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Abstract
Global metrics of land cover and land use provide a fundamental basis to examine the spa-

tial variability of human-induced impacts on freshwater ecosystems. However, microscale

processes and site specific conditions related to bank vegetation, pollution sources, adja-

cent land use and water uses can have important influences on ecosystem conditions, in

particular in smaller tributary rivers. Compared to larger order rivers, these low-order

streams and rivers are more numerous, yet often under-monitored. The present study

explored the relationship of nutrient concentrations in 150 streams in 57 hydrological basins

in South, Central and North America (Buenos Aires, Curitiba, São Paulo, Rio de Janeiro,

Mexico City and Vancouver) with macroscale information available from global datasets

and microscale data acquired by trained citizen scientists. Average sub-basin phosphate

(P-PO4) concentrations were found to be well correlated with sub-basin attributes on both

macro and microscales, while the relationships between sub-basin attributes and nitrate

(N-NO3) concentrations were limited. A phosphate threshold for eutrophic conditions (>0.1

mg L-1 P-PO4) was exceeded in basins where microscale point source discharge points

(eg. residential, industrial, urban/road) were identified in more than 86% of stream reaches

monitored by citizen scientists. The presence of bankside vegetation covaried (rho = –0.53)

with lower phosphate concentrations in the ecosystems studied. Macroscale information on

nutrient loading allowed for a strong separation between basins with and without eutrophic

conditions. Most importantly, the combination of macroscale and microscale information

acquired increased our ability to explain sub-basin variability of P-PO4 concentrations. The

identification of microscale point sources and bank vegetation conditions by citizen scien-

tists provided important information that local authorities could use to improve their man-

agement of lower order river ecosystems.
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Introduction

Anthropogenic stressors endanger more than 65% of fluvial habitats globally [1]. Increased
nutrient loads and reduced ecosystem functioning have led to algal blooms and widespread
artificial eutrophication in most freshwater ecosystems. This is evident in both periurban and
rural ecosystems, where land management has a strong influence on nutrient fluxes, in com-
parison to the dominant climate influences in undisturbed areas [2, 3]. In urban and periurban
areas, elevated impervious land cover modifies nutrient dynamics [4–6] and particulate inputs
[7]. In agriculturally dominated areas, increasingly industrial-scale activities utilise major
inputs of mineral based nutrients which have basin-scale (and long term) impacts on the nutri-
ent dynamics of rivers, river sediments and receiving waterbodies [8]. The resulting eutrophi-
cation modifies macroinvertebrate and native fish populations, carbon sequestration and in-
stream vegetation diversity (eg. favouring harmful algal blooms), effectively changing the basis
of ecosystem functioning [9–12].

The use of satellite based estimates of land cover and land use provides a fundamental basis
to understand the spatial variability of human-induced impacts on freshwater ecosystems [13].
However, microscale processes and site specific conditions related to bank vegetation, pollution
sources, adjacent land and water use have been shown to impact biological communities [14–
16]. While macroscale information from Earth Observation (land cover/use) is increasingly
available, microscale data require local data gathering. Acquisition of such high resolution field
data is resource (cost, time) intensive. Most monitoring programmes focus on a limited num-
ber of typically large waterbodies (i.e., usually the most important tributaries of a given catch-
ment area). This is particularly problematic as the majority of water bodies are small and
therefore unmonitored [17].

Clearly, there is a need for new data acquisition approaches. One possible source of addi-
tional data is that acquired by trained citizen scientists–non-professional scientists or volun-
teers with basic training in data collection and ecosystem analysis. Citizen science is
increasingly being relied on to improve the temporal and spatial resolution of local data acqui-
sition, complementary to agency monitoring programmes [18–20]. This approach depends on
appropriate training [21] and the presence of a local community willing to collaborate.

