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We extend the semiclassical theory of short periodic orbits [M. Novaes et al., Phys. Rev. E 80, 035202(R)
(2009)] to partially open quantum maps, which correspond to classical maps where the trajectories are partially
bounced back due to a finite reflectivity R. These maps are representative of a class that has many experimental
applications. The open scar functions are conveniently redefined, providing a suitable tool for the investigation
of this kind of system. Our theory is applied to the paradigmatic partially open tribaker map. We find that the
set of periodic orbits that belongs to the classical repeller of the open map (R = 0) is able to support the set of
long-lived resonances of the partially open quantum map in a perturbative regime. By including the most relevant
trajectories outside of this set, the validity of the approximation is extended to a broad range of R values. Finally,
we identify the details of the transition from qualitatively open to qualitatively closed behavior, providing an
explanation in terms of short periodic orbits.
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I. INTRODUCTION

In completely open quantum systems the fractal Weyl law
[1] states that the number of long-lived states (the so-called
resonances) scales with the Planck constant as �

−d/2, where
d + 1 is the fractal dimension of the classical repeller. This
has been thoroughly tested [2] and it is a well established
result [3,4]. At the center stage we find the classical invariant
distribution consisting of all the trajectories that do not escape
either in the past or in the future: the repeller. It plays a
fundamental role in the determination of the quantum spectral
features. However, a finite reflectivity R is required to describe
many experimental situations, as it is the case in optical cavities
[5,6], for example. This means that the classical trajectories
arriving at the opening are partially reflected. This leads to
partially open systems, which can be very well represented
with partially open maps. In these cases we have that the
fractal dimension is the phase space dimension and then the
usual fractal Weyl law no longer applies. Nevertheless, the
classical fractal character that remains through the multifractal
measures [7] leads to quantum mechanical signatures. In fact,
in a very recent work [8] the case of the partially open tribaker
map was analyzed. It was found that the number of long-lived
resonances follows a nontrivial scaling.

On the other hand, the semiclassical theory of short periodic
orbits (POs) has been successfully applied to a number of
problems including closed quantum chaotic systems, scarring
phenomena, and more recently to open quantum maps [9].
In this approach the main ingredients are the shortest POs
contained in the repeller; they provide all the necessary
information to construct a basis set of scar functions in which
the quantum nonunitary operators can be written. The number
of trajectories needed to reproduce the quantum repeller
[10,11] is related to the fractal Weyl law [12].
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In this work we extend the short-PO theory to partially open
quantum maps where a fraction of the quantum probability is
reflected. We apply it to the partially open tribaker map. For
this purpose we modify the definition of the scar functions and
define the way in which the trajectories inside and outside the
repeller at R = 0 are taken into account. We find that there
are several regimes as a function of the reflectivity. First is
a perturbative one in which by just considering the shortest
POs inside the repeller at R = 0 the long-lived resonances
and the quantum distribution associated with the invariant
classical measure can be obtained. By suitably incorporating
the shortest POs outside of this set we are able to extend
the validity of the semiclassical calculations well beyond this
perturbative regime. In doing so we keep some of its efficiency
in terms of reducing the dimension of the Hilbert space needed
for the calculations. Finally, we find that a transition from an
openlike to a closedlike behavior takes place and this is clearly
characterized by its effect on the semiclassical calculations.

This paper adopts the following organization. In Sec. II
we define the classical and quantum partially open tribaker
maps and all the relevant quantities associated with them. In
Sec. III we extend the short-PO theory to this kind of system.
In Sec. IV we apply it to our map and discuss the results. We
conclude in Sec. V

II. PARTIALLY OPEN MAPS AND THE TRIBAKER
EXAMPLE

The study of maps, which constitute simple examples
exhibiting a rich dynamics, has a long and fruitful history in the
classical and quantum chaos literature [13–15]. In this respect,
open maps on the 2-torus are transformations that represent
the evolution of trajectories that disappear when they reach an
open region in the bidimensional phase space. An invariant
set is formed by the remaining trajectories, i.e., those that do
not escape either in the past or in the future. These trajectories
build the forward and backward trapped sets, respectively, and
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the intersection of both is what is called the repeller, which
has a fractal dimension.

