalyst
in the resolution of racemic mixtures for producing
pure enantiomers in the pharmaceutical industry. An
exhaustive patent search conducted by the authors
indicated that the technology of applying lipases as
biocatalysts for kinetic resolution would have already
finished its maturity stage [26]. However, new devel-
opments are expected with the so-called “third wave
of biocatalysis” since numerous scientific investiga-
tions are devoted to tailor new biocatalyst and
enzymatic process to reach the expectation of a
green, sustainable and cost competitive industry.
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In this context, the following sections summarize the
scientific achievements concerning the enzymatic kin-
etic resolution of racemic ketoprofen and the per-
spectives of that technology. In particular, the
literature regarding the kinetic resolution through
enantioselective esterification of the racemic mixture
and the enantiomeric hydrolysis of the racemic esters
are addressed.

The enantioselective esterification involves the reac-
tion of racemic ketoprofen acid with an alcohol as acyl
acceptor (methanol, ethanol, and among others) in the
presence of an enantioselective enzyme to achieve the
ester of R-ketoprofen or S-ketoprofen (depending on
the enzyme) and water (Figure 1(A)). Among the most
commonly used enzymes, lipases are the most suitable
due to its stability, availability, acceptance of a broad
range of substrates and have no coenzyme requirement
for catalysis. The lipase B from Candida antarctica
(CALB) has been widely used in the esterification of
racemic ketoprofen with enantiospecificity towards the
R-enantiomer, which has the advantage of leaving the
desired S-isomer without reacting and that no chemical
manipulations are required later. The investigations
regarding this lipase are discussed in the following
sections.

On the other hand, a racemic ketoprofen ester is
the starting material during enantioselective hydroly-
sis. In this case, one of the enantiomers is hydrolyzed
faster than the other in order to yield the carboxylic
acid (R- or S- depending on the type of enzyme) and
an alcohol (Figure 1(B)). Regularly, two kinds of
enzymes are used in this reaction: lipases and ester-
ases. The lipase from Mucor javanicus and Candida
antarctica show enantioselectivity towards R-ketopro-
fen while the lipase from Candida rugosa is enantio-
specific to the S-enantiomer [24].

Background in the kinetic resolution of
R-/S-ketoprofen: a journey through the
various biocatalysts and reaction conditions

Kinetic resolution of R-/S-ketoprofen has been widely
investigated through enantioselective esterification
(Table 1) and hydrolysis (Table 2) over the last
22 years. Tables 1 and 2 summarize the reaction con-
ditions (biocatalysts, reagents, temperature, co-sol-
vents, surfactants, among others) and enzymatic
activity reported in the literature. In the following sec-
tions, the enzymes employed, the investigations of
the various factors that influence the kinetic reso-
lution (alcohols used in esterification reactions, sol-
vents, emulsifiers, and water activity) and large scale
preparations are discussed.
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(A) Esterification with enantiopreference for the R-enantiomer

c
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R/S-ketoprofen
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R(-)-ketoprofen ester

Esterification with enantiopreference for the S-enantiomer
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(B) Hydrolysis with enantiopreference for the R-enantiomer
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5(-)-ketoprofen

R(-)-ketoprofen ester

Figure 1. (A) Esterification for the R- and S-enantiomer. (B) Hydrolysis with enantiopreference for R- and S-enantiomer.

Assayed biocatalysts in the esterification and
hydrolysis towards the kinetic resolution of R-/S-
ketoprofen

The information summarized in the Tables 1 and 2
shows that lipases and esterases are the most com-
monly employed enzymes as biocatalysts which has
been stated before. The entries 1, 2, 4-7, 10-12, 14,
15, 17, and 18 in Table 1 showed that CALB is the
most frequently studied [27,28,30-33,36-38,40,41,44].
Additionally, the lipases from Rhizomucor miehei
[29,30,32] (entries 3, 4, and 6 in Table 1, respectively),
Mucor javanicus [30,38] (entries 4 and 12), Burkholderia
cepacia [35,42] (entries 9 and 16), Aspergillus niger and
terreus [35,38] (entries 9 and 12) among other micro-
bial lipases have been investigated. The lipase from
Candida rugosa (formerly known as Candida cylindra-
cea) proved activity both in the esterification
[30,34,35,38] (entries 4, 8, 9, and 12 in Table 1) and
the hydrolysis of the ester of the S-ketoprofen
[34,36,47-55,62,64,67,68,71,86] (entries 1-9, 16, 18, 19,
22-24, 27, and 42 in Table 2). Interestingly, Japanese
firefly luciferases have emerged as novel biocatalysts
in the thioesterification of racemic 2-arylpropionic

acids with a preference to ketoprofen [39,45,46]
(entries 13, 19, and 20). These enzymes obtained from
fireflies such as Luciola lateralis, Pylocoeria miyako and
Hotaria parvura, among others require the use of
cofactors such as ATP, Mgz+, and CoASH as substrates.

