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Abstract. We establish the conjugacy of Cartan subalgebras for generic Lie tori “of
type A”. This is the only conjugacy problem of Lie tori related to Extended Affine Lie
Algebras that remained open.

Introduction

Extended Affine Lie Algebras (EALAs for short) are a rich class of Lie algebras
that were first conceived by the physicists R. Høegh-Krohn and B. Torresani and
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then brought to the attention of mathematicians by P. Slodowy (the reader should
look at [Ne2] and [Ne3] for a comprehensive review of basic EALA theory and
references. The original mathematical formulation is to be found in [AABGP]).
An EALA has an invariant non-negative integer attached called its nullity. In
nullity 0 EALAs are nothing but the finite-dimensional simple Lie algebras, while
in nullity 1 EALAs are the celebrated affine Kac–Moody Lie algebras (we assume
for simplicity in this Introduction that our base field is the complex numbers).
Roughly speaking an EALA E is constructed from a class of Lie algebras called
Lie tori by taking a central extension and adding a suitable space of derivations.
In the case of the affine algebras, for example, the Lie torus is a loop algebra L
based on a finite-dimensional simple Lie algebra g. Note that L is naturally a
Lie algebra over the Laurent polynomial ring C[t±1]). This ring is the centroid
of L.The central extension of L is the universal one (which is one-dimensional).
The space of derivations is also one-dimensional and corresponds to the degree
derivation t(d/dt).

An EALA, by definition, comes equipped with a so-called Cartan subalgebra
(just like the affine algebras do, but unlike the finite-dimensional simple Lie al-
gebras; see § 2 for details). In the setting of EALAs, a Cartan subalgebra is the
same as a self-centralizing ad-diagonalizable subalgebra, as defined in § 2.7. With
respect to the given Cartan subalgebra the EALA admits a root space decom-
position. The structure of the resulting “root system” plays a fundamental role
in understanding the structure as well as the representation theory of the given
EALA. It is obvious that all of this would be of little use (or mathematically un-
natural) if the nature of the root system was to depend on the choice of Cartan
subalgebra. The most elegant way of dealing with this problem is by establishing
“Conjugacy”, i.e., by showing that all Cartan subalgebras are conjugate under the
action of the group of automorphisms of the EALA (in all cases it is sufficient
to use a precise subgroup of the full group of automorphisms. Conjugacy in the
finite-dimensional case, in the spirit of the present work, is due to Chevalley. For
the affine algebras the result is due to Peterson and Kac [PK]). For almost all
EALAs (see below) conjugacy, hence the invariance of the root system, has been
established in [CGP] (for Lie tori) and [CNPY] (for the full EALAs). One case,
the so called non-fgc case (see §2 for definitions), remained open. The purpose of
this paper is to establish conjugacy for the Lie tori (the analogue of [CGP] in the
non-fgc case) underlying this remaining family of EALAs.

The centroid of a Lie torus L is always a Laurent polynomial ring R in finitely
many variables. In all cases but one, L is an R-module of finite type. This is the
fgc case (where fgc stands for finitely generated over the centroid). When this does
not happen, the non-fgc case, the nature of L is perfectly understood:

L = slℓ(Q)

where Q is a quantum torus with at least one generic entry. We remind the
reader that by definition Q is the complex unital associative algebra presented by
generators x1, . . . , xn, x

−1
1 , . . . , x−1

n and relations

xix
−1
i = 1Q = x−1

i xi, xixj = qijxjxi,
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where the qij are non-zero complex numbers. That “one entry be generic” means
that one of the qij cannot be a root of unity. The centre Z(Q) of Q is always a
Laurent polynomial ring. The fgc condition on the Lie algebra slℓ(Q) is equivalent
to Q being a Z(Q)-module of finite type.

We can now state our

Main Theorem. Let f : slℓ′(Q
′) → slℓ(Q) be an isomorphism of non-fgc Lie tori.

Then ℓ = ℓ′ and if h′ and h denote the given Cartan subalgebras of slℓ′(Q
′) and

slℓ(Q) respectively,2 then f(h′) and h are conjugate under an automorphism of
slℓ(Q).

In the fgc case the proof of conjugacy is naturally divided into two steps. One
first establishes conjugacy at the level of Lie tori, and then extends this conjugacy
“downstairs” to the full EALA. The fgc condition allows the Lie tori to be viewed
as simple Lie algebras (in the sense of [SGA3]) over Laurent polynomial rings.
Conjugacy in the fgc case makes heavy use of the powerful methods of [SGA3]
and Bruhat–Tits theory. None of this is possible in the non-fgc case. New meth-
ods/ideas are needed. The crucial ingredient that we develop to deal with this new
situation is a method that we call “specialization”. The idea, roughly speaking, is
to create a subring R of C with the property that

(i) our non-fgc Lie torus “exists” over R,

(ii) there exists a maximal ideal m of R which after base change (reduction
modulo m) yields an fgc Lie torus.

The catch is that the field R/m is of positive characteristic! One does not even
have a suitable definition of Lie tori in positive characteristic. Yet the resulting
object and its group of automorphisms is explicit enough that we can establish
conjugacy for them. The specialization method is invoked once again to show that
conjugacy holds before the reduction modulo m.

Notation. Throughout, R is a commutative unital ring which often occurs as
the base ring of some algebraic structure being considered; F is an arbitrary field,
and k often denotes a field of characteristic 0. An R-algebra is an arbitrary algebra
over R (in particular not necessarily associative or a Lie algebra). Group schemes
are usually denoted with bold letters. For example, PGLm,R denotes the R-group
scheme of automorphisms of the (associative and unital) R-algebra Mm(R).

Structure of the paper. In Section 1 we collect some basic results about centroids
of (arbitrary) algebras. Particular attention is devoted to the case of quantum
tori. Section 2 looks at the structure of the Lie algebra slℓ(Q) where Q is a quan-
tum torus. The definition and basic properties of maximal abelian diagonalizable
(MAD) subalgebra are also given in this section (these are the subalgebras that
play the role of the Cartan subalgebras in EALA theory). Section 3 is devoted to
a detailed study of the group scheme PGLA where A is an Azumaya algebra over
a ring R, and of the connection between this R-group scheme and the R-group
scheme of automorphisms of slℓ(A). Section 4 presents a detailed analysis of the

2As we have mentioned already, a distinguished “Cartan subalgebra” is part of the
definition of a Lie torus.
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automorphism group of the Lie algebra slℓ(Q) when Q is an fgc quantum torus.
Section 5 develops the method that we called “specialization” mentioned above.
This is the key that allows us to deal with the non-fgc case by translating the
problem into an fgc question, but now over fields of positive characteristic. Sec-
tion 6 presents a collection of preliminary results to be used in the proof of the
main Theorem, which is given in Section 7.

1. Some results on centroids and quantum tori

1.1. Centroids and base change

Let R be a commutative ring and let A be an arbitrary R-algebra.3 Recall that the
derived subalgebra of A is the additive subgroup of A generated by all products
ab with a, b ∈ A. It is trivial to see that this group is indeed an R-subalgebra of
A. The algebra A is called perfect if it equals to its derived algebra. Note that
any unital algebra is perfect.

A crucial object for our work is the centroid Ctd(A) of the algebra A. Recall
that

Ctd(A) = {χ ∈ EndR(A) : χ(a1a2) = χ(a1)a2 = a1χ(a2) for all ai ∈ A}.

Clearly Ctd(A) a unital commutative (if A is perfect) subalgebra of the associative
R-algebra EndR(A). It is obvious that we can consider A as an algebra over
C = Ctd(A)— it will be denoted A(C).

4 We will say that A is fgc if A(C) is a
finitely generated C-module.

More generally, if S ∈ R–alg, i.e., S is a unital associative commutative R-
algebra, and if ρ : S → Ctd(A) is a unital algebra homomorphism, A becomes an
S-algebra by defining s · a = ρ(s)(a) for s ∈ S and a ∈ A. We will denote the
algebra obtained in this way by A(ρ) or A(S) if ρ is clear from the context.

Example 1. Assume that f : A′ ∼−→ A is an isomorphism of perfect R-algebras.
It is then easily seen (and well known) that

Ctd(f) : Ctd(A)
∼−→ Ctd(A′), χ 7→ f−1 ◦ χ ◦ f (1.1.1)

is an isomorphism of R-algebras. Since C = Ctd(A) ∈ R–alg, we can use Ctd(f)
to make A′ a C-algebra: χ · a′ =

(
Ctd(f)(χ)

)
(a′) = (f−1 ◦ χ ◦ f)(a′). Then

f : A′
(C) → A(C) is C-linear. (1.1.2)

Indeed,
f(χ · a′) = f

(
(f−1 ◦ χ ◦ f)(a′)

)
= χ

(
f(a′)

)
= χ · f(a′)

for χ ∈ C and a′ ∈ A′.

Example 2 (centre). Let A be a unital associative R-algebra. As usual, [a, b] =
ab− ba for a, b,∈ A denotes the (Lie) commutator. The centre Z(A) = Z consists

3It will not be sufficient in the following to consider only algebras over fields.
4We use A(C) instead of AC since the latter usually denotes base change.
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of all z ∈ A satisfying [z, a] = 0. One easily checks that the left multiplication by
a central element is an isomorphism of R-algebras:

Z(A)
∼−→ Ctd(A), z 7→ Lz. (1.1.3)

Hence we can (and will) consider A as a Z-algebra, denoted A(Z).

Example 3. Let A be as above and let L = slℓ(A) be the special linear Lie
R-algebra introduced in 2.2. If Z = Z(A), we have an obvious R-algebra homo-
morphism

ζ : Z → Ctd(L), ζ(z) =
(
(xij) 7→ (zxij)

)
for z ∈ Z and x = (xij) ∈ L. We will show in Lemma 2.4 that ζ is an isomorphism
if ℓ ≥ 2 and 1

2 ∈ R. It is easily seen that

slℓ(A)(Z) = slℓ(A(Z)). (1.1.4)

1.2. Some properties of quantum tori

We list some properties of quantum tori that we will use. Throughout, F is a field
of arbitrary characteristic, and Λ is a free abelian group of rank n.

(a) (Definitions) By definition, a quantum torus (with grading group Λ) is an
associative unital Λ-graded F -algebra Q =

⊕
λ∈ΛQ

λ such that dimQλ = 1 for all

λ ∈ Λ and that every 0 ̸= a ∈ Qλ is invertible.
After fixing a basis ε = (εi) of Λ, we can choose 0 ̸= xi ∈ Qεi and then get a

quantum matrix q = (qij) ∈ Mn(F ) defined by xixj = qijxjxi. Then, using x
−1
i =

the inverse of xi, we define xλ = xℓ11 · · ·xℓnn for λ = ℓ1ε1 + · · ·+ ℓnεn ∈ Λ:

Q =
⊕

λ∈Λ Fx
λ. (1.2.1)

One can then also realize a quantum torus as the unital associative F -algebra
presented by generators x1, . . . , xn, x

−1
1 , . . . , x−1

n and relations

xix
−1
i = 1Q = x−1

i xi, xixj = qijxjxi.

We will refer to this view of Q as a coordinatization.
We point out that such a presentation is not unique: it depends on the chosen

Z-basis ε of Λ. In other words, for any integral matrix A = (aij) ∈ GLn(Z) the
set x̃ = {x̃1, . . . , x̃n} of invertible elements in Q, defined by

x̃1 = xa111 · · ·xa1nn , . . . , x̃n = xan1
1 · · ·xann

n ,

also generates Q and the associated quantum matrix q̃ = (g̃ij) is given by q̃ij =∏
s,t q

aisajt
st .

(b) The centre of Q is a Λ-graded subalgebra,

Z(Q) =
⊕

ξ∈ΞQ
ξ
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where Ξ is the so-called central grading group:

Ξ = {λ ∈ Λ : Qλ ⊂ Z(Q)}.
This is a free abelian group of rank z ≤ n. Hence Z(Q) is a Laurent polynomial
ring in z variables, which we may take as t1, . . . , tz (these can be taken to be of
the form xλ for suitable λs).