Partially open maps can be defined as those maps in which
the opening does not absorb all the trajectories that arrive at it,
but reflects back a certain amount. This amount is essentially
given by the reflectivity R ∈ (0 : 1). Here we exclude R = 0
since this corresponds to completely open maps and R = 1
since it represents a closed one. This is the simplest choice of
the reflection mechanism. In general, one considers a function
of the phase space points, R(q,p) in bidimensional examples.
Nevertheless, our simple model captures the main features of
realistic systems of interest such as microcavities [8].

In contrast to what happens in an open map, in partially
open ones the relevant measure is not uniformly distributed on
a fractal, showing multifractality instead. We closely follow the
definition found in [8]. In each phase space region Xi (where i

individually labels them) this measure depends on the average
intensity It with t → ∞ of a number NIC of random initial
conditions taken inside Xi . For each trajectory associated with
them the initial intensity is I0 = 1 and is modified by It+1 =
RIt at each iteration of the map in the case in which it falls
inside the opening. The finite time measure for Xi can be
defined as μb

t,i = 〈It,i〉/
∑

i〈It,i〉, where the average is over
the initial conditions in the given phase space region. In fact,
this measure is the analog of the backward trapped set of open
maps. If we evolve backward we obtain μ

f

t,i , the analog of the
forward trapped set, and the intersection gives what we call
the partial repeller μt,i .

The usual quantization scheme for maps on the torus pro-
ceeds in the following way: In the first place we impose bound-
ary conditions for both the position and momentum representa-
tions by taking 〈q + 1|ψ〉 = ei2πχq 〈q|ψ〉 and 〈p + 1|ψ〉 =
ei2πχp 〈p|ψ〉, with χq,χp ∈ [0,1). Thus the Hilbert space is
of finite dimension N = (2π�)−1 and the semiclassical limit
corresponds to N → ∞. The system’s propagator is given
by an N × N matrix. Position and momentum eigenstates
are given by |qj 〉 = |(j + χq)/N〉 and |pj 〉 = |(j + χp)/N〉
with j ∈ {0, . . . ,N − 1}. A discrete Fourier transform gives
〈pk|qj 〉 = 1√

N
e−2iπ(j+χq )(k+χp)/N ≡ (G

χq,χp

N ).
When R = 0 the opening can be easily quantized as a

projection operator P on its complement. We usually take
a finite strip parallel to the p axis, so if U is the propagator for
the closed system, then Ũ = PUP stands for the open one.
Here we take a partial opening, so we modify this projector by
replacing the zero block of the opening by

√
R × 1, where

the identity has the dimension associated with the escape
region. The resulting partially open quantum map has N right
eigenvectors |�R

j 〉 and N left ones 〈�L
j |, which are mutually

orthogonal 〈�L
j |�R

k 〉 = δjk and are associated with resonances
zj . We choose 〈�R

j |�R
j 〉 = 〈�L

j |�L
j 〉 for the norm.

We make all the calculations of this work on the tribaker
map, whose classical expression is given by

B(q,p) =

⎧⎪⎨
⎪⎩

(3q,p/3) if 0 � q < 1/3

(3q − 1,(p + 1)/3) if 1/3 � q < 2/3

(3q − 2,(p + 2)/3) if 2/3 � q < 1.

(1)

This is an area-preserving, uniformly hyperbolic, piecewise-
linear, and invertible map with Lyapunov exponent λ = ln 3.

FIG. 1. Classical measure μt,i , i.e., the partial repeller on the
2-torus for the partially open tribaker map, for four different values
of the reflectivity R. In the top left panel we show the R = 0 case. In
the top right panel we can observe the R = 0.01 case, which shows
no appreciable differences with respect to the previous value of the
reflectivity. The bottom left panel corresponds to R = 0.07, where
we can find a finite measure outside of the repeller, and the lower
right panel corresponds to R = 0.2, where the measure now extends
to almost all regions of phase space.

An opening has been placed in the region 1/3 < q < 2/3,
where the reflectivity is given by R as explained above.