The lipase from the latex of papain (Carica papaya
lipase) also proves activity in the enantioselective
hydrolysis of the R,S-2,2,2-trifluoroethyl thioester of
profens such as ketoprofen, ibuprofen, naproxen,
fenoprofen, suprofen, and flurbiprofen (entries 25 and
29 in Table 2) [69,73].

The esterases from thermophile bacteria such as the
Bacillus stearothermophilus and Thermotoga maritime,
and from a thermoacidophilic archaeon called
Sulfolobus solfataricus are able to resist harsh reaction
conditions (entries 11, 21, and 37 in Table 2) [57,66,81].
These biocatalysts catalyze the kinetic resolution of
ketoprofen esters between 60°C and 90°C and a broad
pH range from 5 to 9.5.

Enzymes have been applied in their free form, immo-
bilized onto various inorganic and organic materials
and as cross-linked crystals. CALB immobilized on beads
of polymethylmethacrylate and the lipase from Mucor
miehei on a macroporous ion-exchange resin are the
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¢ S commercial biocatalysts known as Novozym® 435 and
gl s Lipozyme® IM, respectively.
2|2 ; The literature shows that the immobilization of
_ ) lipases and esterases onto a variety of materials has
§ = been investigated although they did not reach a com-
gﬁ g mercial status. The investigation of alumina, silica, and
%i % agarose [49] (entry 3 in Table 2); silica gel, celite, and a
GRS S silanized ceramic called Toyonite [52,68] (entries 6 and
§ 3 : 24 in Table 2); membranes [40,41] (entries 14 and 15 in
%é ﬁ% Table 1) and ionic exchange resins such as Sephadex C-
g8 ? 50 and Amberlite [64,68] (entries 18 and 24 in Table 2),
f'g j can be found in the literature.
2 ® § More recently, a series of innovations in this area
% _% have been reported. Hu et al. developed hollow nano-
~ ﬂl spheres (500 nm) composed by alginate-graft-poly(ethy-
g leneglycol)/a-cyclodextrins in order to encapsulate the
= Aspergillus terreus lipase (entry 39 in Table 2) [83]. These
_ ln. spheres are able to entrap the enzyme within their
E ; structure during their synthesis. This biocatalyst showed
i “g stability after extended storage and high reusability
e 3 é - during the hydrolysis of R-/S-ketoprofen vinyl ester.
‘g n:) @ Zhang et al. reported the immobilization of Mucor
S SR javanicus and Rhyzomucor miehei by mixing an emul-
é 8 sion of these lipases in sodium bis-(2-ethylhexyl) sulfo-
§ o, %5 succinate (called AOT) with gelatin obtained from
§ é%:é g 38 porcine skin in a phosphate buffer (entry 40 in Table 2)
SlrEieg. alos [84]. The immobilized enzymes were more tolerant to
S|238282z|2g organic solvents compared with the free enzymes in
SEPEE IR
gl = 8 = g gg 2 g the hydrolysis of R-/S-ketoprofen vinyl ester.
& gggé i%g 5 Recently, Cao et al. presented magnetic nanocrystals
E‘ o= Q"’E f e composed of a cellulose-magnetite mixture as suitable
§ ® carriers to immobilize Pseudomonas cepacia lipase
'_3 EE through cross-linking with glutaraldehyde (entry 41 in
E 57" Table 2) [85]. The biocatalyst was removed out of the
“E “g_f” reaction medium using magnetic forces and was cap-
;gfg T é% able of six reuses in the hydrolysis of ketoprofen methyl
% B % 25 ester.
s |§ 55 It should be recalled that a suitable biotransform-
J—E ° ?Tg ation for industrial application should reach an enantio-
= 2= meric ratio E at least in the range of 15-30 [88]. This
S5 QE condition involves a conversion below 50% and an
é%g %:ﬁ‘g ; ,§ enantiomeric excess higher than the conversion value.
N § E ER & % 2 Comparing the E ratios of the esterification presented in
833 §a‘“§ €3 Table 1, it is possible to conclude that only in a few
LIXSecmTwm c > . . .
= Z g g2l :g cases the lipases comply with that requirement under
g £ § f E g :Cg- fg § narrow conditions of reaction. For instance the esterifi-
'qg. gﬁé’ w = %g cation of ketoprofen with ethanol catalyzed with
£ €5 ¢ E‘i; ﬁ‘ g & Novozym® 435 reaches an E 15 in ethylene dichloride at
§ %gggég_‘g_ g% 37°C [30] (entry 4 in Table 1) and firefly luciferases
- s g § show an E in the 19-24 range (entry 13 in Table 1) [39].
= = 8; The lipase from Candida rugosa catalyzes the esterifica-
S| El- SE tion of the S-enantiomer with E values ranging from 16
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to 51 with various alcohols in isooctane and cyclohex-
ane at 37 °C (entry 9 in Table 1) [35].