(c) We define
[Q,Q] = spanF {[a, b] : a, b ∈ Q},

a graded subspace of Q. One knows (see, e.g., [BGK, Prop. 2.44(iii)] for F = C or
[NY, (3.3.2)] in general)

Q = Z(Q)⊕ [Q,Q]. (1.2.2)

(d) Q is a domain: ab = 0 for a, b ∈ Q implies that a = 0 or b = 0, whence
a nondegenerate and thus prime associative F -algebra. This implies that Q is
connected: the only idempotents in Q are 0 and 1Q.

(e) An element u of Q is invertible if and only if 0 ̸= u ∈ Qλ for some λ ∈ Λ.

(f) The grading properties of a quantum torus Q show that Q is fgc in the sense
of 1.1 if and only if Ξ has finite index in Λ. Equivalently, for some (hence all)
coordinatization all entries qij of the quantum matrix q have finite order. If this
holds, then for every coordinatization the qij have finite order.

(g) We let Z = Z(Q), and denote by Z̃ the quotient field of Z, a rational

function field. The Z̃-algebra
Q̃ = Q⊗Z Z̃

is called the central closure of Q. It has the following properties: Q̃ is a central Z̃-
algebra, Q̃ is a domain (since Q is a domain), and Q embeds into Q̃. In particular,

if Q is fgc, then Q̃ is a finite-dimensional central domain over Z̃, whence a central
division Z̃-algebra.

(h) (Trace, Z-grading, degree) As in (a) we fix a basis ε = (ε1, . . . , εn) of Λ and
define the ε-trace as trε(λ) =

∑
i λi for λ =

∑
i λiεi with λi ∈ Z. Since trε : Λ → Z

is a group homomorphism, the Λ-grading of Q can be made into a Z-grading
Q =

⊕
n∈ZQ(n,ε) with Q(n,ε) =

⊕
trε(λ)=n

Qλ. (1.2.3)

Every 0 ̸= q ∈ Q can be uniquely written as q =
∑
n≤m q(n) with q(n) ∈ Q(n,ε)

and q(m) ̸= 0. We call m the ε-degree of q and denote it by degε q. We put
degε 0 = −∞.

In the following we may suppress the dependance on ε and just speak of the
trace. Analogously for the Z-grading (1.2.3).

1.3. Lemma. Let Q be a quantum torus over the field F , and let q, q1, q2 ∈ Q.
(a) For any Z-basis ε of Λ we have

degε(q1 + q2) ≤ max{degε(q1), degε(q2)}, (1.3.1)

degε(sq) = degε(q) for 0 ̸= s ∈ F , (1.3.2)

degε(q1q2) = degε(q1) + degε(q2) (1.3.3)

with the obvious rules in case one of q, q1 or q2 = 0.

(b) For 0 ̸= q ∈ Q we have q ∈ Q0 = F1Q ⇐⇒ degε(q) = 0 for all Z-bases ε
of Λ.
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Proof. (a) All formulas are easily verified in case one of q, q1 or q2 = 0 (using the
convenience that 0 is of degree −∞). Also, (1.3.1) and (1.3.2) follow immediately
from the definition. For (1.3.3) and q1, q2 ̸= 0 we have q1q2 ̸= 0 since Q is a domain.
We write q1 =

∑
n≤m q(n) with degε q1 = m and q2 =

∑
n≤p q

′
(n) with degε(q2) = p.

Since Q =
⊕

n∈ZQ(n,ε) is a Z-grading, it follows that q1q2 = q(m)q
′
(p)+ terms of

lower degree in the Z-grading with respect to ε.
(b) Let 0 ̸= q ∈ Q. If q ∈ Q0 then degε(q) = 0 because trε(q) = 0 for any

Z-basis ε of Λ. Conversely, we can assume q ≠ 0 and write q =
∑
λ∈supp(q) q

λ

with qλ ∈ Qλ and supp(q) = {λ ∈ Λ : qλ ̸= 0}. Then trε(λ) ≤ 0 for every
λ ∈ supp(q) by assumption. But since both ε and −ε are Z-bases of Λ and
tr−ε = − trε we get trε(λ) = 0 for every λ ∈ supp(q). For a fixed ε and λ =∑n
i=1 ℓiεi ∈ supp(q) we therefore have

∑n
i=1 ℓi = 0. Our claim obviously holds

if Λ ∼= Z. Thus we can assume that Λ has rank at least 2. With respect to the
Z-basis ε′ = (ε1 + 2ε2, ε2, ε3, . . .) we have λ = ℓ1(ε1 + 2ε2) + (ℓ2 − 2ℓ1)ε2 + · · · .
Thus 0 =

∑
i ℓi = ℓ1 + (ℓ2 − 2ℓ1) +

∑
i≥3 ℓi = 0, and ℓ1 = 0 follows. Similarly, all

ℓi = 0, i.e., λ = 0. �
In the following lemma we will describe certain F -diagonalizable endomorphisms

ϕ of a quantum torus Q over F . The term F -diagonalizable means of course that
there exists an F -basis of the F -vector space Q consisting of eigenvectors of ϕ with
eigenvalues in F .

1.4. Lemma. Let Q =
⊕

λ∈ΛQ
λ be a quantum torus over the field F , and let

d ∈ Q.
(a) If dq = ωq for some 0 ≠ q ∈ Q and ω ∈ F , then d ∈ Q0. In particular, the

left multiplication Ld for d ∈ Q is F -diagonalizable if and only if d ∈ F1Q = Q0.
(b) If [d, q] = ωq for some 0 ̸= ω ∈ F , then q = 0. In particular, the endo-

morphism ad d ∈ EndF (Q), defined by (ad d)(q) = [d, q], is F -diagonalizable if and
only if d ∈ Z(Q).

Proof. (a) follows from the fact that Q is a domain and q ̸= 0.
(b) Suppose 0 ≠ q. Then for any Z-basis ε of Λ we get, using the formulas of

Lemma 1.3(a),

degε(dq) = degε(d) + degε(q) = degε(d) + degε(−q) = degε(−qd),
degε(q) = degε(ωq) = degε(dq − qd) ≤ max{degε(dq), degε(−qd)}

= degε(dq) = degε(d) + degε(q)

whence degε(d) ≥ 0. But since −ε is also a basis of Λ, we in fact have degε(d) = 0.
Thus, by Lemma 1.3(b), we have d ∈ Q0. But then [d, q] = 0 yields a contradiction.
This shows q = 0, and also that ad d does not have a non-zero eigenvalue. In
particular, if ad d is F -diagonalizable, necessarily ad d = 0, i.e., d ∈ Z(Q). �

In the remainder of this section we present some results which are special for
fgc quantum tori.

1.5. Canonical presentation

Let Q be a quantum torus over the field F , coordinatized as Q =
⊕

λ∈Λ Fx
λ as in

(1.2.1), and let q = (qij) be the associated quantum matrix. We will say that the
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coordinatization (or presentation) is canonical if all entries of the quantum matrix
q outside of its diagonal blocks of size 2× 2 are equal to 1. Equivalently, for every
i ≥ 1 the generators x2i−1, x2i of Q commute with all other generators xj where
j ̸= 2i− 1, 2i.

The following lemma is stated without proof in [CP, Rem. 7.2]. A proof is given
in [Nee, Thm. 4.5].

1.6. Lemma. Any fgc quantum torus Q has a canonical presentation.

1.7. Example (Quantum 2-tori). Let Q be a quantum torus whose grading group
has rank 2. Hence Q is generated by two elements, say x1, x2, and the correspond-
ing quantum matrix has the form

q =

(
1 q12
q−1
12 1

)
where q12 ∈ F×. By definition, this presentation of Q is canonical. The algebra Q
is fgc if and only if q12 is a root of unity, say primitive of degree ℓ. Let us assume
this in the following.The Z-algebra Q(Z ) will be called a symbol algebra of degree
ℓ. Its centre Z is a Laurent polynomial ring (1.2(b))

Z = k[t±1
1 , t±1

2 ]

where t1 = xℓ1, t2 = xℓ2 (observe that ℓ is independent of the coordinatization,
since Λ/Ξ = ℓ2). We will usually denote this Z-algebra by (t1, t2)Z, q12 or simply
(t1, t2) if there is no risk of confusion. Note that Q(Z ) has order ℓ in the Brauer
group Br(Z).

If ℓ ∈ F× the subalgebra E = Z[x±1
1 ] is a maximal (abelian) étale subalgebra

of Q(Z ).

1.8. Example. Let Q =
⊕

λ∈Λ Fx
λ be an fgc quantum torus over a field F . By

Lemma 1.6 we can assume that Q is canonically presented, say with quantum
matrix q = (qij). Up to re-numbering (=re-coordinatization), we may assume that
the elements q12, q34, . . . , q2s−1,2s ̸= 1, but q2i+1,2i+2 = 1 for all i ≥ s. Then Q
admits a decomposition

Q(Z ) = Q1,Z ⊗Z · · · ⊗Z Qs,Z

where the Qi,Z = (t2i−1, t2i) are the symbol algebras in degree ℓi corresponding
to the nontrivial diagonal blocks of q of size 2 × 2, i.e., to the block diagonal
sub-matrices (

1 q2i−1,2i

q2i,2i−1 1

)
of q where i ≤ s. Here t2i−1 = xℓi2i−1, t2i = xℓi2i and ℓi = |q2i−1,2i| is the order of
q2i−1,2i. Obviously,

Z = F [t±1
1 , . . . , t±1

2s , t
±1
2s+1, . . . , t

±1
n ]

where t2s+1 = x2s+1, . . . , tn = xn.

1.9. Remark. In the Setting of 1.8 assume that all li ∈ F×. Then

E = Z[x±1
1 , x±1

3 , . . . , x±1
2s−1] ⊂ Q(Z )

is a maximal étale Z-subalgebra of Q(Z ), and the pair (Q(Z ), E) gives rise to a
reductive Z-group scheme GLQ(Z )

and its maximal torus S = RE/Z(Gm,E).
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2. Results on slℓ(Q) (mostly in good characteristic)

2.1. Associative and Lie algebras

For an arbitrary associative algebra A over a base ring R we denote by Aop

the opposite algebra: Aop = A as R-modules but the multiplication is given by
a ·Aop b = b ·A a. Note that for Mℓ(A), ℓ ∈ N+, namely the associative R-algebra
of ℓ× ℓ-matrices over A, we have

Mℓ(A)op ≃ Mℓ(Aop). (2.1.1)

The algebra A becomes a Lie R-algebra, denoted Lie(A), with respect to the
commutator [a, b] = ab − ba as multiplication. We leave it to the reader to check
that the map

ιop : Lie(Aop)
∼−→ Lie(A), a 7→ −a, (2.1.2)

is an isomorphism of Lie R-algebras.
Abiding by the traditional notation we put

Lie
(
Mℓ(A)

)
= glℓ(A).

Thus, combining (2.1.1) and (2.1.2) we obtain a Lie algebra isomorphism, also
denoted ιop,

ιop : glℓ(Aop)
∼−→ glℓ(A), x 7→ −x.

2.2. The Lie algebra slℓ(A)

Let A be a unital associative R-algebra, and let ℓ ∈ N, ℓ ≥ 2. The derived algebra
of the Lie algebra glℓ(A) of 2.1, is called the special linear Lie algebra slℓ(A):

slℓ(A) = [glℓ(A), glℓ(A)].

Whenever we consider slℓ(A) in the future, it will implicitly be assumed that ℓ ≥ 2.
Obviously, the restriction of the isomorphism ιop,

ιop : slℓ(Aop)
∼−→ slℓ(A), x 7→ −x (2.2.1)

is an isomorphism of Lie R-algebras. We will later need the fine structure of slℓ(A).
First, we have

slℓ(A) = {x ∈ glℓ(A) : tr(x) ∈ [A,A]},

where the trace tr(x) of x ∈ glℓ(A) is defined as usual. We denote by Eij , 1 ≤
i, j ≤ ℓ the usual matrix units. It is easy to see that

slℓ(A) = L0 ⊕
(⊕

1≤i̸=j≤ℓAEij
)
,

L0 = [A,A]E11 ⊕ {
∑ℓ
i=1 aiEii : ai ∈ A,

∑
i ai = 0}.