The quantum version of the tribaker map can be defined by
means of the discrete Fourier transform G

1/2,1/2
N (for brevity

we omit superscripts in the following). Taking antiperiodic
boundary conditions, i.e., χq = χp = 1/2, amounts to pre-
serving time reversal and parity. In a position representation
this map reads (this is a widely accepted quantization and
details can be seen, for example, in [16,17])

UB = G−1
N

⎛
⎜⎝

GN/3 0 0

0 GN/3 0

0 0 GN/3

⎞
⎟⎠. (2)

The partially open quantum tribaker map is then given by
means of the operator

P =

⎛
⎜⎝
1N/3 0 0

0
√

R1N/3 0

0 0 1N/3

⎞
⎟⎠, (3)

applied to Eq. (2), thus obtaining

ŨB = PUBP. (4)

In Fig. 1 we show the finite time partial repeller μt,i at
time t = 10. We have selected four representative examples
for the reflectivity. In the top left panel we take R = 0 for
comparison purposes. Next, in the top right panel we display
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the R = 0.01 case, which is almost indistinguishable from
the completely open one; this suggests that there should be a
perturbative regime at least up to these reflectivity values. In
the bottom left panel we represent the case R = 0.07, where it
is clear that the measure starts to be non-negligible outside the
repeller (R = 0). Finally, in the bottom right panel the R = 0.2
case underlines the need to consider a much different scenario
with widespread finite measure over the 2-torus.

III. SHORT-PERIODIC-ORBIT THEORY FOR PARTIALLY
OPEN QUANTUM MAPS

Following the ideas of the short-PO theory for closed
systems [18], we have recently developed a similar theory
of short POs for open quantum maps [9,12]. In this theory
the repeller has a central role and the short POs that belong
to it provide all the essential information needed to recover
the quantum long-lived eigenvalues and the quantum repeller
(with some exceptions [11]). The fundamental tools in this
approach are the open scar functions associated with each
one of these trajectories. To make the paper self-contained,
we give a brief description of the partially open scar function
construction, which is a very natural adaptation to the case of
partially open maps.

Let γ be a PO of fundamental period L that belongs to
a partially open map. We can define coherent states |qj ,pj 〉
associated with each point of the orbit (it has a total of L

points, all in the partial repeller). We then construct a linear
combination with them:

∣∣φm
γ

〉 = 1√
L

L−1∑
j=0

exp
{−2πi

(
jAm

γ − Nθj

)}|qj ,pj 〉, (5)

where m ∈ {0, . . . ,L − 1} and θj = ∑j

l=0 Sl . In this expres-
sion Sl is the action acquired by the lth coherent state
in one step of the map. The total action is θL ≡ Sγ and
Am

γ = (NSγ + m)/L. Finally, the right and left scar functions
for the periodic orbit are defined through the propagation of
these linear combinations under the partially open map Ũ (up
to approximately the system’s Ehrenfest time τ ):

∣∣ψR
γ,m

〉 = 1

N R
γ

τ∑
t=0

Ũ t e−2πiAm
γ t cos

(
πt

2τ

)∣∣φm
γ

〉
(6)

and

〈
ψL

γ,m

∣∣ = 1

N L
γ

τ∑
t=0

〈
φm

γ

∣∣Ũ t e−2πiAm
γ t cos

(
πt

2τ

)
. (7)

Normalization N R,L
γ is chosen in such a way that

〈ψR
γ,m|ψR

γ,m〉 = 〈ψL
γ,m|ψL

γ,m〉 and 〈ψL
γ,m|ψR

γ,m〉 = 1. These
functions are suitable tools for the investigation of the
morphology of the eigenstates.

In Fig. 2 we illustrate the partially open scar functions by
means of a representation [10] that clearly shows the quantum
probability that can be associated with the classical partial
repeller. We define the symmetrical operator ĥj related to the
right |ψR

j 〉 and left 〈ψL
j | states (in this case scar functions,

where we have collapsed both subscripts to just one for

FIG. 2. Sum of ĥj over the partially open scar functions. The top
panels correspond to R = 0.07 and the bottom ones to R = 0.2. In
the left column we show the scar function set associated with orbits
γ inside the repeller at R = 0, in the right one the set associated with
orbits outside of it.

simplicity)

ĥj =
∣∣ψR

j

〉〈
ψL

j

∣∣〈
ψL

j

∣∣ψR
j

〉 , (8)

which is associated with the orbit γ . By calculating the sum
over all these projectors [11] corresponding to the sets of scar
functions used for a given semiclassical calculation we can
see how different parts of the phase space are represented in
the basis. In the top panels of Fig. 2 we show these sums
for R = 0.07, while in the lower ones we show the sums
for R = 0.2. In the left column we find open scar functions
associated with short POs inside the repeller and in the right
column those outside of it. These sets were actually used for
some of the calculations to be described in Sec. IV. It can be
noticed that the contribution from the orbits that are outside
the repeller increases with R.

