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Abstract. We establish the conjugacy of Cartan subalgebras for generic Lie tori “of
type A”. This is the only conjugacy problem of Lie tori related to Extended Affine Lie
Algebras that remained open.

Introduction

Extended Affine Lie Algebras (EALAs for short) are a rich class of Lie algebras
that were first conceived by the physicists R. Hgegh-Krohn and B. Torresani and
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then brought to the attention of mathematicians by P. Slodowy (the reader should
look at [Ne2] and [Ne3] for a comprehensive review of basic EALA theory and
references. The original mathematical formulation is to be found in [AABGP)).
An EALA has an invariant non-negative integer attached called its nullity. In
nullity 0 EALAs are nothing but the finite-dimensional simple Lie algebras, while
in nullity 1 EALASs are the celebrated affine Kac-Moody Lie algebras (we assume
for simplicity in this Introduction that our base field is the complex numbers).
Roughly speaking an EALA F is constructed from a class of Lie algebras called
Lie tori by taking a central extension and adding a suitable space of derivations.
In the case of the affine algebras, for example, the Lie torus is a loop algebra L
based on a finite-dimensional simple Lie algebra g. Note that L is naturally a
Lie algebra over the Laurent polynomial ring C[t*!]). This ring is the centroid
of L.The central extension of L is the universal one (which is one-dimensional).
The space of derivations is also one-dimensional and corresponds to the degree
derivation ¢(d/dt).

An EALA, by definition, comes equipped with a so-called Cartan subalgebra
(just like the affine algebras do, but unlike the finite-dimensional simple Lie al-
gebras; see §2 for details). In the setting of EALAs, a Cartan subalgebra is the
same as a self-centralizing ad-diagonalizable subalgebra, as defined in §2.7. With
respect to the given Cartan subalgebra the EALA admits a root space decom-
position. The structure of the resulting “root system” plays a fundamental role
in understanding the structure as well as the representation theory of the given
EALA. Tt is obvious that all of this would be of little use (or mathematically un-
natural) if the nature of the root system was to depend on the choice of Cartan
subalgebra. The most elegant way of dealing with this problem is by establishing
“Conjugacy”, i.e., by showing that all Cartan subalgebras are conjugate under the
action of the group of automorphisms of the EALA (in all cases it is sufficient
to use a precise subgroup of the full group of automorphisms. Conjugacy in the
finite-dimensional case, in the spirit of the present work, is due to Chevalley. For
the affine algebras the result is due to Peterson and Kac [PK]). For almost all
EALAs (see below) conjugacy, hence the invariance of the root system, has been
established in [CGP] (for Lie tori) and [CNPY] (for the full EALAs). One case,
the so called non-fgc case (see §2 for definitions), remained open. The purpose of
this paper is to establish conjugacy for the Lie tori (the analogue of [CGP] in the
non-fgc case) underlying this remaining family of EALAs.

The centroid of a Lie torus L is always a Laurent polynomial ring R in finitely
many variables. In all cases but one, L is an R-module of finite type. This is the
fgc case (where fgc stands for finitely generated over the centroid). When this does
not happen, the non-fgc case, the nature of L is perfectly understood:

L= 5[((@)

where @) is a quantum torus with at least one generic entry. We remind the
reader that by definition @ is the complex unital associative algebra presented by

enerators 1, ..., ZTn, 7, ..., 21 and relations
9 9 Pl B rn

xix._l =

-1
i lo=ua; @, xi%; = qijx;T;,
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where the ¢;; are non-zero complex numbers. That “one entry be generic” means
that one of the ¢;; cannot be a root of unity. The centre Z(Q) of Q is always a
Laurent polynomial ring. The fgc condition on the Lie algebra sl,(Q) is equivalent
to @ being a Z(Q)-module of finite type.

We can now state our

Main Theorem. Let f: sly(Q") — sl,(Q) be an isomorphism of non-fgc Lie tori.
Then £ =0 and if b and b denote the given Cartan subalgebras of sly(Q') and
slp(Q) respectively,® then f(b') and b are conjugate under an automorphism of

5[@(@).

In the fgc case the proof of conjugacy is naturally divided into two steps. One
first establishes conjugacy at the level of Lie tori, and then extends this conjugacy
“downstairs” to the full EALA. The fgc condition allows the Lie tori to be viewed
as simple Lie algebras (in the sense of [SGA3]) over Laurent polynomial rings.
Conjugacy in the fge case makes heavy use of the powerful methods of [SGA3]
and Bruhat—Tits theory. None of this is possible in the non-fgc case. New meth-
ods/ideas are needed. The crucial ingredient that we develop to deal with this new
situation is a method that we call “specialization”. The idea, roughly speaking, is
to create a subring R of C with the property that

(i) our non-fgc Lie torus “exists” over R,
(ii) there exists a maximal ideal m of R which after base change (reduction
modulo m) yields an fgc Lie torus.

The catch is that the field R/m is of positive characteristic! One does not even
have a suitable definition of Lie tori in positive characteristic. Yet the resulting
object and its group of automorphisms is explicit enough that we can establish
conjugacy for them. The specialization method is invoked once again to show that
conjugacy holds before the reduction modulo m.

Notation. Throughout, R is a commutative unital ring which often occurs as
the base ring of some algebraic structure being considered; F' is an arbitrary field,
and k often denotes a field of characteristic 0. An R-algebra is an arbitrary algebra
over R (in particular not necessarily associative or a Lie algebra). Group schemes
are usually denoted with bold letters. For example, PGL,, r denotes the R-group
scheme of automorphisms of the (associative and unital) R-algebra M, (R).