Combining macroscale and microscale information gathered through citizen scientists rep-
resents a novel opportunity to identify the conditions of freshwater ecosystems and the factors
which influence their degradation. However, the relative importance of microscale data with
respect to larger macroscale information for explaining ecosystem conditions remains unclear.
This has important consequences as microscale conditions are more amenable to management
actions (restoration, mitigation) than macroscale land use changes. The determination of
threshold values for microscale conditions would allow more effective decision making.

In the present study, we explored the use of high resolution microscale data gathered by citi-
zen scientists to improve the explanatory power of low resolution macroscale information on
river stressors in stream basins in South, Central and North America. We hypothesised that
nutrient concentrations are sensitive to potential drivers at both macro and microscales and
that the latter are complementary to the former. To our knowledge, this is the first study to
associate data acquired by citizen scientists with macroscale information for the analysis of
freshwater ecosystems.

Methods

Our analysis was based on the hypothesis that information at two very different scales, macro-
scale data (globally available) and microscale data (obtained by local citizen scientists) would
provide insights to different nutrient pathways and processes, allowing for a more robust
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analysis of sub-basin conditions [22, 23]. We focused on microscale data that would best
describe point sources and processes (pollution sources, bankside vegetation, local land use/
cover) and macroscale data for diffuse processes and sources (nutrient loadings, general land
use/cover and population). Additional hydrological variables (stream order, sub-basin size and
sampling day precipitation) were also expected to influence nutrient conditions [24].

Macroscale data acquisition

Drainage basin boundaries (HydroBasins) for each study area were extracted from the 15 arc-
second resolution USGS HydroSHEDS database. HydroBasins are nested hierarchically into 12
levels following the Pfafstetter coding system [25]. For this study, level 10 basins were used,
which provided an appropriate scale for aggregating samples into similar sized basins with
common geological and climate conditions. Stream order (Strahler classification) was deter-
mined using 15 arc-second resolution USGS HydroSHEDS flow accumulation and flow direc-
tion data, using a minimum accumulation condition of 100 cells. Population densities for 2010
were obtained from the Columbia University Center for International Earth Science Informa-
tion Network [26, 27]. Daily precipitation data was obtained from the Global Precipitation Cli-
matology Project [28]. The Adjusted Human Water Security (AHWS) index was used as well
as its component datasets (30' resolution latitude x longitude) for nutrient loading and land
cover fractions for the year 2000 [29]. The AHWS combines key global drivers regarding water
resource development (human and agricultural), pollution (nutrient loading), watershed dis-
turbances (cropland and livestock density) and biotic factors (fishing and invasive species).

Field measurements

Between September 2013 and September 2015, 1,000 trained citizen scientists, working in
groups of 2 or 3, collected 2,097 datasets from 150 rivers and streams in urban and periurban
areas in Buenos Aires, Curitiba, São Paulo, Rio de Janeiro, Mexico City and Vancouver as part
of the FreshWater Watch programme. Measurements were repeated bimonthly or quarterly in
the same sample sites, assigned by project scientists to cover urban, periurban and quasi-rural
streams that were not being monitored by local authorities. Additional sites (13%) were self-
selected by participants. The locations and measurements obtained at each sample are available
at: freshwaterwatch.thewaterhub.org/content/data-map and the site locations are presented in
Fig 1.

Each dataset contained observations and measurements of ecosystem conditions, hydrology
and water quality, collected using a consistent methodology and uploaded directly on to the
online database available. General ecosystem conditions included observations of the land use/
cover in the immediate surroundings of the sampling site, visible evidence of pollution sources
(e.g. discharge pipes) and estimates of their potential sources (urban or road runoff/drainage,
residential, industrial, other) and the presence of bankside vegetation at the sampling point.
These observations were limited to the immediate area of the sampling site, in general less than
25 m in both directions. Hydrological conditions were assessed using categorical estimates of
water flow. Menu-based observations of water colour, the presence of pollution features (oil,
foam, litter) and algal blooms were also recorded for each site and supported by a photographic
documentation [19].