As a matter of fact, we now arrive at the other important
point in adapting the theory to the partially open case: how
to select the orbits that take part in the calculation. For this
purpose we choose the following criterion: Select a given
number of POs, NPOs, from the whole set up to a period L,
which approximately covers the partial repeller. The selected
degree in the approximation of this covering translates into
the fraction of long-lived resonances that can be obtained. In
practical terms this means allowing all POs up to period L

that are inside the repeller into a first list, since they have a
uniform weight. Those that are outside must have the greatest
values of μ. We select them by fixing the maximum number
allowed NoutPO

max (again, from all of them up to period L), which
establishes a μ cutoff value from the list of these orbits ordered
by decreasing weight. Here NoutPO

max is established having in
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mind that it should increase with R, starting from zero at
R = 0. For that purpose NoutPO

max grows with the reflectivity
(note that this also depends on the particular map considered).
Hence, the preliminary list of all the orbits incorporates them
by increasing value of their period and contains the ones with
the largest weights. We notice that the number of orbits in
this list is typically much larger than the number needed for
our approximation. As the next step we optimize the set by a
reordering to provide the most uniform covering possible of
the partial repeller. We finish the selection by cutting the list at
NPOs. This criterion blindly selects the most appropriate POs
based solely on their weight and distribution in phase space.

Finally, we construct an appropriate basis in which we can
write the partially open evolution operators associated with
partially open maps as 〈ψL

α,i |Ũ |ψR
β,j 〉. This expression is the

short-PO approximation to the partially open propagator Ũ on
the partial repeller. Equipped with 〈ψL

n |ψR
m 〉 	= δnm, we solve

a generalized eigenvalue problem that provides the eigenstates
of this matrix. The long-lived resonances [9] are constructed
by a linear combination of the eigenvector’s coefficients and
the corresponding scar functions of the basis.

IV. RESULTS

We use the short-PO theory to construct a semiclassi-
cal approximation of the partially open quantum tribaker
map in the N = 243 case, for several values of R, con-
sidering POs up to period L = 7. In order to quantify
the behavior of the short-PO method we define its per-
formance P [11] as the fraction of long-lived eigenvalues
that it is able to reproduce within an error given by ε =√

[Re(zex
i ) − Re(zsc

i )]2 + [Im(zex
i ) − Im(zsc

i )]2, where zex
i and

zsc
i are the exact eigenvalues and those given by the semiclassi-

cal theory, respectively. We restrict our analysis to the number
of exact eigenvalues with modulus greater than νc, which is a
critical value that depends on R. In our calculations we have
tried to keep the number constant at around nc = 60 since for
low values of R this represents the outer ring of eigenvalues
that is a typical feature of the open quantum baker maps. This
is very useful since it provides a natural separation between
short- and long-lived resonances. We calculate the number
of scar functions NSF as a fraction of N that are needed in
order to obtain as many semiclassical eigenvalues inside the
ε = 0.001 vicinity of the corresponding exact ones in order to
reach P � 0.8. The fraction NSF/N is a good indicator of the
efficiency of the method. In fact, one of its main advantages
is reducing the effective dimension of the matrices that one
needs to diagonalize in order to obtain the resonances of the
quantum system. However, it also reveals if there are quantum
signatures of (multi)fractal dimensions when partially opening
the map (like the fractal Weyl law). It is worth mentioning that
all the threshold values considered guarantee a reasonably
good performance of the approximation and the evaluation
of a meaningful number of eigenvalues in the whole range
of situations that we have studied. Stricter thresholds could
be chosen, but this would not lead to significantly better
results. In particular, the quantum repeller is guaranteed to
be reproduced in an extremely acceptable way, as will be
shown in the following. A note of caution is in order here.
We have chosen to measure the performance in terms of the