In contrast with the observations discussed above,
hydrolysis of racemic esters of ketoprofen is by far the
most suitable to obtain pure enantiomers. In this
regard, the hydrolysis reaches E values above 50 with
the lipase from Candida rugosa (E > 100) and the lipase
from Mucor javanicus (E > 200) among others (entries 1,
6, 7, 9, 18, 23, 24, 27, and 40 in Table 2) [36,47,52,53,
55,64,68,71,84]. Moreover, excellent results have been
achieved with lipases from mutant strains of C. rugosa,
C. antarctica and T. laibachii reaching E values higher
than 200 (entries 8, 20, and 36 in Table 2) [54,65,80].

Free and immobilized lipases must be compared
under similar reaction conditions in order to obtain reli-
able conclusions about the catalytic performance. This
task is not an easy one since in most cases the authors
do not compare the activity of the immobilized biocata-
lyst with the free counterpart. Nevertheless, the follow-
ing is a comparison of the optimum catalytic
performances of free and immobilized versions of the
same enzyme that are found in the literature.

The esterification of racemic ketoprofen with n-buta-
nol in hexane:1,2-dichloropropane catalyzed with free
CALB showed 81% conversion with 59% enantiomeric
excess towards the S-ketoprofen [37]. The commercial
Novozym® 435 presented 29% conversion and 31%
enantiomeric excess under similar reaction conditions
[30]. Moreover, CALB immobilized on a membrane
reactor showed 73% conversion and 57% of enantio-
meric excess [40]. These results show that, in particular,
the immobilized biocatalysts (either commercial or not)
possess E values from 10 to 27 versus E~2 for free
CALB indicating an improved performance of the sup-
ported CALB.

Another straightforward example of the benefits of
immobilization is the case of the lipase from
Burkholderia cepacia [42]. This lipase is not active in its
free form but shows activity in the esterification of keto-
profen with various alcohols and co-solvents.

The immobilized lipase from Candida rugosa on alu-
mina, silica and agarose also shows an improved enan-
tioselectivity in the hydrolysis of R-/S-ketoprofen ethyl
ester. The free lipase shows 36% enantiomeric excess at
11.6% conversion [53]. However, the immobilized lipase
reached an enantiomeric excess of 95-97% towards the
S-enantiomer [34,49].

Kinetic resolution in non-aqueous environments

Most of the organic compounds such as ketoprofen are
not soluble in aqueous media [89]. The overcome of
such constraint using lipases in organic media has been

the topic of numerous investigations as will be dis-
cussed in this section.

Tables 1 and 2 show the variety of solvents with dif-
ferent polarities that have been assayed in the kinetic
resolution of ketoprofen. Regularly, the hydrophobicity/
hydrophilicity of the organic solvents is measured with
the parameter known as “log P”. This parameter is
defined as the logarithm of the partition coefficient of a
given component in an octanol-water two-phase sys-
tem. In general, the activity of the lipases is higher in
hydrophobic solvents with a log p values greater than
2. Moreover, the higher the hydrophilicity of the solvent
the lower the catalytic performance of the lipases. This
observation is attributed to the fact that polar hydro-
philic substances are able to remove water out of the
enzyme which in turn affects their structure causing its
denaturation [30,32,42,52,66,84]. Various investigations
demonstrated that mixtures of two miscible solvents
improved the enantiomeric ratio, the reaction rate, and
the substrate solubility. These systems are mixtures of a
non-polar solvent with a halogenated or hydrophilic
solvent [30,33,35,37,40,90].