(2.2.2)

In particular, for any unital subalgebra S of R the Lie S-algebra slℓ(A)(S) contains

slℓ(S) = {x ∈ glℓ(S) : tr(x) = 0}
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as subalgebra. We denote

hS = slℓ(S) ∩ L0 = {
∑ℓ
i=1 siEii : si ∈ S,

∑
i si = 0} (2.2.3)

the diagonal subalgebra of slℓ(S).
We will say that a domain R has good characteristic for slℓ(A) if the character-

istic of the fraction field of R is either 0 or p > 3 and such that p does not divide ℓ.
In that case, if F is a subfield of R, the subspace hF is an ad-diagonalizable subal-
gebra of slℓ(A)(F ) in the sense of Subsection 2.7, and (2.2.2) is the joint eigenspace
decomposition of hF .

It will be useful later to have a coordinate-free approach to slℓ(A). Namely, we
let

V = VA = A⊕ · · · ⊕ A =: A⊕ℓ (2.2.4)

be the free right A-module of rank ℓ. We denote by B = {e1, . . . , eℓ} the standard
basis of the A-module V :

e1 = (1, 0, . . . , 0), · · · , eℓ = (0, 0, . . . , 1), (2.2.5)

so that

V =
⊕ℓ

i=1 eiA. (2.2.6)

We let the associative algebra EndA(V ) of A-linear endomorphisms of V act on V
from the left. Representing f ∈ EndA(V ) by the matrix MatB(f) with respect to
B provides us with an R-algebra isomorphism

MatB : EndA(V )
∼−→ Mℓ(A) (2.2.7)

and thus also an isomorphism of the associated Lie algebras, glA(V ) ≃ glℓ(A), and
of their derived algebras,

slA(V ) := [glA(V ), glA(V )]
∼−→ slℓ(A).

Moreover, observe

eiA = Eii(V ) and Eij : ejA
∼−→ eiA is an isomorphism of A-modules.

2.3. Lemma. In the Setting of 2.2 assume ℓ · 1R ∈ R× and A = Z(A)⊕ [A,A].
Then

glℓ(A) = Z
(
glℓ(A)

)
⊕ slℓ(A) with Z

(
glℓ(A)

)
= Z(A)Eℓ

where Eℓ ∈ glℓ(A) is the ℓ× ℓ identity matrix.

Proof. Straightforward. �

The following result, determining the centroid of slℓ(A), is folklore.

1012



ON CONJUGACY OF CARTAN SUBALGEBRAS

2.4. Lemma. Let R be a commutative ring with 1
2 ∈ R, let A be a unital associa-

tive R-algebra, and let L = slℓ(A) with ℓ ≥ 2. Then for every z ∈ Z(A) the map
ζz : L → L, ζz

(
(xij)

)
= (zxij), is a centroidal transformation of L. The map

ζ : Z(A)
∼−→ Ctd(L), z 7→ ζz (2.4.1)

is an isomorphism of associative algebras. In particular,

slℓ(A) is fgc ⇐⇒ A is fgc. (2.4.2)

Proof. Since z[a, b] = [za, b] it is clear that ζz is an endomorphism of L. It is
also immediate that ζz ∈ Ctd(L) and that ζ is an injective homomorphism of
associative algebras. Thus it remains to prove surjectivity. Let χ ∈ Ctd(L).

We first consider the case ℓ = 2. For a, b ∈ A we define

e(a) =

(
0 a
0 0

)
, f(b) =

(
0 0
b 0

)
,

H(a, b) = [e(a), f(b)] =

(
ab 0
0 −ba

)
, h = H(1, 1) =

(
1 0
0 −1

)
.

Then

{l ∈ L : [h, l] = 2l} = e(A), {l ∈ L : [h, l] = −2l} = f(A),

{l ∈ L : [h, l] = 0} = span{H(a, b) : a, b ∈ A} =: L0.

It follows that χ leaves e(A), f(A) and L0 invariant. In particular, we can define
χ± ∈ End(A) by

χ
(
e(a)

)
= e

(
χ+(a)

)
, χ

(
f(b)

)
= f

(
χ−(b)

)
.

Denoting by {a b c} = abc + cba the Jordan triple product of A, we have the
following multiplication rules of L:

[H(a, b), e(c)] = e
(
{a b c}

)
, [H(a, b), f(c)] = f

(
− {b a c}

)
.

They imply χ±({a b c}) = {a b χ±(c)}. Define z± ∈ A by χ±(1A) = z±. Then,
specializing a = c = 1A we obtain

2χ±(b) = χ±
(
{1A 1A b}

)
= bχ±(1A) + χ±(1A)b = 2z± ◦ b,

where x◦y = 1
2 (xy+yx) is the Jordan algebra product of A. Thus χ±(b) = z± ◦ b.

From H(a, b) = [e(a), f(b)] we now get

H(z± ◦ a, b) = [χ(e(a)), f(b)] = [e(a), χ(f(b))] = H(a, z− ◦ b).

Comparing the (11)-entry of H, this proves

z+ab+ az+b = az−b+ abz−.
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In particular, for a = 1A we obtain 2z+b = z−b+ bz−. Specializing b = 1A in the
formula above, this shows z+ = z− =: z, whence 2zb = zb+ bz, or zb = bz for all
b ∈ A, i.e., z ∈ Z(A). Finally, χ

(
H(a, b)

)
= H(za, b) = zH(a, b) proves χ = ζz.

Let now ℓ ≥ 3, and i ̸= j. From

AEij = {l ∈ slℓ(A); [Eii − Ejj , l] = 2l}

we get χ(AEij) = AEij , allowing us to define χij ∈ EndA by χ(aEij) = χij(a)Eij .
For distinct i, j, p and a, b ∈ A we have the multiplication formula

abEij = [[[aEij , Ejp], Epi], bEij ]

which implies χij(ab) = χij(a)b = aχij(b), i.e., χij ∈ Ctd(A) ≃ Z(A) by (1.1.3).
Thus, there exists zij ∈ Z(A) such that χij(a) = zija. From [aEij , Ejp] = aEip
we now obtain zij = zip and from [Epi, aEij ] = aEpi we get zij = zpj . Hence the
zij are independent of (ij), say zij =: z ∈ Z(A). Finally χ = ζz follows. �
2.5. Lemma. Let ℓ, ℓ′ ∈ N with ℓ, ℓ′ ≥ 2, and let R be a commutative base ring
for which 2 · 1R, ℓ · 1R and ℓ′ · 1R are invertible in R. Furthermore, let A and A′

be unital associative R-algebras satisfying

A = Z(A)⊕ [A,A] and A′ = Z(A′)⊕ [A′,A′].

(a) Let f : slℓ(A) → slℓ′(A′) be an R-linear isomorphism of Lie algebras. The
R-linear algebra isomorphisms Ctd(f), ζA and ζA′ of (1.1.1) and (2.4.1) allow us
to define an isomorphism fZ : Z(A) → Z(A′) by requiring commutativity of the
diagram

Z(A)
fZ //_________

ζA

��

Z(A′)

ζA′

� �
Ctd

(
slℓ(A)

) Ctd(f)−1

/ / Ctd
(
slℓ′(A′)

) . (2.5.1)

For z ∈ Z(A) and X ∈ slℓ(A) define

fgl : glℓ(A) → glℓ′(A′), zEℓ +X 7→ fZ(z)Eℓ′ + f(X).

Then fgl is an isomorphism of Lie algebras. If slℓ(A) and glℓ(A) are viewed as
Z(A′)-algebras via the construction of (1.1.1), then both f and fgl are Z(A′)-
linear.

(b) Let φ : Mℓ(A) → Mℓ′(A′) be an isomorphism of associative algebras. The
induced Lie algebra isomorphism φsl : slℓ(A) → slℓ′(A′) obtained from φ satisfies
(φsl)gl = φ.

Proof. (a) is immediate from Lemma 2.3 and Lemma 2.4. For (b) we use that
φ maps the centre Z(A)Eℓ of Mℓ(A) into the centre Z(A′)Eℓ′ of Mℓ′(A′), hence
induces an R-linear isomorphism ψ : Z(A) → Z(A′) by φ(zEℓ) = ψ(z)Eℓ′ . Our
claim is (φsl)Z = ψ.
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Denoting by L and L′ the left multiplication of the associative algebras Mℓ(A)
and Mℓ′(A′) respectively, we have

φ ◦ LzEℓ
◦ φ−1 = L′

φ(zEℓ)
= L′

ψ(z)Eℓ′

for all z ∈ Z(A). Note that LzEℓ
stabilizes slℓ(A). We denote by (LzEℓ

)sl the
restriction of LzEℓ

to slℓ(A). Then ζA(z) = (LzEℓ
)sl. Using analogous notation

for Mℓ′(A′) and taking the sl-components of the displayed equation above, we get(
Ctd(φsl)

−1 ◦ ζA
)
(z) = φsl ◦ ζA(z) ◦ φ−1

sl = φsl ◦ (LzEℓ
)sl ◦ φ−1

sl

= (L′
ψ(z)Eℓ′

)sl = ζA′
(
ψ(z)

)
which proves our claim. �
2.6. Remark. We will later apply this Lemma in a situation where we are given a
Lie algebra isomorphism f : slℓ(A) → slℓ′(A′) and

(a) either f extends to an isomorphism f̂ : Mℓ(A) → Mℓ′(A′) of associative
algebras,

(b) or f ◦ ιop : slℓ(Aop) → slℓ′(A′) extends to an R-linear isomorphism

f̂ ◦ ιop : Mℓ(Aop) → Mℓ′(A′)

of associative algebras.

In the first case, the Lie algebra isomorphism fgl : glℓ(A) → glℓ′(A′) of Lemma 2.5

is in fact an isomorphism of associative algebras, namely f̂ = fgl (as maps), while

in the second case we have f̂ ◦ ιop = (f ◦ ιop)gl.

2.7. Definition (AD and MAD subalgebras). We now come to the central con-
cept of this paper. Let F be a field. Following [CGP, §6] we call an F -subalgebra
h of a Lie algebra L over F an AD subalgebra if the adjoint action of each element
x ∈ h on L is F -diagonalizable, i.e., L admits an F -basis consisting of eigenvectors
of adL(x) for all x ∈ h.

A maximal AD subalgebra of L, i.e., one which is not properly included in any
other AD subalgebra of L, is called a MAD subalgebra, or a MAD for short.

It is not difficult to show, see, for example, [Hu, Lem. 8.1], that an AD subal-
gebra is necessarily abelian. Hence, AD can be thought of as an abbreviation for
“abelian k-diagonalizable” or “ad k-diagonalizable”.

Let Q be a quantum torus over F . Denote by Z
(
glℓ(Q)

)
the centre of the Lie

algebra glℓ(Q). Assuming that F is of good characteristic for glℓ(Q), by Lemma
2.3 we have

glℓ(Q) = Z
(
glℓ(Q)

)
⊕ slℓ(Q), Z

(
glℓ(Q)

)
= Z(Q)Eℓ.

It follows that h ⊂ slℓ(Q) is an AD or a MAD of slℓ(Q) if and only if Z(Q)Eℓ ⊕ h
is an AD or a MAD of glℓ(Q) respectively.

We next give a first example of a MAD.
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2.8. Proposition. Let Q be a quantum torus over a field F of good characteristic
for slℓ(Q), ℓ ≥ 2. The subalgebra hF of (2.2.3) is a MAD of the Lie algebra
slℓ(Q)(F ).

We note that in the case that slℓ(Q) is an fgc Lie torus over a field of charac-
teristic 0, cf. 1.2(f) and (2.4.2), the lemma has been proven in [Al, Cor. 5.5]. The
methods of [Al] cannot be applied in our case.