FIG. 3. Fraction of scar functions NSF/N needed to reach P =
0.8 as a function of the reflectivity R. The green (gray) line with
squares corresponds to the case where only POs inside the repeller
have been considered. Blue (black) and cyan (light gray) lines with
circles and triangles correspond to considering NoutPO

max = 5 and 50,
respectively. The left inset shows the behavior for greater R values.
In the right one we show the drop in the performance P as a function
of R when the POs used in the calculation are all inside the repeller
up to period L = 7.

size of the basis needed for the calculation. However, even in
the completely closed case where a full size basis is always
needed, this theory is highly advantageous with respect to
trace formula methods [19], which require an exponentially
growing number of trajectories. We should emphasize that
the latter methods are extremely important in quantum chaos
theory for many other reasons.

In Fig. 3 we show the fraction NSF/N needed to reach
P � 0.8 as a function of R ∈ [0 : 0.1] for three different
scenarios derived from our POs selection criterion. The line
with squares corresponds to the case in which we only take POs
that belong to the repeller. We have also considered NoutPO

max = 5
(POs outside of it), results that are represented by the line with
circles. Finally, the case with NoutPO

max = 50 is shown through a
line with triangles. We point out that there is no improvement
in the calculations when considering more POs outside the
repeller.

The results in Fig. 3 clearly show that the behavior of
the short-PO theory for the partially open tribaker map can
be divided into four regimes. First we notice that there
is a perturbative regime in which the open scar functions
associated with the POs inside the repeller at R = 0 are the
only ones needed in order to accurately reproduce the long-
lived resonances. This regime extends up to approximately
R = 0.01. It is also clear that by incorporating up to five POs
outside the repeller with the greatest μ values the performance
is worse. This amount represents around 1% of the available
POs up to period L = 7. Moreover, if we include up to 50 of
these POs the result is much worse (a significant amount of
the POs inside the repeller are now replaced by them). Beyond
R = 0.01 the POs in the repeller are still enough to reproduce
the long-lived resonances, but the overall amount of scar
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functions needed steadily increases up to R = 0.07, though
at a slower pace than before. In fact, for R ∈ [0.01 : 0.07]
we identify a semiperturbative regime, in the sense that the
classical information of the repeller is still enough but becomes
less efficient. Above R = 0.07 the repeller is not enough to
adequately treat the problem and other POs outside of it are
needed. As a matter of fact, we have included all the POs
inside the repeller up to period L = 7 and they were not
sufficient to expand the number of eigenstates necessary to
reach P = 0.8. This is the reason why the corresponding curve
stops there. The right inset of Fig. 3 shows the behavior of P

as a function of R, when all the POs up to period L = 7 inside
the repeller are the only ones used in the calculation. It is
clear that the performance drops to approximately one-third
of the long-lived eigenstates for R = 0.15, but also that only
up to a 60% of them can be reproduced at around R = 1.0.
From R = 0.07 on, we also see that by incorporating a greater
amount of POs not inside the repeller, we obtain a similar
performance of the method. That is, the proper partially open
regime extends up to R = 0.3 approximately. Beyond that we
find the fourth and last regime, as can be seen in the inset
of Fig. 3. Here a saturation occurs and we need NSF = N ,
leaving our method with no advantage with respect to a direct
diagonalization. Also, the curve corresponding to NoutPO

max = 5
[blue (black) line with circles] stops at R = 0.2 since this
number is not enough to satisfy our P criterion. Again, this
does not invalidate many other advantages of our theory, which
are related to the ability to express the eigenstates in terms
of just the shortest POs of the system. In turn, it is a clear
sign that the system has become effectively closed from our
perspective, i.e., we need to expand all of the phase space no
matter what the local value of the measure μ is. This relevant
result has been found due to the implementation of our theory.
We have verified that in the case N = 729, NSF/N = 0.69
for R = 0.01, obtained with all the POs inside the repeller,
and NSF/N = 0.96 for R = 0.1, with POs mainly outside of
it. This is in agreement with the previous results, though we
leave the study of this scaling for future work.