In the particular case of esterification reactions and
returning to those systems with acceptable enantio-
meric ratios E (discussed in the previous section), it is
worth noting that the best results are obtained with
non-polar hydrophobic solvents. Lipases demonstrate
their best performance in ethylene dichloride, cyclohex-
ane and isooctane (entries 4 and 9 in Table 1) [30,35].
Even though a wide variety of solvents has been
assessed, results were not close to the expected for a
satisfying kinetic resolution of ketoprofen.

In contrast, the addition of an organic solvent or
emulsifier during hydrolysis reactions allowed an
increasing enantiomeric ratio, even surpassing 200
(entries 5, 6, 9, 18, and 40 in Table 2) [51,52,55,64,84].
However, it should be commented that during Candida
rugosa lipase catalyzed hydrolysis, very good results
were obtained without the addition of a co-solvent or
an emulsifier [34,47,53-55,62,64] (entries 1, 7-9, 16, 18,
and 19 in Table 2). It appears that it is an economical
and environmental sustainability advantage of the
hydrolysis over the esterification.

To the knowledge of the authors, the investigation
reported by Lozano et al. is the only one devoted to the
use of ionic liquids (ILs) and supercritical CO, in the
esterification of racemic ketoprofen with n-butanol in a
membrane type of reactor (entry 15 in Table 1) [41].
Additional details of this investigation are provided in
the “Scaling-up of the kinetic resolution towards the
commercial production of dexketoprofen” section.

Concluding remarks about the use of organic sol-
vents regards their toxicity and environmental concerns
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during the disposition of these hazardous substances.
In fact, toxicity is the main reason for the control of
residual solvents and their elimination is driven by regu-
lations that limit their concentration in pharmaceuticals
[91,92]. Moreover, most organic solvents are volatile,
flammable, hazardous to humans, and the environment
and they are the main component of generated waste
in the pharmaceutical industry. There is no doubt that
these observations point out the relevance of greener
solvent free processes as discussed in the following
sections.

Interfacial activation of lipases with the addition
of surfactants

The effect of the addition of surfactants has also been
investigated in the hydrolysis of ketoprofen esters in
order to improve the catalytic performance of the bio-
catalysts. In general, the active site of the lipases and
esterases contains a catalytic triad that is buried com-
pletely beneath a helical segment or lid. The enzyme's
active site is exposed by the movement of the helical
lid that occurs in the presence of aqueous-oily environ-
ments. The addition of emulsifiers in the reaction
medium somehow mimics that microenvironment, pro-
motes the exposure of the active site and the accessibil-
ity of the substrate.

In this context, several authors reported the addition
of the non-ionic surfactants Tween-80 [55,58,64-66,
68,74,78] (entries 9, 12, 18, 20, 21, 24, 30, and 34 in
Table 2) and Triton X-100 [56,57,61,63,66,72,74,82,85,87]
(entries 10, 11, 15, 17, 21, 28, 30, 38, 41, and 43 in
Table 2) in the hydrolysis of R-/S-ketoprofen esters cata-
lyzed by lipases and esterases. In this regard, many
investigations provide evidences of the high enantio-
meric excess and enantiomeric ratio of the enzymes in
the presence of the surfactants (Table 2). For example,
the lipase OF from Candida rugosa achieves an E 62
(entry 9 in Table 2) with the addition of Tween-80 and
no added co-solvent [55]. Additionally, the esterase
from Bacillus stearothermophilus in Triton X-100 shows
and enantiomeric excess above 98 and 50% conversion
that corresponds to an optimum performance (E > 400)
as discussed before (entry 11 in Table 2) [57].

Liu et al. reported a dependence of lipase activity
with this kind of surfactant [51]. Non-ionic surfactants
enhanced the catalytic performance while the cationic
(bis-octadecyl dimethyl ammonium chloride called
BODMAC, benzethonium chloride, and cetyltrimethy-
lammonium bromide) and anionic (sodium dodecyl sul-
fate and bis-2-ethylhexylsodium sulfosuccinate typically
called AQOT) surfactants showed inhibitory effects on the
lipase. Actually, the hydrolysis with such emulsifiers
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shows enantiomeric ratios E<5 (entries 5 and 33 in
Table 2) [51,77]. These effects are attributed to ionic
interactions between the surfactant and the lipase,
which induce unfolding and denaturing of the enzyme.
On the other hand, non-ionic surfactants present only
hydrogen-bonding and hydrophobic interactions with
the enzyme. These interactions activate the enzyme and
may change their enantioselectivity.