Measurements of dissolved phosphate (P-PO4) and nitrate (N-NO3) concentrations were
performed from unfiltered samples using colorimetric methods. The method allowed for in-
situ estimates of dissolved nutrients with exposure to reagents occurring within closed sample
tubes, a method appropriate for a mass citizen science programme. Total nutrient concentra-
tions could not be measured in the field by citizen scientists due to digestion and laboratory
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analysis requirements. Phosphate concentrations were estimated using inosine enzymatic reac-
tions in seven specific ranges from 0.02 mg L-1 to 1.0 mg L-1 P-PO4 [30, 31]. Nitrate concentra-
tions were measured using N-(1-napthyl)-ethylenediamine [32] in seven specific ranges from
0.2 mg L-1 to 10 mg L-1 N-NO3.

Field methods were tested against laboratory methods [33] and calibrated sensors using
standard solutions and natural water samples. Duplicate and triplicate measurements were

Fig 1. a) Global location of study areas, b) Sub-basins and sampling sites examined by citizen

scientists in Buenos Aires, c) Curitiba, d) São Paulo, e) Rio de Janeiro, f) Mexico City and g)

Vancouver. Basemap image reprinted from Esri under a CC BY license with permission from Esri and its

licensors, original copyright June 2009.

doi:10.1371/journal.pone.0162684.g001
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made during training and quarterly quality control analysis. Variability between different citi-
zen scientists in the same waterbodies (on the training days) was assessed. All data were
cross-checked against specified criteria. If an inconsistent measurement was found, the citizen
scientist who collected the dataset was notified and asked to confirm, delete or correct the
measurement.

Datasets were time and geo-coded either using a dedicated smartphone app or online using
measured geographic coordinates or Google maps. After uploaded to a common database, all
data were checked by project scientists. All participants were trained to use consistent data
acquisition methods by professional scientists in field-based training days and were required to
pass an online training quiz before being able to upload data. Written instruction sheets were
provided with each testing kit and a training video was used to remind participants of the
appropriate methods.

Data analysis

Phosphate and nitrate concentrations were averaged within individual sub-basins (L10 Hydro-
Basin) to determine a sub-basin average. Of the 97 original sub-basins, only those with more
than 10 measurements were used for the analysis (n = 57). The average number of measure-
ments was 34 per sub-basin, covering typically quarterly measurements of 3 streams per basin,
with an average sub-basin area of 146 km2. The experimental unit of all further analysis is that
of the sub-basins.

Microscale information on the number of pollution sources (eg. industrial, residential, road
discharge) observed and recorded by the citizen scientists during each measurement was
summed to create an index of point pollution sources for each sampling site. Observations of
site-adjacent land use/cover were recorded individually and aggregated into three categories
based on assumed potential impact (0-forest, 1-urban park, grassland/pasture 2-agricultural,
industrial, and/or urban residential). Observations of site specific bank vegetation were divided
into vegetated (1) and non-vegetated values (0). All values were averaged across sub-basins.

Macroscale and microscale sub-basin averages were compared to nutrient concentrations
using non-parametric tests (Mann-Whitney U, Spearman’s rank correlation). Correlations
above 0.6 were considered strong following Tukey’s guidelines and multiple hypotheses correc-
tions (Bonferroni) for significance were utilised.

Receiver operating characteristic (ROC) analysis was used to identify possible thresholds for
macroscale and microscale characteristics with respect to elevated nutrient concentrations [34,
35]. ROC analysis is commonly used to understand the performance of a binary classifier [36],
in this case, sub-basins with eutrophic conditions based on P-PO4 concentrations. A single
concentration limit for eutrophication is difficult to determine and will depend on the local
geological, climate and groundwater conditions [37]. Nevertheless, we used a P-PO4 concentra-
tion of 0.1 mg L-1 for rivers and streams to discriminate sub-basins with eutrophic conditions
[38, 39]. We calculated area under the ROC curve to compare the explanatory characteristics
(specificity and sensitivity) of individual microscale and macroscale variables using SPSS (ver-
sion 21). Only those variables that were found to have statistically significant rho were used in
the ROC analysis, considering a Bonferroni-corrected significance of 0.002 (0.05/24).