Proof. It is clear that h = hF is an AD: the joint eigenspaces of h are the sub-
spaces QEij and L0 of (2.2.2). To show maximality, let d ∈ slℓ(Q) be an ad
F -diagonalizable element commuting with h. It follows that d ∈ slℓ(Q)0 = {l ∈
slℓ(Q) : [h, l] = 0 for all h ∈ h}. Thus, d = diag(d1, . . . , dℓ) is a diagonal ma-
trix. For fixed i, 1 ≤ i ≤ ℓ, and q ∈ [Q,Q] we have qEii ∈ slℓ(Q)0 and
[d, qEii] = [di, q]Eii. Because Q = Z(Q) ⊕ [Q,Q] it follows that ad di ∈ EndF (Q)
is F -diagonalizable. Hence, by Lemma 1.4(b), all di ∈ Z(Q). Consider now the
action of d on an off-diagonal space QEij , i ̸= j. Clearly, ad d leaves QEij invari-
ant and acts on qEij by (di − dj)qEij , Thus, the left multiplication by di − dj is
diagonalizable, forcing di − dj ∈ F by Lemma 1.4(a). Now consider the equation

[Q,Q] ∋
∑
i di = (d1 − d2) + 2(d2 − d3) + · · ·+ (n− 1)(dℓ−1 − dℓ) + ℓdℓ ∈ Z(Q).

It follows that
∑
i di = 0 and that dℓ ∈ F . Analogously, all di ∈ F , and d ∈ h

follows. �
2.9. Complete orthogonal systems

Let B be a unital associative R-algebra. A complete orthogonal system (of idem-
potents) in B is a family O = (e1, . . . , em) of elements ei ∈ B satisfying

eiej = δijei for 1 ≤ i, j ≤ m and e1 + · · ·+ em = 1B. (2.9.1)

In B = Mℓ(A), A unital associative, the standard orthogonal system is Ost =
(E11, E22, . . . , Eℓℓ), where the Eij are the usual standard matrix units. But also
(E11+E22, E33, . . . , Eℓℓ) is a complete orthogonal system. Part (a) of the following
Lemma 2.10 says that there is a natural bijection between complete orthogonal
systems in Mℓ(A) and decompositions of VA as a direct sum of A-modules.

2.10. Lemma. Let A be a unital associative R-algebra, and let V = VA = A⊕ℓ be
the right A-module of (2.2.4). We identify B = Mℓ(A) ≡ EndA(V ) using (2.2.7).

(a) Let O = (e1, . . . , em) be a complete orthogonal system in B. Define Vi =
ei(V ), 1 ≤ i ≤ m. Then V decomposes as V = V1 ⊕ · · · ⊕ Vm where each Vi is
a right A-module. Conversely, let V = V1 ⊕ · · · ⊕ Vm be a decomposition of V as
a direct sum of A-modules. Define ei ∈ B as the canonical projection of V onto
Vi ⊂ V . Then (e1, . . . , em) is a complete orthogonal system in Mℓ(A).

The constructions O  V = V1 ⊕ · · · ⊕ Vm and V = V1 ⊕ · · · ⊕ Vm  O defined
above are inverses of each other.

(b) Let O = (e1, . . . , em) and O′ = (e′1, . . . , e
′
m′) be complete orthogonal systems

in Mℓ(A), inducing by (a) decompositions VA = V1 ⊕ · · · ⊕ Vm = V ′
1 ⊕ · · · ⊕ V ′

m′ .
Let

D(O) = {f ∈ EndA(VA) : f(Vi) ⊂ Vi, 1 ≤ i ≤ m} =
⊕m

i=1 EndA(Vi)
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and define D(O′) analogously. Suppose that all EndA(Vi) and EndA(V
′
j ) are con-

nected. Then the following are equivalent for g ∈ B×.
(i) gD(O)g−1 = D(O′).
(ii) m = m′ and there exists a permutation σ ∈ Sm such that geig

−1 = e′σ(i),
1 ≤ i ≤ m.

(iii) m = m′ and there exists a permutation σ ∈ Sm such that g(Vi) = V ′
σ(i)

for 1 ≤ i ≤ m.

(c) Let A = Q be a quantum torus. Let Ost = (E11, . . . , Eℓℓ) be the standard
orthogonal system in B = Mℓ(Q), and let O = (e1, . . . eℓ) be another complete
orthogonal system in B with associated decomposition VQ = V1⊕· · ·⊕Vℓ, Vi = ei(V )
for 1 ≤ i ≤ ℓ. Define D(Ost) and D(O) as in (b). Then the following are
equivalent.

(i) Each Vi, 1 ≤ i ≤ ℓ, is a cyclic Q-module.
(ii) Each Vi, 1 ≤ i ≤ ℓ, is a free Q-module of rank 1.
(iii) There exists g ∈ B× such that gD(Ost)g

−1 = D(O) and each EndQ(Vi)
is connected.
Assuming (c.iii) holds, let g ∈ B× be as in (c.iii) and let

hst =
{∑ℓ

i=1 siEii : si ∈ F,
∑
i si = 0

}
be the standard MAD of slℓ(Q) and define h ⊂ D(O) analogously. Then the au-
tomorphism Int(g) of slℓ(Q) maps hst onto h. In particular, h is also a MAD of
slℓ(Q).

Proof. (a) That V =
∑m
i=1 Vi follows from the second equation in (2.9.1), and that

the sum is direct from the first. The converse is equally straightforward.
(b) Assume (b.i). Since (geig

−1)1≤i≤m is a complete orthogonal system of B
contained in D(O′), it follows from our connectedness assumption that each ei ∈ O
is a sum of some of the e′i ∈ O′, and that distinct idempotents in O′ are used for
each ei. Hence m ≤ m′. By symmetry, m′ ≤ m, whence m = m′. The remaining
part of (b.ii) is now clear. The implications (b.ii) =⇒ (b.iii) =⇒ (b.i) are immediate
from the definitions.

(c) A cyclic Q-module is free since Q is a domain. Thus (c.i) ⇐⇒ (c.ii). For
the proof of (c.ii) =⇒ (c.iii) put Vi,st = Eii(V ). We know Vi,st ≃ Q by (2.2.6).
Also, by assumption, there exist Q-linear isomorphisms gi : Vi,st → Vi, 1 ≤ i ≤ ℓ.
Hence g = g1⊕· · ·⊕gℓ is an invertible endomorphism of V such that g(Vi,st) = Vi,
1 ≤ i ≤ ℓ. It then follows from (b) that gD(Ost)g

−1 = D(O) (note that (b) can
be applied since Q ≃ EndQ(Vi) is connected by 1.2(d). The implication (c.iii) =⇒
(c.ii) also follows from (b). �

3. Isomorphisms between two Lie algebras of type A over rings

3.1. Torsion bijections

We start by reviewing some of the techniques of non-abelian Čech cohomology
used later on.

Let G be a smooth affine group scheme over a (commutative, unital) ring R.
The pointed set of non-abelian Čech cohomology on the étale site of X = Spec(R)
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with coefficients in G, is denoted by H1
ét(X,G). This pointed set measures the

isomorphism classes of torsors over X under G (see [Mi, Ch. IV §1] and [DG] for
basic definitions and references). Abusing notation a bit we will identify the set of
isomorphism classes of G-torsors over X with H1

ét(R,G).

Recall that any morphism G → H of group schemes induces a natural map
H1

ét(R,G) → H1
ét(R,H). If [E] ∈ H1

ét(R,G) we will denote its image in H1
ét(R,H)

by [EH].
For a G-torsor E we denote by EG the twisted form of G by E. This is a

smooth affine group scheme over X. Recall that according to [Gi, III.2.6.3.1] there
exists a natural bijection

τE : H1
ét(X,

EG) → H1
ét(X,G),

called the torsion bijection, which takes the class of the trivial torsor under EG
to the class of E.

Let [E] ∈ H1
ét(R,G). Any exact sequence

1 → G
ψ−→ H → F → 1

of smooth affine group schemes induces a commutative diagram

F(R) / /

≀
� �

H1
ét(R,

EG)
ψE / /

τE

� �

H1
ét(R,

EHH) / /

τEH

� �

H1
ét(R,F)

� �
EF(R) = F(R) / / H1

ét(R,G)
ψ / / H1

ét(R,H) / / H1
ét(R,F)

.

3.2. Lemma. Using the notation of 3.1, the torsion bijection τE induces a bijec-
tion between Ker(ψE) and the fiber ψ−1(ψ(E)) = ψ−1(EH).

Proof. This follows from an easy diagram chase. �
3.3. Azumaya algebras

Let A be an Azumaya algebra over a (commutative, associative, unital) ring R. If
A has rank ℓ2, it is a twisted form of the matrix algebra Mℓ(R). Since

AutR(Mℓ(R)) ≃ PGLℓ,R

(see [Mi, Chap. IV, Prop. 2.3]), the elements of H1
ét(R,PGLℓ,R) are in one-to-one

correspondence with the isomorphism classes of Azumaya algebras over R of degree
ℓ (the bijection is given by twisting). It follows that A ≃ ξMℓ(R) for some class
[ξ] ∈ H1

ét(R,PGLℓ,R) and that AutR(A) ≃ PGLA.

3.4. Automorphisms of slA

(a) Let A be an Azumaya algebra over R. Every φ ∈ Aut(A)(R) leaves the
Lie algebra

slA := [A,A]
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invariant, thus induces an automorphism φsl of slA. Since the construction φ 7→
φsl is functorial, it gives rise to a homomorphism

PGLA → Aut(slA) (3.4.1)

which is injective since slA generates A as an associative algebra.

(b) Assume A has an anti-automorphism κ. Then

κsl : slA → slA, x 7→ −κ(x)

is an automorphism of slA. Again by functoriality of the construction, this gives
rise to an element of Aut(slA), also denoted κsl. In case A = Mℓ(R) we use the
transpose as anti-automorphism and put

τ : slℓ(R) → slℓ(R), x 7→ − tx. (3.4.2)

As before, this gives rise to an automorphism in Aut(slℓ(R)), also denoted τ .

(c) Putting together the maps in (a) and (b) we have constructed homomor-
phisms of R-group schemes

PGL2,R → Aut
(
sl2(R)

)
(3.4.3)

and for m ≥ 3

PGLm,R o (Z/2Z)R → Aut
(
slm(R)

)
; (φ, ε) 7→ φsl ◦ τ ε. (3.4.4)

The reader will easily check that both maps are injective homomorphisms (one
needs the assumption m ≥ 3 to get injectivity in the second case).

3.5. Theorem. Assume R is a domain of good characteristic for slm containing a
field F . Then the maps (3.4.3) and (3.4.4) are isomorphisms of R-group schemes.

Proof. Since all groups involved are obtained from F by base change, and since
base change preserves isomorphism, we may assume that R = F is a field of good
characteristic. In this case it is shown in [St, 4.7] (or see [Ja, Thm. IX.5] for F of
characteristic 0 and [Se, p. 67] for characteristic > 0) that for any field extension
E/F the maps (3.4.3) and (3.4.4) evaluated at the E-points are isomorphisms of
abstract groups. In particular this holds for the algebraic closure of F . A standard
fact in the theory of group schemes (see [KMRT, Prop. 22.5]) then proves the result.
�

3.6. Consequences

We will derive some consequences of Theorem 3.5. Let again A be an Azumaya
algebra over R. Assume that R is a domain. Since then A has constant rank as
an R-module, it is a twisted form of Mℓ(R) for some ℓ.

For the remainder of this section we will assume that R contains a field of
good characteristic for slℓ(R). We consider the corresponding Lie R-algebra slA =
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[A,A]. By a standard twisting argument, it follows from Theorem 3.5 that we
have an R-group scheme isomorphism

PGLA ≃ AutR(slA)

if ℓ = 2, and the exact sequence of R-group schemes.

1 → PGLA → AutR(slA) → (Z/2Z)R → 1

if ℓ ≥ 3.
Evaluating at R-points we have

1 → PGLA = PGLA(R) ↪→ AutR(slA) = AutR(slA)(R) → Z/2Z.

Note that this last map is trivial when ℓ = 2. We will say that an automorphism
ϕ ∈ AutR(slA) is inner if it is in the image of PGLA. Otherwise we say that ϕ is
outer.

3.7. Theorem. Let ϕ ∈ AutR(slA). Then the following holds:

(a) If ϕ is inner, it is the restriction of a unique automorphism ψ : A → A.
(b) If ϕ is outer, it is the restriction of the negative of a unique anti-automor-

phism ψ : A → A.