Kim et al. used chiral cyclodextrins to produce a
complex with R-/S-ketoprofen ethyl ester that was able
to disperse in an aqueous medium (entry 16 in Table 2)
[62]. Hydroxypropyl-fS-cyclodextrin was the most effi-
cient chiral selector and disperser within the assayed
cyclodextrins. This phenomenon was attributed to the
formation of an inclusion complex between the cyclo-
dextrins and 2-arylpropionic acid that enhances the
solubility in order to perform the chiral resolution.

Kinetic resolution in solvent-free systems

Tables 1 and 2 show that the kinetic resolution of
racemic ketoprofen is performed with the addition of
varied organic solvents as discussed in the “Kinetic reso-
lution in non-aqueous environments” section. However,
the solvents are not completely removed during the
actual manufacturing process and the residual amount
of those substances in the pharmaceuticals (both in the
active pharmaceutical ingredient and the excipients) is
tightly regulated. The United States Pharmacopeia USP
30 indicates that those solvents belonging to Class |
should be avoided (carbon tetrachloride; 1,2-dichloro-
ethane; 1,1-dichloroethene, among others) [92,93].
Methanol, hexane, trichloroethylene, and acetonitrile
(among others) that are within the Class Il of solvents
must be kept at low concentrations. Ethanol, acetone,
1-butanol, heptane, methyl isobutyl ketone, dimethyl
sulfoxide among others, occur in Class Il since they are
considered less toxic and a lower risk to human health
than the other classes of solvents.

Therefore, the solvent may sometimes be a critical
element in the synthetic process and thus, a solvent-
free system is of great interest as discussed before.

In this context, a solvent free-system consists of a
simple mixture of reactants that allows a high substrate
concentration, is cost saving, reduces environmental
hazards, and allows the recovery of products without
further complex purification steps (since fewer compo-
nents would be present in the reaction mixture at the
end of the manufacture).

There are few studies concerning lipase-catalyzed
esterification in solvent-free systems (entries 6, 17,
and 18 in Table 1) [32,43,44]. In this regard, Toledo
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Immobilized enzyme
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Figure 2. Schematic diagram of a solvent-free two-phase sys-
tem for the hydrolysis of ketoprofen esters (from reference
[59)).

et al. reported an enantiomeric ratio E~ 4 using solely
ethanol and 1-propanol as reactants and solvents [44].

The esters of ketoprofen are soluble in aqueous buf-
fered systems therefore the hydrolysis can readily be
performed without the addition of an organic solvent
with excellent results as discussed before (entries 19,
1-4, 7-9, 13, 16, 22, and 35 in Table 2) [34,47-50,53-55,
59,62,67,79].

Jin et al. developed an interesting solvent-free two-
phase system to hydrolyze ketoprofen esters catalyzed
with Novozym® 435 [59]. The system involves an upper
phase containing the butyl ester and a lower phase
containing an aqueous solution of NaHCO; (Figure 2).
The stereoselectivity of the biocatalyst allowed the pro-
duction of S-ketoprofen ester as an unreacted substrate
and R-ketoprofen as a product of the enzymatic reac-
tion. The last one is transferred to the aqueous layer
upon deprotonation in the basic media. The biphasic
hydrolysis reached a low enantiomeric ratio (E 8) simi-
larly to the results obtained in the esterification without
added co-solvent.

Influence of the nature of the alcohol in the
biocatalytic performance

There is no doubt that a key factor in the esterification
is the alcohol nature of the reaction. The influence of
the alcohol moiety is related to the mechanism of the
action of lipases, which is known as a Ping-Pong Bi-Bi
with two tetrahedral intermediates and an acyl-enzyme
complex. As the formation of the acyl-enzyme inter-
mediate is a crucial step in the esterification, the final
reaction yield depends on the accessibility of the alco-
hol to the acyl-enzyme complex [94]. Microbial lipases
catalyze the esterification of R-/S-ketoprofen preferen-
tially with primary alcohols; the reaction rate diminishes
with secondary alcohols and is practically nil with ter-
tiary alcohols.