Nutrient concentrations were log transformed for multiple linear regression analysis (kurto-
sis & skewness outside the range of –1.0 to 1.0). Multiple linear regression (backward step
regression, removal criteria for probability of F< 0.05.) with SPSS (version 21) was used to
identify which microscale and macroscale variables, or combination of variables, contribute to
elevated P-PO4 and N-NO3 concentrations. Those variables that were found to have statisti-
cally significant rho, corrected for multiple hypotheses, were used in the regression analysis.
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Multicollinearity of variables was identified using a Variance Inflation Factor above 2.5 and
noted in the results. Partial correlations and homoscedasticity were also checked. Models were
evaluated based on the highest adjusted R2.

Results

Nutrient concentrations varied greatly across sub-basins and cities (Fig 2, S1 Table), with the
highest concentrations (means and medians) in sub-basins in Mexico City, Rio de Janeiro and
São Paulo, and the lowest in Curitiba and Vancouver.

Sub-basins had differences in land cover, from highly urban to rural with a very low popula-
tion density. São Paulo had the largest coverage of impermeable surfaces and population den-
sity (S1 Table). AHWS was highest in Rio de Janeiro, São Paulo and Mexico. Nutrient loading
was greatest in São Paulo and livestock density was most elevated in Curitiba.

Average stream order was 1.6 (±0.8) with sub-basins in São Paulo having the highest stream
order. Average rainfall on the day of sampling was 3.5 (± 3.1) mm/day with sub-basins in Curi-
tiba having the highest average daily rainfall. Sub-basin areas averaged 146 (± 77) km2 with the
smallest basins in São Paulo and the largest in Rio de Janeiro.

On a microscale, the average number of observed site-specific pollution sources (discharges)
was 0.8 per measurement site (S1 Table), with residential and urban/road sources being most
often identified (Fig 3a). Vegetated stream banks were observed in 93% of the sampling sites,
and microscale land cover was mostly urban residential followed by urban park (Fig 3b).

Fig 2. Average concentrations of phosphate (a) and nitrate (b) measured in each sampled sub-basins (Level 10

HydroBasins on y axis) in Buenos Aires, Curitiba, Mexico City, Rio de Janeiro, São Paulo and Vancouver. Bars indicate 2

standard errors (SE).

doi:10.1371/journal.pone.0162684.g002

Multiscale Drivers to Nutrient Concentrations in Streams

PLOS ONE | DOI:10.1371/journal.pone.0162684 September 23, 2016 6 / 16



High correlations (rho> 0.6, n = 57) between basin averaged phosphate concentrations and
nutrient loading (and organic matter) were observed (Table 1). Interestingly, the observed sum
of microscale pollution sources was the best covariate of phosphate concentration, with a corre-
lation coefficient of 0.70. Moderate correlations (rho from 0.4 to 0.6) of phosphate concentra-
tions with macroscale characteristics of impervious land cover, AHWS and population density
were found. Moderate correlations with microscale variables (bank vegetation cover and land
use/cover) were also evident (Table 1).

Fig 3. (a) Microscale pollution sources identified by citizen scientists reported as the average sum of each pollution source

category per sub-basin averaged by city and (b) percentage of land cover/use recorded by citizen scientists per sub-basin

averaged by city.

doi:10.1371/journal.pone.0162684.g003

Table 1. Spearman’s rho between sub-basin averaged phosphate and nitrate concentrations (n = 57) and microscale and macroscale variables.

*AHWS refers to the Adjusted Human Water Security, [29]. **Significant p-values, considering multiple hypotheses are below 0.002 (Bonferroni

correction).