Proof. The subset Y = AutR(slA) \ PGLA is a closed subscheme of AutR(slA)
consisting of outer automorphisms of slA. The group PGLA acts simply transi-
tively on Y by left multiplication. Thus Y is a PGLA-torsor. It is trivial if and
only if slA has at least one outer automorphism.

Along the same lines, let X be the scheme of anti-automorphisms of A:

X = {ψ : A → A | ψ is bijective and ψ(xy) = ψ(y)ψ(x) for all x, y ∈ A}.

We observe that if ψ is an anti-automorphism of A and ℓ ≥ 3 then −ψ|slA is an
outer automorphism of slA. The automorphism group PGLA of A acts simply
transitively on X on the left (because the action is simply transitively in the split
case). Thus, X is also a PGLA-torsor. As before, if ℓ ≥ 3 then X is a trivial
torsor, i.e., there exists at least one anti-automorphism of A, if and only if slA has
at least one outer automorphism.

Note that the natural restriction map λ : X → Y which takes ψ into −ψ|slA is
an isomorphism of torsors (because it is an isomorphism in the split case).

(a) Let ϕ be inner. Then there exists a unique g ∈ PGLA(R) whose image in
AutR(slA) is ϕ. This element g corresponds to the automorphism of A which we
denote by ψ : A → A. By construction, the restriction ψ|slA is ϕ. The uniqueness
of such a ψ is immediate, since slA generates A as associative algebra.

(b) Now let ϕ be outer. Then since λ is bijective there exists a unique ψ ∈ X(R)
such that λ(ψ) = −ψ|slA equals ϕ. �
3.8. Corollary. Let A be an Azumaya algebra over R, thus a twisted form of
Mℓ(R). Assume ℓ ≥ 3. Then A ≃ Aop if and only if slA has an outer automor-
phism.
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Proof. Assume A ≃ Aop. We have seen in 3.4(b) that an isomorphism κ : A → Aop

induces an automorphism κsl of slA. We claim that κsl is an outer automorphism.
It suffices to show this after some base change. Take any base change R → S
which splits A, i.e., AS ≃ Mℓ(S). Then κ is a composite of an inner conjugation,
say int(g), and the transpose τ . It is well known that for ℓ ≥ 3 the restriction of
−τ to slℓ is an outer automorphism (because it induces the automorphism −1 of
the corresponding root system), while the restriction of int(g) to slA is an inner
automorphism. Therefore κsl is indeed outer.

The other direction follows from Theorem 3.7(b). �
3.9. Theorem. Let A,A′ be Azumaya algebras over our domain R of the same
rank l2. If slA ≃ slA′ as R-algebras, then

(a) A′ ≃ A if ℓ = 2;
(b) A′ ≃ A or A′ ≃ Aop if ℓ ≥ 3.

We note that the converses in (a) and (b) are obvious.

Proof. We abbreviate H1 = H1
ét and let [ξ], [ξ′] ∈ H1(R,PGLℓ,R) be the classes

corresponding to A and A′. Because A = ξMℓ(R) the Lie algebra slA is the twisted
form of slℓ(R) by ξ.

Case ℓ = 2: Recall from Theorem 3.5 that

AutR(sl2(R)) = PGL2,R,

i.e., the Lie algebra sl2(R) and the Azumaya algebra M2(R) have the same auto-
morphism group scheme. Therefore, if the twisted forms slA and slA′ of the Lie
algebra sl2(R) are isomorphic, then [ξ] = [ξ′] implies A ≃ A′ as R-algebras.

Case ℓ ≥ 3: Recall from Theorem 3.5 that

AutR(slℓ(R)) = AutR(PGLℓ,R) = PGLℓ,R o (Z/2Z)R.

Hence we get the exact sequence of group schemes

1 → PGLℓ,R → AutR(slℓ(R)) → (Z/2Z)R → 1 (3.9.1)

which induces a canonical map

H1(R,PGLℓ,R)
ψ−→ H1(R,AutR(slℓ(R)) = H1(R,AutR(PGLℓ,R))

in cohomology. By assumption, ψ([ξ]) = ψ([ξ′]) (because slA
R≃ slA′). If [ξ] = [ξ′]

then the twisted Azumaya algebras A = ξMℓ(R) and A′ = ξ′Mℓ(R) are isomorphic
as R-algebras, and we are done.

Assume therefore [ξ] ̸= [ξ′]. Twisting (3.9.1) by ξ we get an exact sequence of
group schemes

1 → PGLA → AutR(PGLA) → (Z/2Z)R → 1
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which in turn induces an exact sequence

PGLA(R) ↪→ AutR(PGLA)(R) → Z/2Z

→ H1(R,PGLA)
ϕ→ H1(R,AutR(PGLA))

(3.9.2)

of pointed sets. According to Lemma 3.2 there is a natural one-to-one corre-
spondence between the fiber ψ−1(ψ(ξ)) and the kernel of ϕ. Since [ξ] ̸= [ξ′] ∈
ψ−1(ψ(ξ)), the class [ξ′] corresponds to some nontrivial element in Ker(ϕ). On
the other hand, by (3.9.2), Ker(ϕ) consists of at most two elements implying
|Ker(ϕ)| = 2. We then get from (3.9.2) that PGLA(R) = AutR(PGLA)(R),
i.e., every automorphism of PGLA over R is inner. By Corollary 3.8, this implies
A ̸≃ Aop.

Now we observe that the opposite Azumaya algebra Aop also corresponds to
some element in H1(R,PGLℓ,R), call it [ξop]. We have [ξ] ̸= [ξop] because A ̸≃
Aop. Furthermore, it is straightforward to verify that the map GLA → GLAop ,
given by x→ x−1, is an isomorphism of group schemes which induces in turn an iso-
morphism PGLA → PGLAop . This implies that ψ([ξ]) = ψ([ξop]), hence the class
[ξop] also corresponds to the nontrivial element ( ̸= [ξ]) in the fiber ψ−1(ψ([ξ])).
Since |ψ−1(ψ([ξ]))| = |Ker(ϕ)| = 2, necessarily [ξ′] = [ξop] in H1(R,PGLℓ,R),
implying A′ ≃ Aop. �

As a by-product of the proof we obtain that the converse statement in Corol-
lary 3.8 also holds.

3.10. Corollary. Let A be an Azumaya algebra over R of rank ℓ2 ≥ 4, where R
has good characteristic for slℓ(R). Suppose A ̸≃ Aop. Then every automorphism of
the Lie R-algebra slA is inner. If in addition Pic(R) = 1 then every automorphism
of slA is the restriction of the conjugation map by an element a ∈ A×.

Proof. Without loss of generality we may assume that ℓ ≥ 3. We use the notation
of Theorem 3.9. Since A ̸≃ Aop we have [ξ] ̸= [ξop]. Therefore, in sequence
(3.9.2) the kernel of the canonical map ϕ consists of two elements and this implies
PGLA(R) = AutR(PGLA)(R) = Aut(A). Thus every automorphism of slA is
induced by an automorphism of A. It remains to note that if Pic(R) = 1 the
natural map A× → PGLA(R) is surjective. �

In the following sections we apply all these results to the case of fgc quantum
tori viewed over their centres.

4. slℓ(Q) for Q an fgc quantum torus

Our analysis will use the following description of isomorphisms between special
linear Lie algebras over rings. The theorem below is an immediate consequence of
our Theorem 3.7 and is originally due to Jacobson-Seligman when the Lie algebras
in question are defined over fields.

4.1. Theorem. Let A and A′ be Azumaya algebras of the same rank over a do-
main R containing a field of good characteristic. Let f : slA′ → slA be an R-linear
isomorphism of Lie algebras. Then after possibly replacing A by Aop, the map f
uniquely extends to an R-linear isomorphism f̃ : A′ → A of associative algebras.
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Proof. Since it is clear that f ◦ ιop is a Lie R-algebra isomorphism, we only need
to show that f extends to a map f̃ : A′ → A which is either an isomorphism
or the negative of an anti-isomorphism of associative algebras. By Theorem 3.9,
after possibly replacing A by Aop we can assume that there exists an isomorphism
g : A′ → A of associative R-algebras. Since the composition f ◦ g−1|slA is an R-
automorphism of slA, by Theorem 3.7 it can be extended uniquely to either an
automorphism or the negative of an anti-automorphism of A and the assertion
follows. �

4.2. Remark. For the special case of central-simple algebras over a field K of
characteristic 0, the theorem is proven in [Ja, Thm. IX.5]. The characteristic 0
case can easily be extended to positive characteristic by using the description of
Aut slℓ(K) in [Se, p. 67].

We will apply this result in the case that A and A′ are matrix algebras over fgc
quantum tori.

4.3. Theorem. Let L = slℓ(Q) and L′ = slℓ′(Q
′) where Q and Q′ are fgc quantum

tori over a field F of good characteristic for L and L′. We denote by Z = Z(Q)
the centre of Q, and let f : L′ → L be an F -linear isomorphism of Lie algebras.
Then the following hold.

(a) After possibly replacing Q by Qop, the map f uniquely extends to a Z-linear
isomorphism f̃ : Mℓ′(Q

′)(Z) → Mℓ(Q)(Z ) of associative algebras.
(b) ℓ′ = ℓ.

Proof. (a) By 2.4 the centre Z of Q is isomorphic to the centroid of L – we will
take this as an identification. Applying 1.1, Example 1, our map f is a Z-linear
isomorphism

f : L′
(Z) = slℓ′(Q

′
(Z ))

∼−→ L(Z ) = slℓ(Q(Z )).

Observe that the two Azumaya algebras Mℓ(Q) and Mℓ′(Q
′) over Z have the

same rank. Indeed, passing to a proper étale base extension we may assume that
they are split. Let m2 and (m′)2 be their ranks. Then dimL = m2 − 1 and
dimL′ = (m′)2−1 implying m = m′. Now Theorem 4.1 applied to A = Mℓ(Q)(Z )

and A′ = Mℓ′(Q
′)(Z ) implies the claim.

(b) Let K be the fraction field of Z (recall from 1.2(b) that Z is a Laurent
polynomial ring over F ). Then after possibly replacing Q by Qop we can assume
that f̃ uniquely extends to a K-linear isomorphism

f̃K :Mℓ′(Q
′)⊗Z K

∼−→Mℓ(Q)⊗Z K

of associative algebras. But D′ = Q′
(Z ) ⊗Z K and D = Q(Z ) ⊗Z K are central

division algebras over K. Now by the theorem of Wedderburn (see [He, Thm.
2.1.6]) we have D′ ≃ D and ℓ′ = ℓ. �

The spirit of Theorem 4.3, in a sense that will be made precise, will allow us to
reduce questions of isomorphisms of Lie algebras to questions of isomorphisms of
associative algebras. These are handled in the following result.
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4.4. Theorem. Let Q and Q′ be fgc quantum tori over the field F and let A =
Mℓ(Q) and A′ = Mℓ(Q

′). We assume that the characteristic of F is very good: it
is either 0, or p > 3 where p does not divide ℓ or any of the qij, q

′
ij occurring in

the quantum matrices of Q and Q′ respectively with respect to a canonical presen-
tation. We let Z be the centre of Q, and assume that f : A′ → A is an F -linear
isomorphism of associative algebras. As in 1.1 we will view f as a Z-linear iso-
morphism A′

(Z ) → A(Z ). The isomorphism f induces an isomorphism ϕ : G′ → G

of the associated reductive group schemes G′ = GLA′
(Z )

and G = GLA(Z )
over Z.

Let T ′ (resp. T ) be the split torus in G′ (resp. G) corresponding to the diagonal
matrices in A′

(Z ) = Mℓ(Q
′
(Z )) (resp. in A(Z ) = Mℓ(Q(Z ))). Then ϕ(T ′) and T

are conjugate in G.

Proof. Clearly, T ′ and T are generically maximal split tori in the sense of [CGP],
i.e., T ′

K and TK are maximal split tori in GK and G′
K where K = Z̃ is the fraction

field of Z (because Q̃ = Q(Z ) ⊗Z K and Q̃′
(Z ) ⊗Z K are central division algebras

over K by 1.2(g)). Note that the centralizer of T (resp. T ′) in G (resp. in G′) is
isomorphic to the reductive group scheme CG(T ) ≃ GLQ(Z)

× · · · ×GLQ(Z)
over

Z (resp. CG′(T ′) ≃ GLQ′
(Z)

× · · · ×GLQ′
(Z)

).