More recently, this research group performed a thor-
ough investigation of the esterification of R-/S-ketopro-
fen with various alcohols catalyzed with Novozym® 435

[43,44]. The alcohols were used as reactants and sol-
vents therefore no co-solvents were added in order to
develop a greener process. The interaction of the alco-
hols with the biocatalyst was studied at a molecular
level through in situ infrared spectroscopy and molecu-
lar modeling. The evidence undoubtedly demonstrates
the dissolution of the polymeric support, loss of active
protein, strong adsorption of the alcohols, modification
of the secondary structure of the protein, and smooth-
ing of the inner structure of the biocatalyst’'s beads
upon extended contact with the alcohols [95].
Nevertheless, the specific activity and enantiomeric
excess towards dexketoprofen remained unaltered
upon extended contact with ethanol, 1- and 2-propanol
as acyl acceptors. Theoretical calculations demonstrated
that methanol introduces steric and electronic hin-
drance within the step of the coordination of the R-/S-
ketoprofen with the catalytic triad.

Park et al. demonstrated that the highest rate of
esterification occurred with primary alcohols but it was
nil with secondary alcohols. The authors did not
observe a correlation between the length of the carbon
chain of the primary alcohols (C1-C8) and the activity of
CALB [30].

In this context, the investigations of Li et al. sug-
gested that primary and secondary alcohols could
match the hydrophobic acyl-binding tunnel of the
active site of the lipase from Burkholderia cepacia
increasing the catalytic activity. However, the structure
of the carbon chain of polyols and tertiary alcohols
caused steric hindrance in the active site so that the
esterification is inhibited [42]. In contrast with this
observation, Chang and Hsu observed that the lipase
from Candida rugosa was active with diols such as 1,4-
butanediol and 1,3-propanediol [35]. However, the
enantiomeric ratio of the esterification of ketoprofen
with those alcohols is strongly influenced by the co-
solvent. For instance, 1,3-propanediol with isooctane
provides an E 51 but this value drops below zero in
cyclohexane. In contrast, E equals 2 in the esterification
with 1,4 butanediol in isooctane but the E value is 18
when cyclohexane is used.

Those conclusions indicate that there is not an uni-
vocal trend between the length and structure of the
alcohols carbon chain and the catalytic performance.
Therefore, the influence of that parameter must be
investigated for each individual enzyme.

Influence of the water content in the catalytic
activity

It is well known that a certain water activity (aw) is
required in order to retain the catalytically active
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three-dimensional structure of the enzymes and it is
crucial in enzymatic synthetic reactions in organic
media. A molecular dynamics investigation of the struc-
ture of CALB in pure water and methanol, tert-butyl
alcohol, methyl tert-butyl ether, and hexane with vari-
ous water activities demonstrated that the hydration of
the enzyme was similar regardless of the solvent.
However, the solvent and a,, influence the structure
and flexibility of the enzyme [96]. Investigations per-
formed by Chamorro et al. demonstrated that a small
amount of water leads to an enhancement of the cata-
lytic performance of CRL which the authors relate to a
more accessible active site. This enzyme lacks enantio-
selectivity unless a little amount of water is present in
the reaction medium. In fact, conversion and specific
activity for S-ketoprofen increases from 5% and 6.9 mM
U'h™" to 27.5% and 47.7mM U~ "h™" in the absence
and presence of water, respectively. However, these
parameters remain constant for R-ketoprofen [97].

Conversely, Foresti et al. proposed the presence of a
network of H-bonding water pool near the active site
which may interact with the histidine residue of CALB,
disrupting the close interaction serine-histidine within
the active triad. Theoretical calculations revealed that
the addition of water to the double bond of the histi-
dine (His224) is favored by —8.4 kcal mol~' [98]. This
observation indicates that high water content in the
reaction media can be considered as an inhibiting fac-
tor. Banik et al. demonstrated that polar solvents com-
pete with water molecules for interaction with the
surface of CALB and are able to displace the molecules
of water that form the first hydration shell of the
enzyme [99]. The authors also concluded that high
density of the solvent molecules near the active site
region and at the entrance of the active site pocket
indicates a clear affinity of the solvent for the active site
region. The fact that the solvent molecules have a
strong affinity toward the active site indicates that it
can compete with substrate molecules and can act as
an inhibitor resulting in a reduced catalytic activity.