Phosphate Nitrate

Spearman’s rho p-value** Spearman’s rho p-value

Microscale data (observed by participants)

Land use/cover impact category 0.499 <0.001 0.365 0.005

Sum of pollution sources 0.699 <0.001 0.264 0.047

Stream bank vegetation –0.534 <0.001 –0.139 0.301

Hydrological data

Sub-basin area (km2) 0.117 0.381 –0.13 0.334

Precipitation –0.144 0.286 0.177 0.188

Stream Order –0.166 0.216 0.094 0.485

Macroscale data

Cropland land cover fraction –0.358 0.01 –0.418 0.001

Impervious land cover fraction 0.521 <0.001 0.366 0.005

Nitrogen loading 0.625 <0.001 0.306 0.021

Phosphorus loading 0.639 <0.001 0.313 0.018

AHWS* 0.518 <0.001 0.136 0.313

Population density 0.472 <0.001 0.415 0.001

doi:10.1371/journal.pone.0162684.t001
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Macro and microscale influences on nitrate concentrations were lower, with no high corre-
lations and limited variables with moderate correlations. These were limited to two macroscale
variables: cropland land cover fraction (moderate) and population density (low).

Receiver operating characteristic (ROC) analysis for a phosphate concentration limit of 0.1
mg L-1 suggested that macroscale characteristics (phosphorus loading) and microscale data
(sum of pollution sources) provided significant estimates (p<0.01) with greater than 0.80 area
under the ROC curve. The sum of pollution sources provided a slightly higher area under the
curve (0.89) with respect to phosphorus loading (0.84), where a perfect classifier has an area of
1 (percentage of total area) and a poor classifier has an area of 0.50 [35]. The determination of
area was insensitive to the relative distribution of the two classes, eutrophic and non-eutrophic.
Using a value of 0.75 for sensitivity (true positive rate) and 0.25 (1–0.75) for specificity (false
positive rate), the threshold for phosphate loading was 0.975 (Fig 4). Using a value of 0.75 for
sensitivity (true positive rate) and 0.15 (1–0.85) for specificity (false positive rate), the threshold
for the sum of local pollution sources was 0.855.

The macro and microscale data, combined using multiple linear regression, did not show a
strong relationship with nitrate (log10 transformed to reduce skewness). Phosphate concentra-
tions (log10 transformed to reduce skewness) showed a stronger relationship with both macro-
scale and microscale data (Table 2). Considering the former, a combination of macroscale

Fig 4. Receiver Operating Characteristic curve for the phosphate concentration eutrophication threshold of 0.1

mg L-1 for sub-basins against microscale observations of the sum of pollution sources and macroscale data

related to phosphorus loading. The x-axis is denominated as 1 minus Specificity or the false positive rate.

doi:10.1371/journal.pone.0162684.g004
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phosphate loading (Phosphate loading) estimates and AHWS provided the best model, with a
moderate correlation in explaining the variability of phosphate concentrations in each sub-
basin (adjusted R2 of 0.31, Table 2). The results of the model showed some collinearity as toler-
ance was 0.251 and the distribution of the standardised residuals was skewed towards higher
predicted values (signs of heteroscedasticity). Partial correlations showed that the relationships
between each variable and P-PO4 concentrations (log transformed) remained significant, con-
trolling for the effects of the other variable. The use of only microscale observations (sum of
pollution sources and bank vegetation) provided better explanatory power, reaching an
adjusted R2 of 0.47, with a much higher tolerance of 0.847, a scatter plot of standardised residu-
als showing no trend and partial correlations remaining significant.

Combining both microscale and macroscale information allowed for a large improvement
over the use of macroscale variables alone, and a small improvement over using microscale var-
iables alone (Table 2). The resulting models showed low collinearity between parameters (toler-
ance between 0.8 and 0.9) and there was no serial correlation among the residuals (Durbin-
Watson). Cooks distances were all below 0.2 and the scatterplot of standardised residuals
showed no trends.