Since T ′ and T are generically maximal split tori, the proof of [CGP, Prop. 8.1]
shows that an obstacle for conjugacy of ϕ(T ′) and T in G is given by a class

[ξ] ∈ H1
Zar(Z, CG(T )) = H1

Zar(Z,GLQ(Z)
)× · · · ×H1

Zar(Z,GLQ(Z)
)

and that

ξ(CG(T )) ≃ CG(ϕ(T
′)) ≃ CG′(T ′) ≃ GLQ′

(Z )
× · · · ×GLQ′

(Z)
.

Let ξ = (ξ1, . . . , ξℓ). Since
ξiGLQ(Z)

≃ GLQ′
(Z)

, for the proof of conjugacy of ϕ(T ′)

and T it suffices to show that ξi = 1.

We now recall some general facts from the theory of reductive group schemes.
Let H be any reductive group scheme over Z, S ⊂ H a maximal torus and [ξ] ∈
H1

ét(Z,H). Let N = NH(S) and W = N/S.

(i) By [CGP, Lem. 8.2], W is a finite étale Z-group and the canonical map
H1

ét(Z,W ) → H1
ét(K,W ) is injective; in particular H1

Zar(Z,W ) = 1.
(ii) According to [Gi, Rem. 3.2.5] if the twisted group scheme ξH contains a

maximal torus then the class [ξ] is in the image of H1
ét(Z, NH(S)) →

H1
ét(Z,H).

(iii) Let S′⊂H be another maximal torus. Then the transporter TransH(S, S′)
is an N -torsor over Z, hence it corresponds to a unique class λ∈H1

ét(Z,N).
If S, S′ are conjugate over K then λ is in the image of H1

ét(Z, S) →
H1

ét(Z, N). If in addition H1(Z, S) = 1 then S and S′ are conjugate
over Z.

For the proof of the first statement in (iii) we refer to [CGP, Lem. 8.3]. The
second assertion follows from (i) and the commutativity of the following diagram:
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H1
ét(Z, S) / /

� �

H1
ét(Z, N) / /

� �

H1
ét(Z,W )

� �
H1

ét(K,S)
/ / H1

ét(K,N) / / H1
ét(K,W ).

.

We will apply these facts in the following two situations. Let m be an integer
such that the matrix algebra Mm(Z) is the split form of Q(Z ). Take the pair
(E,S) consisting of a maximal commutative étale subalgebra E ⊂ Q(Z ) and the
corresponding torus S = RE/Z(Gm,E) constructed in Remark 1.9. Fix any em-
bedding E ↪→ Mm(Z) (for instance, we can take the regular representation of E).
This also gives rise to a closed embedding S ↪→ H = GLm,Z . Note that the torus
S determines uniquely the subalgebra E. Indeed, E is the centralizer of S(Z)
in Mm(Z). When we view E as a subalgebra in Q(Z ) we will denote it by EQ.
Similarly the corresponding torus S will be denoted by SQ. Consider now another
embedding E → Mm(Z). We denote its image by E′ and the corresponding torus
by S′.

4.5. Lemma. The two étale subalgebras E,E′ ⊂ Mm(Z) are conjugate under the
action of GLm(Z).

Proof. It suffices to show the conjugacy of S and S′. The obstacle for conjugacy
of S, S′ is the N -torsor TransH(S, S′) where N = NGLm,Z (S). By the Skolem–
Noether Theorem (see [KMRT, Thm. 1.4]) the algebras E and E′ are conjugate
over K. Furthermore, we have

H1
ét(Z, S) = H1

ét(E,Gm,E) = Pic(E) = 1,

because E is a Laurent polynomial ring and hence has trivial Picard group. The
claim now follows from (iii). �

We next pass to adjoint groups.

4.6. Lemma. We keep the above notation. Let H = PGLm,Z and let S be the
image of S under the canonical map GLm,Z → PGLm,Z . There exists a class
[θ] ∈ H1(Z, S) such that θPGLm,Z ≃ PGLQ(Z)

.

Proof. Since PGLQ(Z)
has a maximal torus, by (ii) the group scheme PGLQ(Z)

is a

twisted form of PGLm,Z by some cocycle λ with coefficients in N = NPGLm,Z (S).

The cohomological class [λ] corresponds to the maximal torus SQ ⊂ PGLQ(Z)

where SQ is the image of SQ ⊂ GLQ(Z)
under the canonical map GLQ(Z)

→
PGLQ(Z)

. The argument in [Ch, Thm. 3.1] shows that there is another closed

embedding S ↪→ PGLm,Z , whose image will be denoted by S
′
, such that [λ] is

equivalent to some class [λ′] ∈ H1(Z, S′
). Let S′ ⊂ GLm,Z be the preimage of

S
′
. Its centralizer E′ in Q(Z ) is a maximal commutative étale subalgebra of Q(Z )

isomorphic to E. Since by the above lemma E and E′ are conjugate over Z, so

are the maximal tori S, S′. This in turn implies the conjugacy of S and S
′
in

PGLm,Z . Thus the cocycle λ′ is equivalent to some cocycle θ with coefficients in
S. �
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Assume for a moment that E also admits an embedding into Q′
(Z ). Then as

above the group scheme PGLQ′
(Z)

is a twisted from of PGLm,Z with some cocycle

θ′ with coefficients in S. Consider the exact sequence

H1(Z, S) = 1 → H1(Z, S) → H2(Z,Gm,Z) = Br(Z).

The images of [θ] and [θ′] in Br(Z) coincide, because the base change morphism
Br(Z) ↪→ Br(K) is injective and Q(Z ) and Q

′
(Z ) are isomorphic over K. It follows

that [θ] = [θ′] and this implies Q(Z ) ≃ Q′
(Z ); in particular, ξi = 1 as required.

To sum up: to finish the proof of Theorem 4.4 what is left to show is that E
admits an embedding in Q′

(Z ), i.e., there exist elements y1, y3, . . . , y2s−1 ∈ (Q′
(Z ))

×

which commute and such that

yℓ11 = t1, y
ℓ3
3 = t3, . . . , y

ℓs
2s−1 = t2s−1.

Here the positive integers ℓ1, . . . , ℓs and variables t1, . . . , tn are the same as in
Example 1.8 applied to Q.

Fix a presentation Q′ =
⊕

λ∈Λ′ kx′λ. As usual it induces a grading of Q′. The
isomorphism f : A′

(Z ) → A(Z ) induces an isomorphism

Mℓ(Q
′
(Z ))⊗Z K = Mℓ(Q

′
(Z ) ⊗Z K) → Mℓ(Q(Z ))⊗Z K = Mℓ(Q(Z ) ⊗Z K).

From the theory of central simple algebras over fields we know that the last im-
plies that Q′

(Z ) ⊗Z K ≃ Q(Z ) ⊗Z K. Hence, there exist commuting elements

z1, z3, . . . , z2s−1 ∈ Q′
(Z ) ⊗Z K such that zli2i−1 = t2i−1 for all i = 1, . . . , s, where

we view ti ∈ Q′
(Z ). Choose an element r ∈ Z such that rz2i−1 ∈ Q′

(Z ) for all i.
Then

(rz2i−1)
li = rlit2i−1. (4.6.1)

Recall that Q′
(Z ) has a natural grading transferred from Q′.

Let u2i−1 (resp. a) be the highest homogeneous component of rz2i−1 (resp. r)
with respect to any order on Λ. Taking the highest components on the left and on
the right in (4.6.1) we get (u2i−1)

li = alit2i−1. Note that a is some monomial in
the centre Z× of Q′

(Z ), hence it commutes with u2i−1. Then the elements

y2i−1 = a−1u2i−1 ∈ (Q′
(Z ))

×, i = 1, 3, . . . , 2s− 1,

have the required properties. �

4.7. Corollary. Let L = slℓ(Q) and L′ = slℓ′(Q
′) where Q and Q′ are fgc quan-

tum tori over a field of very good characteristic, let m ⊂ slℓ(Q) (resp. m′ ⊂ slℓ′(Q
′))

be the MAD consisting of diagonal matrices with entries in F , and let f : L′ → L
be an F -linear isomorphism of Lie algebras. Then f(m′) is conjugate to m.

Proof. This follows by combining Theorem 4.3 and Theorem 4.4. �

1026



ON CONJUGACY OF CARTAN SUBALGEBRAS

5. Specialization of quantum tori

Our main method of dealing with non-fgc quantum tori is specialization which
we develop in this section. In this section k denotes a field of characteristic 0.

5.1. Proposition. Let F be a finite subset of a field k of characteristic 0 con-
sisting of non-zero elements and let ℓ ∈ N+. Then there exists a finitely generated
subring R ⊂ k and a maximal ideal m ▹ R such that

(a) F ⊂ R \m, and

(b) R/m is a finite field of characteristic p > ℓ.

Proof. We can assume that f−1 ∈ F for every f ∈ F . Let R = Z[F ] ⊂ k
(resp. C = Q[F ] ⊂ k) be the Z-subalgebra (resp. Q-subalgebra) generated by
F . By the Noether Normalization Lemma there exist algebraically independent
u1, . . . , us ∈ C over Q such that C is integral over its subring Q[u1, . . . , us] and of
finite type as a Q[u1, . . . , us]-module, say with generators c1, . . . , ct.

Observation. For finitely many polynomials q1, . . . , qm ∈ Q[u1, . . . , us] there
exists n ∈ N+ such that q1, . . . , qm ∈ Z[1/n][u1, . . . , us] (here Z[1/n] is the local-
ization of Z in {na : a ∈ N}).

Apply this observation to the coefficients of the minimal polynomials of the
integral elements c1, . . . , ct and to the coefficients appearing in the linear combina-
tions expressing the elements of F in

∑t
i=1 Q[u1, . . . , us]ci. This yields that there

exists n ∈ N+ such that

(1) all coefficients of the minimal polynomials of the elements c1, . . . , ct belong
to E := Z[1/n][u1, . . . , us] and

(2) R := Z[F ] ⊂ E[c1, . . . , ct] =: D ⊂ C = Q[F ].

Because of (1), each ci is integral over E, whence D/E is an integral extension of
finite type. Now choose a prime number p such that p ̸ |n and p > ℓ. The ideal
p ▹E, generated by p and the u1, . . . , us, has the property that E/p ≃ Z[1/n]/⟨p⟩,
where ⟨p⟩ = pZ[1/n] ⊂ Z[1/n] is the ideal generated by p, whence ⟨p⟩ ⊂ Z[1/n]
and therefore also p ⊂ E are maximal ideals. Since D is integral over E, there
exists a maximal ideal n ▹D lying over p ▹E. By construction, D/n is a finite field
of characteristic p. Recall R ⊂ D, and put m = R ∩ n. Then R/m ↪→ D/n. So
R/m is a finite subring of the field D/n, whence a field itself. It remains to observe
that f ̸∈ m for every f ∈ F because f is a unit in D. �

5.2. Corollary. Let Q be a quantum torus over a field k of characteristic 0, let q =
(qij) ∈ Mn(k) be the quantum matrix associated with a coordinatization of Q and
write Q =

⊕
λ∈Λ kx

λ as in (1.2.1). Further, let a1, . . . , at ∈ k\{0}, b1, . . . , bm ∈ Q
be non-zero elements and let g1, . . . , gp ∈ Mℓ(Q) be non-zero matrices.

Then there exists a finitely generated subring R < k and a maximal ideal m ▹ R
with the following properties:

(i) All ai and qij ∈ R, all b1, . . . , bm lie in the unital graded subalgebra A =⊕
λ∈ΛRx

λ of Q, and all g1, . . . , gp ∈ Mℓ(A).

(ii) Denoting by the canonical quotient map, we have
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(a) R̄ = R/m is a finite field of very good characteristic p > 0 for slℓ(Ā);

(b) all āi and q̄ij ∈ R̄ are non-zero, hence roots of unity;

(c) Ā =
⊕

λ∈Λ R̄x
λ is an fgc quantum torus over R̄ with quantum matrix

(q̄ij) and p ̸ | [Ā : Z(Ā)];

(d) all b̄i ̸= 0 in Ā;

(e) all ḡi are non-zero in Mℓ(Ā).