To illustrate this behavior we use the projectors ĥj of Sec. III
now associated with the right |�R

j 〉 and left 〈�L
j | eigenstates,

which are related to the eigenvalue zj . We calculate the sum
of the first j of these projectors [11], ordered by decreasing
modulus of the corresponding eigenvalues (|zj | � |zj ′ | with
j � j ′) up to completing the set of long-lived resonances:

Q̂j ≡
j∑

j ′=1

ĥj ′ . (9)

Their phase space representation by means of coherent states
|q,p〉 is given by

hj (q,p) = |〈q,p|ĥj |q,p〉|, (10)

Qj (q,p) = |〈q,p|Q̂j |q,p〉|. (11)

This is our formal definition of the partial quantum repeller,
which we denote by Qnc

.
In Fig. 4 we show Qnc

for the exact resonances in the left
column and the ones given by the short-PO approach, i.e.,
Qsc

nc
, in the right one. In the top panels the case R = 0.07 has

FIG. 4. Partial quantum repeller Qnc
for the exact resonances (left

column) and Qsc
nc

for the short-PO-theory results (right column) for
R = 0.07 (top) and R = 0.2 (bottom).

been obtained by just using the POs that are in the repeller.
This shows that the POs inside the repeller are enough to
reproduce the partial quantum repeller; little probability is
found outside of it. In the bottom panels we display the
R = 0.2 case where the contribution from the orbits outside
the repeller is crucial, as can be noticed from the greater
nonzero probability found in other regions of phase space.
The overlap of the normalized distributions, calculated as
O = ∫∫

Qnc
(q,p)Qsc

nc
(q,p)dq dp, is O = 0.994 for R = 0.07

and O = 1.0 for R = 0.2, confirming the excellent agreement
between the exact and the semiclassical results.

V. CONCLUSION

We have extended the short-PO theory to partially open
quantum maps and have applied it to the particular case
of the partially open tribaker map. It turns out that for
low reflectivities, the long-lived resonances and the partial
quantum repeller can be reproduced up to a very good accuracy
with just the classical information of the repeller (R = 0).
Moreover, we identify four different regimes in which the role
played by the orbits that exist inside and outside the repeller
changes. They are the perturbative, semiperturbative, proper
partially open, and effectively closed regimes. This translates
directly into the partial quantum repeller, which performs a
nontrivial transition from an openlike to a closedlike shape as
a function of R.

One of the main features of our theory when applied to
open maps is that the size of the matrices needed in the final
diagonalization is drastically reduced. This is due to the fact
that the number of necessary scar functions scales according
to the fractal Weyl law [12]. In the case of the partially open
tribaker map we have found that for R < 0.01 (perturbative
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regime) the reduction in the calculation effort is very important.
This result is clearly relevant since not only the striking
efficiency of the method is almost fully kept, but also the
spectral statistics already shows the effects of multifractality
[8]. The behavior in this region of R offers a very interesting
research line for the future, from the theoretical point of view
and also from the perspective of applications [20]. However,
this advantage is gradually lost as the reflectivity R increases
and completely disappears for reflectivity values R � 0.2.
However, this is related to the very nature of the open map,
which performs a transition that up to now could only be
noticed by the change in the shape of the spectrum [8]. This
underlines the importance that the probability distributed in
each region of phase space has in this kind of map (despite the
fact that we have selected the orbits in terms of their weights
expressed by μ). Moreover, from the semiclassical point of
view, all the POs are progressively more interconnected as a
function of R and each detail of them becomes more and more
relevant for a precise diagonalization.

In fact, our theory is a natural way to bridge the gap between
the short-PO theories for completely open and completely
closed maps. In doing so, we were able to show how the
relevant phase space structures perform this transition. This
opens many possible applications for studying the connections
between orbits and properties of this kind of system. In this

sense, the partially open scar function is a very interesting tool
for the study of the morphology of the eigenstates. We think
that our semiclassical theory can significantly contribute to
the study of emission problems in microcavities. We must
underline that, compared to trace formulas methods, our
theory gives all quantum information in terms of just the
shortest POs. In closed systems this approach is already a
great advantage for many studies [21]. We think that the
present work allows extension of these benefits to partially
open maps for all R. To name a few specifically, we can say
that the scarring of eigenstates could be better understood,
for example. One way to do this would be to follow a
given short PO along the spectrum for different values of the
reflectivity. On the other hand, the interplay among POs could
be influenced by the gradual recovering of the heteroclinic
circuits connecting them. Understanding this should provide a
different perspective to interpret the spectral behavior.
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