Discussion

Nitrate concentrations were not well correlated to either macroscale or microscale land cover/
use variables using the sub-basin averages in the six study areas. Previous studies show correla-
tions between nitrate and agriculture land cover [40, 41] for large river networks. The weaker
correlations in our study for nitrate compared to phosphate may have resulted from the more
dynamic nature of nitrate cycling (with respect to phosphate) in small waterbodies. The study
areas covered a range of climate conditions, with large differences in temperature, residence
time, oxygen conditions, groundwater inputs and surface temperatures, all with important
impacts on dissolved nitrate dynamics [42–44]. As these variables were not evaluated in the
present study, key drivers of nitrate dynamics were left out of the present analysis.

Phosphate concentrations showed important correlations to both macroscale and micro-
scale variables. The positive relationship between phosphate concentrations and macroscale
descriptors, based on low resolution global land cover data, confirmed the usefulness of satellite
based land cover data to study aquatic systems conditions. These globally available data
allowed for a good estimate of the variability of phosphate concentrations across a range of
river environment and climate conditions. These databases, and in particular AHWS, were
developed to examine broad patterns of water quality for large river networks (stream
order> 5, [29]). It is interesting that they were successful when focused on relatively low
stream order systems. It is expected that higher resolution, more current land cover datasets
would provide better results. Such information, if available on a global scale, would greatly
improve our capacity to explore basin scale impacts on freshwater ecosystems across biomes.
At present, most large scale studies are limited to temperate areas [9].

Average sub-basin phosphate concentrations ranged from 0.39 mg L-1 in one sub-basin in
Rio de Janeiro to 0.018 mg L-1 in sub-basins in Curitiba and Vancouver, with an average of

Table 2. Multiple linear regression analysis for sub-basin phosphate concentrations using microscale and macroscale variables.

Model Predictors R R Square Adjusted R Square Std. Error Durbin-Watson

Phosphorus loading, AHWS, Bank vegetation, Sum of pollution sources .72 .51 .48 .256 1.906

Bank vegetation, Sum of pollution sources .70 .49 .47 .258 1.813

Phosphorus loading, AHWS .58 .34 .31 .293 1.740

doi:10.1371/journal.pone.0162684.t002
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0.15 mg L-1. This matches well with the average P-PO4 concentration for all river and streams
in the 30 cities of FreshWater Watch: 0.15 mg L-1 from August 2013 to April 2016 (n = 7,646).
It also matches well with the average P-PO4 concentration reported for all surface waters
(including lakes) in the EPA NRSA/Storet database (n = 105,347, United States only, data from
1992 to 2009); 0.11 mg L-1. Therefore, the nutrient concentrations across our study streams
spanned the range reported in existing international datasets, suggesting our findings are appli-
cable to urban and periurban aquatic systems globally.

Considering phosphate as the main driver of eutrophication within the sub-basins, a macro-
scale phosphate loading threshold of 0.975 (standardised units) was shown by ROC analysis to
provide a good separation of basins with more eutrophic conditions. This indicates that basins
with a loading above 0.975 were correctly identified as eutrophic (exceeding 0.1 mg L-1 P-PO4)
75% of the time, and incorrectly identified as being below the P-PO4 limit only 25% of the
time. Of the 57 sub-basins analysed, 29 (51%) had an average phosphate loading below this
threshold. These were present in Buenos Aires, Curitiba and Vancouver. No threshold for the
AHWS index could be identified that provided both acceptable specificity and sensitivity.
Combining both phosphate loading and AHWS, regression analysis showed that 31% of the
variability of the phosphate concentrations could be explained. Phosphorus loading was the
most important variable, as seen by both the standardised coefficients and partial correlations.
It should be noted that macroscale land use/cover data showed an elevated covariance (eg. par-
tial correlations), a natural consequence of the gradients considered in the AHWS analysis and
the link between anthropogenic and natural landscape gradients [45].