Water is produced during esterification reactions. As
it is accumulated in the reaction media, it decreases
both the reaction rate and the ester yield. Molecular
sieves, a saturated solution of certain salts and also the
continuous consumption of water through a side chem-
ical reaction have been strategies proposed to maintain
constant water activity [100].

For instance, Park et al. obtained the highest
enantiomeric ratio (E 15) in the esterification with etha-
nol in a solvent mixture with 0.15% v/v water or with
the addition of NaSO,4-10H,0 [30].

Additionally, De Crescenzo et al. performed the
enzymatic esterification of racemic ketoprofen under
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reduced pressure [32]. This process allows the continu-
ous removal of the produced water by vaporizing the
solvent rich in water under reduced pressure and recy-
cling the dry solvent in the reaction media after passing
it through a water trap.

Scaling-up of the kinetic resolution towards
the commercial production of dexketoprofen

The successful industrial application of a biotransform-
ation comprises a series of requirements that are sum-
marized as follows [101]:

e The application of free crude or purified enzymes in
aqueous or organic media in a batch or fed-batch
reactor. The use of liquid-solid or liquid-liquid
biphasic systems is of much interest for simple and
straightforward industrial processes.

e Continuous application of immobilized enzymes in
fluidized or fixed bed reactors.

e The use of enzyme membrane reactors when the
biotransformation requires the recycling of a cofac-
tor or expensive enzymes.

e The highest product concentration in the shortest
possible time during a biocatalytic process (value
creation).

e All the following steps in the downstream process-
ing must be designed to minimize losses during
isolation and purification (value conservation).
Process intensification including process integration
between value creation and value conservation is
the key to cost control.

This section discusses the scientific investigations
that, from the point of view of the authors, accomplish
with some of those premises and therefore, might be
considered as possessing potential for industrial
applications.

In this context, Liu et al. tested a stirred tank reactor,
a packed column and an air-bubbled column reactors in
the biocatalytic hydrolysis of 2-chloroethyl ester of
racemic ketoprofen [64]. The air-bubbled column
reactor containing the immobilized lipase from Candida
rugosa allowed a long term operation and maintains
more than 50% of its initial activity for 300 h. This setup
developed a productivity of 6.7 g ketoprofen per day
per gram of immobilized enzyme, compared to 2.3 g for
the packed column reactor.

D’Antona et al. reported large scale preparation of S-
ketoprofen through a two-step kinetic resolution [33].
Initially, the racemic mixture of ketoprofen is esterified
with ethanol in 1,2-dichloropropane until 58% conver-
sion and 77% enantiomeric excess towards S-
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ketoprofen is obtained. The catalyst employed,
Novozym® 435, is separated and the solution is evapo-
rated to dryness under vacuum. The oily residue is
mixed with dicloromethane and sodium bicarbonate
that generates two phases. Concentrated sulfuric acid is
added until ketoprofen enantiomerically enriched in the
S-enantiomer precipitates. The recovered solid is mixed
with a similar amount of racemic ketoprofen and the
process starts again. This two-step procedure reaches
60% overall yield and 96% enantiomeric excess towards
the S-enantiomer.

Zhu et al. studied a two-step process involving both
hydrolysis and esterification reactions (Figure 3) [36].
The hydrolysis of the methyl ester of ketoprofen cata-
lyzed by the lipase from Candida rugosa is performed in
a first step reactor. A second hydrolysis is performed
under similar conditions although the ketoprofen
methyl ester came from the re-esterification of the keto-
profen (enriched in S-ketoprofen) produced in the first
hydrolysis step. The second hydrolysis ended when the
enantiomeric excess of S-ketoprofen reached a desired
value. Under these experimental conditions, the authors
could achieve an E value of 38.

Two-step enantioselective hydrolysis

Regarding the esterification reaction, the operation
was similar. The first esterification step is followed by a
second esterification but employing the ketoprofen
(enriched in S-ketoprofen) from the first one and the
biocatalyst Novozym® 435. In this attempt, the authors
only reached an E value of 10.5. A similar proposal was
reported by Wu et al. that performed the esterification
of R-/S-ketoprofen followed by the enzymatic hydrolysis
of the ester product [90]. In the first step of the esterifi-
cation, the ester conversion reached 58.3% and an
enantiomeric excess of 83% to S-ketoprofen which cor-
responded to an E value of approximately 10. After this
reaction, hydrolysis was performed of the ester product
(which was enriched in R-enantiomer) in order to
increase the R-ketoprofen concentration. This process
achieved 90% of enantiomeric excess of R-ketoprofen
when 30% of the ester was converted.