Proof. Let F be the finite subset of k consisting of all ai, qij , all non-zero k-
coefficients of b1, . . . , bm and g1, . . . , gp and their inverses (the k-coefficients are
taken with respect to a natural k-basis of Q and Mℓ(Q)). Let R and m be as in
Proposition 5.1. Then all claims follow immediately from F ⊂ R \m. �

5.3. Lemma. Let Q be a quantum torus over a field k of characteristic 0. Then
the Lie algebra slℓ(Q) is finitely generated over k.

Proof. This fact is known for all Lie tori ([Ne1, Thm. 5]). In our concrete case, it
can be proven as follows. We fix a parametrization Q =

⊕
α∈Zn kxλ; in particular

this gives us coordinates xi, 1 ≤ i ≤ n corresponding to the standard basis of Zn.
It is straightforward to check that slℓ(Q) is generated by {Eij , x±1

p Eij : 1 ≤ i ̸=
j ≤ ℓ}. �

We have seen in 1.2(f) that a quantum torus is fgc if for one coordinatization,
equivalently for all coordinatizations, the entries of the associated quantum matrix
are roots of unity. Hence, in a coordinatization of a non-fgc quantum torus with
quantum matrix q = (qij) at least one of the qij is not a root of unity.

5.4. Theorem. Let Q =
⊕

λ∈Λ kx
λ and Q′ =

⊕
λ′∈Λ′ kyλ

′
be non-fgc quantum

tori over a field k of characteristic 0 with associated quantum matrices q = (qij) ∈
Mn(k) and q

′ = (q′ij) ∈ Mn′(k). We assume that we are given:

• non-zero elements b1, . . . , bm ∈ Q and non-zero elements b′1, . . . , b
′
m ∈ Q′;

• non-zero elements g1, . . . , gs ∈ glℓ(Q), and non-zero elements g′1, . . . , g
′
s′ ∈

glℓ′(Q
′);

• a k-linear isomorphism f : slℓ(Q) → slℓ′(Q
′) of Lie algebras.

Then there exists a subring R < k and a maximal ideal m ▹ R with the following
properties:

(i) all qij ∈ R and all q′ij ∈ R;

(ii) all b1, . . . , bm lie in the unital graded subalgebra A =
⊕

λ∈ΛRx
λ of Q, and

all g1, . . . , gs are in glℓ(A);

(iii) all b′1, . . . , b
′
m lie in the unital graded subalgebra A′ =

⊕
λ′∈Λ′ Ryλ

′
of Q′,

and all g′1, . . . , g
′
s′ ∈ glℓ′(A′);

(iv) f(slℓ(A)) = slℓ′(A′).

(v) Denoting by the canonical quotient map, we have

(a) R̄ = R/m is a finite field of very good characteristic for slℓ(Ā) and
slℓ′(Ā);

(b) all q̄ij , q̄
′
ij ∈ R̄ are non-zero, hence roots of unity;

(c) Ā = A/mA =
⊕

λ∈Λ R̄x
λ and Ā′ =

⊕
λ′∈Λ′ R̄yλ

′
are fgc quantum tori

over R̄ with associated quantum matrices (q̄ij) and (q̄′ij);
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(d) f̄ : slℓ(Ā) → slℓ′(Ā′) is an R̄-isomorphism of the corresponding Lie
R̄-algebras;

(e) all b̄i are non-zero in Ā and all b̄′i are non-zero in Ā′;
(f) all ḡi are non-zero in glℓ(Ā) and all ḡ′i are non-zero in glℓ′(Ā′).

Proof. By definition, the coordinates of 0 ̸= b ∈ Q are the non-zero sλ ∈ k when
b is written as b =

∑
λ∈Λ sαx

λ. The coordinates of 0 ̸= g =
∑
i,j gijEij ∈ Mℓ(Q)

are the coordinates of the non-zero gij ∈ Q. The coordinates of 0 ̸= b′ ∈ Q′ and
0 ≠ g′ ∈ Mℓ′(Q

′) are defined analogously. We choose finite generating systems
S ⊂ slℓ(Q) and S′ ⊂ slℓ′(Q

′) as in Lemma 5.3, and put g = f−1. We let F ⊂ k
consist of

— all qij , q
′
ij , the coordinates of all bi, b

′
i, gi, g

′
i together with their inverses,

— the elements (qij − 1)−1 and (q′ij − 1)−1 whenever qij or q
′
ij is not a root of

unity, and
— the coefficients of all elements in f(S) and g(S′).

We now apply Proposition 5.1 for this F but with the ℓ there replaced by
max{ℓ, ℓ′}. This provides us with (R,m) as required in the Theorem. Indeed, by
construction we have f(slℓ(A)) ⊂ slℓ′(A′) and similarly g(slℓ′(A′)) ⊂ slℓ(A). It
follows that f(slℓ(A)) = slℓ′(A′) (because g is the inverse for f), so that (iv) holds.
The remaining claims follow immediately from F ⊂ R \m. �

6. Some preliminaries for Step 3 of the proof of the main theorem

6.1. Setting I

In this section we use the following setting:

• Q is a quantum torus over a field F with grading group Λ ≃ Zn;
• We fix a basis ε of Λ; the ε-trace, the corresponding Z-grading, and the
ε-degree will all be taken with respect to the fixed ε. We will therefore
simply write deg instead of degε. We identify Λ = Zn via ε, and define
Λ+ = Nn ⊂ Zn.

• Corresponding to ε there exists a coordinatization of Q as Q =
⊕

λ∈Zn Fxλ.
We let 0 ̸= xi ∈ Q denote the element that corresponds to the ith basis vector
εi in ε, and put Q+ =

⊕
λ∈Λ+ Qλ. Note that Q+ is a unital subring of Q.

• For ℓ ≥ 2 we let V be a free right Q-module of rank ℓ. We fix a basis e1, . . . en
of V so that we can write V =

⊕ℓ
i=1 eiQ. We put V + =

⊕ℓ
i=1 eiQ

+.
• We say that xi divides q ∈ Q+ if every λ ∈ supp(q) has the form λ =
(λ1, . . . , λn) with respect to ε and λi > 0. In this case qx−1

i ∈ Q+.

• Any 0 ≠ v ∈ V can be uniquely written as v =
∑ℓ
i=1 eiqi with qi ∈ Q. We

put

deg(v) = max{deg(qi) : qi ̸= 0}.

We refer to the qi as the coordinates of v.

6.2. Lemma. Let 0 ̸= v ∈ V and let 0 ̸= q ∈ Q. Then vq ̸= 0 and

deg(vq) = deg(v) + deg(q).
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Proof. We write v =
∑ℓ
i=1 eiqi as above. The first claim is obvious: qiq ̸= 0 ⇐⇒

qi ̸= 0, and at least one coordinate qi ≠ 0. For the non-zero qi we have deg(qiq) =
deg(qi) + deg(q) by (1.3.3). Hence, if for simpler notation deg(v) = deg(q1) then
deg(qiq) ≤ deg(q1q) for all i with qi ̸= 0. �

6.3. Setting II

We continue with the Setting of 6.1. In addition, we fix a non-zero Q-submodule
U ⊂ V , and put U+ = U ∩ V +. Observe U+ ̸= {0} since qQ ∩Q+ ̸= {0} for any
0 ̸= q ∈ Q. Since deg(u) ≥ 0 for every 0 ̸= u ∈ U+ there exist minimal vectors
u0 ∈ U+ such that

deg(u0) ≤ deg(u) for all 0 ̸= u ∈ U+.

We call u ∈ U+ indivisible if u ̸= 0 and the coordinates of u do not have a
common divisor xi, 1 ≤ i ≤ n, in Q+. It is obvious that indivisible vectors exist.

Moreover,

every minimal vector u0 ∈ U+ is indivisible.

Indeed, write u0 =
∑ℓ
j=1 ejqj with all qj ∈ U+. Assume that all qj are divisible

by some xi. Then 0 ≠ u0x
−1
i =

∑ℓ
j=1 ejqjx

−1
i ∈ U+ since all qjx

−1
i ∈ Q+. But

deg(uminx
−1
i ) = deg(u0) + deg(x−1

i ) = deg(u0)− 1 < deg(u0), a contradiction.

6.4. Lemma. Assume Setting 6.3, and let u0 ∈ U+ be indivisible, and let q ∈ Q.
Then

u0q ∈ U+ ⇐⇒ q ∈ Q+.

Proof. We only need to show that the left-hand side implies the right-hand side.
We reason by contradiction. Assume q ̸∈ Q+. We write u0 =

∑ℓ
j=1 ejqj with all

qj ∈ Q+. We choose a minimal λ = (λ1, . . . , λn) ∈ Λ+ such that qxλ ∈ Q+. Here
“minimal” means that qxλx−1

i ̸∈ Q+ for all i. Since q ̸∈ Q+, some λi > 0. Let I be
the ideal of the ring Q+ generated by xi. Note I = xiQ

+ = Q+xi. By definition
of an indivisible element, at least one of the coordinate qj of u0 is not divisible by
xi in Q

+ (for i with λi > 0). To simplify notation, assume this is q1, i.e., q1 ̸∈ I.
Then the following holds.

(i) qxλ ̸∈ I. Otherwise, qxλ = q′xi for some q′ ∈ Q+, whence qxλx−1
i ∈ Q+,

and so qxµ ∈ Q+ for µ = λ− εi ∈ Λ+.
(ii) q1qx

λ ∈ Q+ because q1 ∈ Q+ and qxλ ∈ Q+. Furthermore, xλ ∈ I because
λi > 0. Hence q1qx

λ ∈ I. Thus x1|q1qxλ, but x1 ̸ |q1 and x1 ̸ |qxλ. This
contradicts (iii) below.

(iii) Q+/I is a subring of the quantum torus with associated quantum matrix
q′ = (qij) where 2 ≤ i, j ≤ n. It is therefore a domain.

Our assumption q ̸∈ Q+ has thus led to a contradiction. �

6.5. Corollary. Let u0 ∈ U+ be an indivisible vector. Then

U = u0Q ⇐⇒ U+ = u0Q
+.
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Proof. If U = u0Q and u+ ∈ U+, then u+ = u0q with q ∈ Q and Lemma 6.4
shows q ∈ Q+. Conversely, if U+ = u0Q

+ and u ∈ U is arbitrary, we can take
xλ ∈ Q such that uxλ ∈ U+, whence uxλ = u0q for some q ∈ Q+. But then
u = u0q(x

λ)−1 ∈ u0Q. �
6.6. Lemma. In addition to the Setting 6.3 assume that U admits a complement:
V = U ⊕ U ′ for some Q-subspace U ′. Let u0 ∈ U+ be a minimal vector and put
Q++ =

⊕
λ∈Nn\{0}Q

λ. Then u0 ̸∈ v(Q++) for any v ∈ V +.

Proof. Assume to the contrary that u0 = vq for some q ∈ Q++ and v ∈ V +.
Decompose v = u+u′ with u ∈ U and u′ ∈ U ′. Then u0 = uq+u′q shows u′q = 0.
So without loss of generality we can assume v ∈ U+. Now apply Lemma 6.2 to get

deg(v) + deg(q) = deg(vq) = deg(u0) ≤ deg(v)

(because u0 is minimal) and hence deg(q) = 0, i.e., q ∈ F× · 1F , a contradiction.
�

7. Proof of the main theorem

7.1. Setting and plan of the proof

Throughout this section, k is a base field of characteristic 0 and Q and Q′ are
non-fgc quantum tori. We assume that they are coordinatized as

Q =
⊕

λ∈Λ kx
λ and Q′ =

⊕
λ′∈Λ′ kyλ

′

for Λ = Zn and Λ′ = Zn′
with associated quantum matrices q = (qij) ∈ Mn(k)

and q′ = (q′ij) ∈ Mn′(k). We assume that

f : slℓ′(Q
′) → slℓ(Q)

is a k-linear isomorphism. We apply Lemma 2.5 to extend f to an isomorphism

fgl : glℓ′(Q
′) → glℓ(Q).