Microscale data significantly improved our capacity to explain the variance in phosphate
concentrations across sub-basins, taken separately as well as in combination with macroscale
data. As an individual microscale variable, the observed number of pollution sources provided
the most explanatory power, while information on bankside vegetation was also found to pro-
vide moderate correlation. This supports studies regarding the importance of reducing residen-
tial discharges and fertiliser use in controlling stream nutrient conditions [46, 47, 41]. Using a
phosphate concentration limit of 0.1 mg L-1, a microscale pollution source threshold (sum of
pollution sources) of 0.855 allowed for a statistically significant separation of basins with more
eutrophic conditions. This threshold was surpassed in 64%, 56%, 100%, 100%, 91% and 5%, of
the sub-basins in Buenos Aires, Curitiba, Mexico City, Rio de Janeiro, São Paulo and Vancou-
ver respectively. Effectively, this means that the observation of a pollution source near 86% of
the sampling sites in a sub-basin was sufficient to accurately classify that sub-basin as eutrophic
(> 0.1 P-PO4 mg L-1).

The resulting threshold indicates the importance of (typically) under-monitored and
unidentified discharges in lower order rivers. Residential discharges (outfalls) and urban dis-
charges were the most common in the study sub-basins (Fig 3a). There are few studies address-
ing the impact of residential land use near streams and rivers, and those that do (eg. [48]) are
limited to modern residential developments where these discharges are less common. The
identification of microscale point sources by trained local community members improves
stakeholder capacity to explain the spatial variability of algal blooms and other impacts of
eutrophication. Furthermore, this information provides stakeholders with opportunities to
address local (and more manageable) drivers of ecosystem degradation. Experiments using
trained community members to monitoring outfalls are underway in several areas in the UK
(eg. Thames 21 [49]).

The negative relationship between bank vegetation and phosphate concentrations indi-
cated that rivers and streams in the study areas with vegetated buffers had lower phosphate
concentrations. These data did not allow for the determination of the buffering capacity of
vegetated banks (no significant ROC threshold), but do lend weight to the role of vegetated
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buffer strips in reducing surface and subsurface inputs of nutrients into streams [50–52]. The
importance of bank vegetation was less than that of pollution sources, from standardised coef-
ficients and partial correlations, but still significant in explaining phosphate concentrations.
The regression with both microscale variables explained nearly half of the variability in phos-
phate concentrations.

The observation of microscale land use/cover in the immediate sampling area provided lim-
ited interpretative power, indicating that microscale information is less important than macro-
scale land use/cover conditions in the study areas. This was demonstrated by a lower rho with
respect to macroscale attributes (eg. impervious land cover fraction) and no statistically signifi-
cant relationship between the microscale land use/cover parameter and nutrient concentra-
tions using the ROC analysis. This result confirmed studies that show that macroscale land
cover information provides better explanatory information in heavily modified areas with lim-
ited spatial diversity [53]. In undisturbed sub-basins, we would expect that stream nutrient
concentrations may be more sensitive to microscale land use/cover differences [53].

Adding microscale information improved our overall understanding of the variability of
phosphate concentrations compared to using macroscale information alone, with an increase
in the adjusted R2 from 0.34 to 0.51, with a 13% reduction in the standard error (Table 2). All
variables appear to have a similar importance in the regression equation (based on standard-
ized regression coefficients). The tolerance of the macroscale phosphorus loading and AHWS
confirmed the expected correlation between these variables. Integrating information from
these two sources lends weight to ongoing studies of microscale data to model river water qual-
ity [54]. The improvement made by introducing macroscale variables to explain the variability
in sub-basin phosphate conditions was limited (2% improvement in adjusted R2), and while
topographic factors (not explored here) have been shown to be important on a microscale [55],
we show that observational microscale variables provide important tools to identify nutrient
conditions.