An alternative methodology, based on enzymatic
membrane reactors (EMR), was developed by Ong et al.
[40]. The substrates are fed in an EMR and the products
separated through the membrane in a continuous flow
type operation. The EMR technology offers high effi-
ciency, ease of scale-up, applicability in continuous and

Two-step enantioselective esterification
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Figure 3. Two-step biochemical kinetic resolution of racemic ketoprofen (from reference [36]).
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steady state mode, easier retention, reuse of the
enzyme, reduction of substrate/product inhibition,
enzyme-free-end product, flexibility of the system con-
figuration, enhanced stability of enzyme, and resistance
to dilution by solution. The Figure 4 compares the
enzymatic esterification of R-/S-ketoprofen in a batch
reactor and an EMR where the esterification occurs at
the layer of CALB immobilized on the membrane. This
setup allows the esterification with an E 27 versus 10 of
the operation in a conventional batch reactor.

Lozano et al. described an enzymatic membrane
reactor based on ionic liquids (ILs) and supercritical CO,
which was applied to the enantioselective esterification
of R-/S-ketoprofen with 1-butanol (Figure 5) [41]. The
scCO, flow was able to extract continuously the R-keto-
profen butyl ester from the IL medium through a poly-
meric membrane. The enantiomeric excess towards

S-ketoprofen reaches 23% after a 10h reaction (calcu-
lated from the data provided by the article) and remains
constant up to 25h of operation. This technique is a
green chemistry tool to easily carry out the separation
of ketoprofen isomers although more research must be
conducted in order to improve the enantiomeric excess
towards the S-enantiomer.

Hydrolysis of the R-/S-ketoprofen ester catalyzed by
an esterase enzyme has been performed in bi-continu-
ous microemulsion conditions by Sathishkumar [77].
This system features continuous oil and water phases
intertwined in a dynamic extended network in which oil
and water are separated by extended fluid interfacial
films comprised of a monolayer of surfactant molecules.
Bi-continuous microemulsions are capable of solubiliz-
ing the enzyme and hydrophilic substrates, as well as
the hydrophobic reactants. lonic and polar species
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diffuse into the water phase and non-polar species dif-
fuse into the oil phase. The esterase from Pseudomonas
sp is dissolved into the aqueous phase, whereas the
substrate and the product of the hydrolysis are dis-
solved in the organic medium. Although the conversion
was higher and faster than in regular emulsified
hydrolysis (such as those discussed in the “Interfacial
activation of lipases with the addition of surfactants”
section), the enantiomeric ratio E was 1.7. This
observation indicates that this system requires further
optimization in order to be useful for industrial
applications.

Final remarks

This contribution is an overhaul of the kinetic resolution
of racemic ketoprofen for the past 22 years. The most
commonly employed biocatalysts are based on lipases
in their free and immobilized form. Esterases were also
applied in the hydrolysis of the esters of racemic keto-
profen. The exhaustive analysis of results presented in
this review, allows the conclusion that the hydrolytic
reaction is the most suitable for the kinetic resolution of
ketoprofen. The optimal reaction medium conditions
have been widely studied regarding the effect of differ-
ent polarity solvents, the addition of emulsifiers, the
nature of the alcohols used in the esterification, and the
control of water activity. Scale-up attempts have been
performed by applying two-step resolution techniques,
enzymatic membrane reactors, and bi-continuous
microemulsion processes.

The literature illustrates that a limited amount of
supports have been investigated in the immobiliza-
tion of enzymes for the kinetic resolution of ketopro-
fen. In this context, the application of biomass wastes
from the agro-industry (modified or not) as novel
supports might be “cutting edge” research that has
not been explored in the kinetic resolution of racemic
profens.

A further unexplored field is the application of
deep eutectic solvents (known as the third generation
of ILs) as replacement for conventional ILs and
organic co-solvents. Deep eutectic systems possess
straightforward preparation, biodegradability, and low
cost. The feasibility of esterification with alcohols as
reactants and solvents has recently been explored.
Nevertheless, further investigation is necessary to
improve the enantiomeric ratio of the reaction and to
recover the S-enantiomer.

In the opinion of the authors these
observations are an opportunity to develop a sustain-
able technology.
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