In the first step of the proof (Proposition 7.2) we will show ℓ = ℓ′. Next, it will
follow from Proposition 7.3 that we may assume that

ϕ = fgl : Mℓ(Q
′)) → Mℓ(Q)

is an isomorphism of associative algebras. In the final step of the proof we will
establish that if h′ ⊂ Mℓ′(Q

′) (resp. h ⊂ Mℓ(Q)) is the standard MAD of Mℓ′(Q
′)

(resp. Mℓ(Q)) then ϕ(h′) is conjugate to h by an element of GLℓ(Q).

7.2. Proposition. In the setting 7.1 we have ℓ = ℓ′.

Proof. According to Theorem 5.4 there exist a subring R ⊂ k and a maximal ideal
m ▹ R such that f induces an R-isomorphism

f̄ : slℓ′(Ā′) → slℓ(Ā).

Since Ā and Ā′ are quantum tori over R̄ of fgc type, by Theorem 4.3 we have
ℓ = ℓ′. �
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7.3. Proposition. Consider the following two maps:

(a) fgl : glℓ(Q
′) → glℓ(Q),

(b) the extension of f ◦ ιop : slℓ((Q′)op) → slℓ(Q) to a Lie algebra isomorphism

(f ◦ ιop)gl : glℓ((Q′)op) → glℓ(Q).

Then one of these maps is an isomorphism of the underlying associative k-algebras.

Proof. Assume the contrary. Then there exist g1, g2, g3, g4 ∈ Mℓ(Q
′) such that

fgl(g1g2) ̸= fgl(g1)fgl(g2) and fgl(−g3g4) ̸= fgl(g4)fgl(g3).

Put
g′1 = fgl(g1g2), g

′
2 = fgl(g1), g

′
3 = fgl(g2), g

′
4 = g′1 − g′2g

′
3

and similarly

g′5 = fgl(−g3g4), g′6 = fgl(g3), g
′
7 = fgl(g4), g

′
8 = g′5 − g′7g

′
6.

Recall that by Lemma 2.3 one has the decomposition

glℓ(Q) = Z(Q)Eℓ ⊕ slℓ(Q)

and similarly

glℓ(Q
′) = Z(Q′)Eℓ ⊕ slℓ(Q

′).

So every element gi (resp. g′i) can be written as the sum gi = qiEℓ + g̃i (resp.
g′i = q′iEℓ+ g̃

′
i) where qi (resp. q

′
i) is in the centre of Q (resp. Q′) and g̃i (resp. (g̃

′
i)

is a sum of commutators of elements of glℓ(Q) (resp. glℓ′(Q
′)). We add to our list

of elements g1, . . . , g4 (resp. g′1, . . . , g
′
8) all their components arising in the above

two decompositions (including elements appearing in the writing of g̃i, g̃
′
i as sums

of commutators).
We now apply Theorem 5.4 with these data. This provides us with a subring

R ⊂ k and a maximal ideal m ▹ R satisfying the many conclusions of loc. cit. In
particular, denoting by

fA : slℓ(A′) → slℓ(A)

the isomorphism obtained by restriction of f , we have an isomorphism

f̄A : slℓ(Ā′) → slℓ(Ā)

where now both Ā′ and Ā are fgc quantum tori over the finite field R/m of very
good characteristic. This allows us to apply Theorem 4.3. In view of Remark 2.6
we get that either

(f̄A)gl : glℓ(Ā′) → glℓ(Ā) or (f̄A ◦ ιop)gl : glℓ(Ā′op) → glℓ(Ā)

is an isomorphism of the underlying associative algebras.
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On the other side, arguing as in Lemma 2.5 we get the following: if Z(A) (resp.
Z(A′)) denotes the centre of A (resp. A′) our map fA has a canonical extension
to

Z(A′)Eℓ ⊕ slℓ(A′) → Z(A)Eℓ ⊕ slℓ(A)

which abusing notation we will still denote by (fA)gl. Note that (fA)gl coincides
with the restriction of fgl to Z(A′)Eℓ ⊕ slℓ(A′) and that by our construction all
matrices qiEℓ, q

′
iEℓ′ , g

′
i and gi live in Z(A′)Eℓ ⊕ slℓ(A′) and Z(A)Eℓ ⊕ slℓ(A).

Passing to the residues we get an isomorphism

(fA)gl : Z(A′)⊕ slℓ(Ā′) → Z(A)⊕ slℓ(Ā).

It is easily seen from the construction that

(fA)gl = ((f̄A)gl)|Z(A′)⊕sl(Ā′)
=: ψ.

We now obtain a contradiction: In case (f̄A)gl is an isomorphism of the underlying
associative algebras we have

g′1 = ψ(g1g2) = ψ(g1)ψ(g2) = g′2g
′
3,

whence
g′4 = g′1 − g′2g

′
3 = g′1 − g′2g

′
3 = 0,

contradicting g′4 ̸= 0 by Theorem 5.4. In the other case, one obtains a contradiction
in the same way. �
7.4. Final step

As indicated above, from now on we will assume that

ϕ : Mℓ(Q
′) → Mℓ(Q)

is an isomorphism of associative k-algebras. Let

V = Q⊕ . . .⊕Q

be the free right Q-module of rank ℓ defined in (2.2.4) for A = Q. We know that
Mℓ(Q) acts on V from the left while Q acts from the right. We denote by B =
{e1, . . . , eℓ} the standard basis of the Q-module V , defined in (2.2.5). Furthermore,
we know that E′

i = E′
ii ∈ Mℓ(Q

′), i = 1, . . . , ℓ form a complete orthogonal system
of idempotents in Mℓ(Q

′). Since ϕ preserves the associative multiplication, the
image of the standard orthogonal system (E′

11, . . . , E
′
ℓℓ) of Mℓ(Q

′) is a complete
orthogonal system in Mℓ(Q). We put

Ẽi = ϕ(E′
ii) ∈ Mℓ(Q), 1 ≤ i ≤ ℓ.

We then know from Lemma 2.10 that V decomposes with respect to (Ẽ1, . . . , Ẽℓ):

V = V1 ⊕ · · · ⊕ Vℓ, for Vi = Ẽi(V ).
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As shown in Lemma 2.10(c) conjugacy will follow once we know that all the Vi are
cyclic Q-modules. We will prove this using again specialization.

To simplify the notation we let U = Vi for any one of the i, 1 ≤ i ≤ ℓ. We can
apply the results of §6 and choose a minimal vector u0 ∈ U+. For t ∈ N define

Pt = {q ∈ Q+ : deg(q) ≤ t},
Vt = {v ∈ V + : deg(v) ≤ t},
Ut = Vt ∩ U+.

The spaces Pt, Vt and Ut are finite-dimensional k-vector spaces. We denote by
P(·) the corresponding projective spaces. Since 0 ̸= q =⇒ u0q ̸= 0 we have a
well-defined regular map

φt : P(Pt) → P(Ut+deg(u0)), [q] 7→ [u0q].

Its image is the zero set of a finite set Gt of non-zero homogenous polynomials (in
fact linear forms) with coefficients in k:

Im(φt) = Zero(Gt).

Similarly, for 0 ≤ s < deg(u0) we have a regular map

γs : P(Vs)× P(Pdeg(u0)−s) → P(Vdeg(u0)), ([v], [q]) → [vq].

Since we are dealing with projective spaces, the image of γs is a closed subvari-
ety, whence given by a finite set Hs of non-zero homogeneous polynomials with
coefficients in k:

Im(γs) = Zero(Hs).

By Lemma 6.6, [u0] ̸∈ Im(γs) for all 0 ≤ s < deg(u0). Hence:

hs(u0) ≠ 0 for some hs ∈ Hs, 0 ≤ s < deg(u0). (7.4.1)

Recall that our goal is to show U = u0Q, i.e., in view of Lemma 6.4: U+ = u0Q
+.

For the purpose of contradiction, assume this is not the case. Thus there exists
v0 ∈ U+ \ u0Q+. Observe

d := deg(v0)− deg(u0) ≥ 0.

Therefore [v0] ̸∈ Im(φd), i.e.,

gd(v0) ̸= 0 for some gd ∈ Gd. (7.4.2)

We now apply Corollary 5.2 to construct a subring R < k. The finitely many
elements ai ∈ k, bi ∈ Q and gi ∈ Mℓ(Q) of loc. cit. are the following.

• in k: the elements hs(u0) and gd(v0) of (7.4.1) and (7.4.2) respectively; all
qij ; the coefficients of the polynomial gd and of all polynomials in Hs, 0 ≤
s < deg(u0);

• in Q: the (by definition non-zero) coefficients of the vectors u0 and v0;

• in Mℓ(Q): the matrices Ẽi, 1 ≤ i ≤ ℓ.
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As in Corollary 5.2 let A =
⊕

λ∈ΛRx
λ. We then have objects “over R”:

VA =
⊕ℓ

i=1 eiA, A+ =
⊕

λ∈Λ+ Rxλ, V +
A =

⊕ℓ
i=1 eiA+.

Since all matrices Ẽi ∈ Mℓ(A) we get a decomposition

VA = VA,1 ⊕ · · · ⊕ VA,ℓ, VA,i = VA ∩ Vi.

In particular, UA = U∩VA. We choose the maximal ideal m▹R as in Corollary 5.2,
and denote by the quotient objects:

R̄ = R/m,

Ā = A/mA =
⊕

λ∈Λ R̄x
λ, Ā+ = A+/mA+ =

⊕
λ∈Λ+ R̄xλ,

V̄A = VA/mVA =
⊕ℓ

i=1 eiĀ ≃ Āℓ, V̄ +
A = V +

A /mV
+
A =

⊕ℓ
i=1 eiĀ+ ≃ Āℓ,

ŪA = UA/mUA.

By construction, Ā is an fgc quantum torus over the finite field R̄ which has very
good characteristic for slℓ(Ā). Hence, by Corollary 4.7, conjugacy holds in slℓ(Ā).
Thus, by Lemma 2.10, ŪA is a free Ā-module, say ŪA = c̄ · Ā. We can apply the
results of §6: without loss of generality, c̄ ∈ Ū+

A = ŪA ∩ V̄ +
A . We can even assume

that c̄ is indivisible. Thus, by Corollary 6.5, Ū+
A = c̄Ā+. Since ū0 ∈ Ū+

A we get
from Lemma 6.4 that

ū0 = c̄ · ā for some ā ∈ Ā+.

Our next goal is to show that ā ∈ R̄ · 1Ā. To this end we use the “bar”-versions
of the vector spaces and maps defined above:

P̄t = {q ∈ Ā+ : deg(q̄) ≤ t}, V̄t = {v̄ ∈ V̄ +
A : deg(v̄) ≤ t}, Ūt = V̄t ∩ Ū+,

φ̄t : P(P̄t) → P(Ūt+deg(u0)), [q̄] 7→ [ū0q̄],

γ̄s : P(V̄s)× P(P̄deg(u0)−s) → P(V̄deg(u0)), ([v̄], [q̄]) → [v̄q̄].

By base change, Im(φ̄t) is the zero set of the polynomials {ḡ : g ∈ Gt}. Similarly,
Im(γ̄s) is the zero set of the polynomials h̄, h ∈ Hs. From ū0 = c̄ · ā we obtain
deg(ū0) = deg(c̄) + deg(ā). Assuming deg(ā) > 0, it follows that ū0 ∈ Im(γ̄s) for
0 ≤ s = deg(c̄) < deg(ū0) = deg(u0). Hence h̄(ū0) = h(u0) = 0 for all polynomials
h ∈ Hs. But this contradicts (7.4.1): h̄s(u0) ̸= 0 by construction of R and m.
Hence deg(ā) = 0, proving that ū0 is also a generator of Ū+

A : Ū+
A = ū0Ā+.

Recall the element v0 ∈ U+ \ u0Q+. We have 0 ̸= v̄0 ∈ Ū+
A = ū0Ā+. Hence

ḡ(v̄0) = g(v0) = 0 for all g ∈ Gd. But this contradicts (7.4.2): gd(v0) ̸= 0 by
construction of R and m. Thus, we have arrived at the final contradiction: There
does not exist v0 ∈ U+ \ u0Q+. It follows that U is indeed generated by u0.
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