A number of macroscale variables underperformed with respect to their expected impor-
tance. Meteorology typically plays an important role in modifying nutrient concentrations.
However, sampling day precipitation was not found to influence the variability of average
phosphate concentrations. This may have resulted from the variable lag times for precipitation
and runoff in the range of streams examined and the low resolution of the precipitation data
(1.0° x 1.0°). It should also be noted that citizen acquired data may contain a bias towards sam-
pling in non-rain conditions (for comfort and safety considerations). Interestingly, the average
daily rainfall on sampling days was similar to the average daily rainfall for each study area
(except for São Paulo), indicating that this bias was relatively low. However, a bias towards a
reduced frequency sampling during heavy rain events is inherent in citizen based data acquisi-
tion in rivers and streams. It should be noted that for studies on nutrient dynamics, it would be
advisable to use consistent lag times between rain events and data acquisition by citizen scien-
tists with respect to whether first flush or base flow conditions are desired.

Interestingly, average stream order was not found to be an important driver of nutrient con-
centrations. This may be due to the similarity between the sub-basins examined, with mean
stream order below 2, except Rio de Janeiro. Finally, sub-basin area did not significantly influ-
ence nutrient concentrations, contrary to studies which show the importance of basin area on
nutrient concentrations [56, 22]. As most study streams were ungauged, it was not possible to
normalise measurements using stream discharge or base flow conditions.

The present study focused on the use of repeated “spot” measurements of dissolved nutrient
concentrations to explore the spatial variability of river basin conditions. We recognise that
continuous or integrated measurements of nutrient concentrations or their impact would pro-
vide better information on nutrient dynamics. Biotic measurements and in-stream sensors

Multiscale Drivers to Nutrient Concentrations in Streams

PLOS ONE | DOI:10.1371/journal.pone.0162684 September 23, 2016 11 / 16



provide more complete information, but may not always be appropriate for mass citizen sci-
ence based measurements due to elevated cost (sensors) and time/training requirements (bio-
logical measurements) compared to grab samples or spot measurements [57]. These
measurement approaches (biotic, sensor and bio-optical/chemical) are complementary, allow-
ing for a range of participation (and training requirements).

Conclusions

Eutrophication of surface waterbodies presents an important challenge to decision makers,
which is compounded by insufficient information on ecosystem conditions and potential driv-
ers. In the present study, we used information gathered by thousands of trained citizen scien-
tists to explore the spatial variability of nutrient concentrations and microscale conditions of
stream basins. Combining macroscale and microscale data increased our capacity to explain
the variability of phosphate concentrations on a sub-basin scale. Integrating information
acquired by trained citizen scientists with global datasets of land use/cover represents a new
approach to explore factors that control water quality and is a key step towards managing the
drivers of its degradation.

Macroscale national and international data help broadly define conditions across basins and
can identify potential tipping points. In turn, microscale information is important for evaluat-
ing potential point sources of pollution and the presence of riparian buffer areas to mitigate
non-point source runoff. The participation of active and informed citizens allows for a greater
temporal frequency of data acquisition, while also allowing for rapid identification of changes
in ecosystems before they expand into more widespread impacts. Thresholds for microscale
point sources (eg., discharges) can be used in the design of early alert systems and long term
monitoring processes. The identification of microscale point sources and the condition of bank
vegetation provides stakeholders and local authorities with high resolution information to
improve control of key drivers of ecosystem degradation.

The present study focused on predominantly smaller rivers and streams which were previ-
ously unmonitored. This is a consistent pattern internationally as smaller order streams,
greater in number and in length [58] than larger rivers, are not regularly monitored. There is a
clear need to increase data gathering in these spatially disperse ecosystems and the use of
trained citizen scientists is one promising method to generate complementary data to govern-
ment agency monitoring schemes. Microscale conditions are likely to have a larger influence
on the conditions of smaller ecosystems, with respect to their larger counterparts [59, 60]. This
is further justification of the integration of community based monitoring within sub-basin
scale programmes. In this study, field observations and measurements made by citizen scien-
tists were found to provide complementary information to coarser scale global data in showing
patterns of water quality across a range of climate and ecological conditions.

Supporting Information

S1 Table. Average and standard deviation of the study sub-basin characteristicsby city (see
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