Structure of the paper. In Section 1 we collect some basic results about centroids
of (arbitrary) algebras. Particular attention is devoted to the case of quantum
tori. Section 2 looks at the structure of the Lie algebra sl,(Q) where @ is a quan-
tum torus. The definition and basic properties of maximal abelian diagonalizable
(MAD) subalgebra are also given in this section (these are the subalgebras that
play the role of the Cartan subalgebras in EALA theory). Section 3 is devoted to
a detailed study of the group scheme PGL 4 where A is an Azumaya algebra over
a ring R, and of the connection between this R-group scheme and the R-group
scheme of automorphisms of sl;(A). Section 4 presents a detailed analysis of the

2As we have mentioned already, a distinguished “Cartan subalgebra” is part of the
definition of a Lie torus.
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automorphism group of the Lie algebra sl,(Q)) when @ is an fgc quantum torus.
Section 5 develops the method that we called “specialization” mentioned above.
This is the key that allows us to deal with the non-fgc case by translating the
problem into an fgc question, but now over fields of positive characteristic. Sec-
tion 6 presents a collection of preliminary results to be used in the proof of the
main Theorem, which is given in Section 7.

1. Some results on centroids and quantum tori

1.1. Centroids and base change

Let R be a commutative ring and let A be an arbitrary R-algebra.® Recall that the
derived subalgebra of A is the additive subgroup of A generated by all products
ab with a,b € A. It is trivial to see that this group is indeed an R-subalgebra of
A. The algebra A is called perfect if it equals to its derived algebra. Note that
any unital algebra is perfect.

A crucial object for our work is the centroid Ctd(A) of the algebra A. Recall
that

Ctd(A) = {x € Endr(A) : x(a1az2) = x(a1)az = arx(az) for all a; € A}.

Clearly Ctd(.A) a unital commutative (if A is perfect) subalgebra of the associative
R-algebra Endg(A). It is obvious that we can consider A as an algebra over
C = Ctd(A)—it will be denoted A).* We will say that A is fgc if A is a
finitely generated C-module.

More generally, if S € R-alg, i.e., S is a unital associative commutative R-
algebra, and if p: S — Ctd(.A) is a unital algebra homomorphism, A becomes an
S-algebra by defining s -a = p(s)(a) for s € S and a € A. We will denote the
algebra obtained in this way by A(,) or A(g) if p is clear from the context.

Example 1. Assume that f: A’ = A is an isomorphism of perfect R-algebras.
It is then easily seen (and well known) that

Ctd(f): Ctd(A) = Ctd(A"), x— floxof (1.1.1)

is an isomorphism of R-algebras. Since C = Ctd(A) € R-alg, we can use Ctd(f)
to make A’ a C-algebra: x - o’ = (Ctd(f)(x))(a’) = (f ' o x o f)(a’). Then

f: A/(c) — A(e) is C-linear. (1.1.2)
Indeed,
fx-a) = f((fFoxo f)(a) = x(f(a)) = x- f(d)
for yeCanda € A'.

Example 2 (centre). Let A be a unital associative R-algebra. As usual, [a,b] =
ab — ba for a,b, € A denotes the (Lie) commutator. The centre Z(A) = Z consists

31t will not be sufficient in the following to consider only algebras over fields.
4We use A(C) instead of A¢ since the latter usually denotes base change.
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of all z € A satisfying [z,a] = 0. One easily checks that the left multiplication by
a central element is an isomorphism of R-algebras:

Z(A) = Ctd(A), 2+ L,. (1.1.3)

Hence we can (and will) consider A as a Z-algebra, denoted A(z).

Example 3. Let A be as above and let £ = sly(A) be the special linear Lie
R-algebra introduced in 2.2. If Z = Z(A), we have an obvious R-algebra homo-
morphism

(: 2= Ctd(L), ¢(2) = ((wij) = (2235))

for z € Z and « = (x;;) € L. We will show in Lemma 2.4 that ¢ is an isomorphism
if £ > 2 and % € R. 1t is easily seen that

ﬁ[g(.A)(g) :ﬁ[g(.A(z)). (1.1.4)

1.2. Some properties of quantum tori

We list some properties of quantum tori that we will use. Throughout, F' is a field
of arbitrary characteristic, and A is a free abelian group of rank n.

(a) (Definitions) By definition, a quantum torus (with grading group A) is an
associative unital A-graded F-algebra Q@ = @, Q* such that dim Q* = 1 for all
X € A and that every 0 # a € Q* is invertible.

After fixing a basis € = (g;) of A, we can choose 0 # z; € Q% and then get a

quantum matrix ¢ = (g;;) € M,,(F') defined by x;2; = ¢;jz;z,. Then, using x;l =

the inverse of z;, we define z* = acgl . -xf;* for \=/tie1+ -+ Lpe, € A:

Q=@ F2. (1.2.1)

One can then also realize a quantum torus as the unital associative F-algebra
presented by generators x1,..., Ty, xfl, ...,x; 1 and relations

xm;l =1lg= x;lxi, TiTj = 35 T45T;.
We will refer to this view of @ as a coordinatization.

We point out that such a presentation is not unique: it depends on the chosen
Z-basis € of A. In other words, for any integral matrix A = (a;;) € GL,(Z) the

set & = {Z1,...,Z,} of invertible elements in @, defined by
Ty =af e xpin Ty = (e

also generates () and the associated quantum matrix § = (g;;) is given by ¢;; =
Hs t q;ltisajt :

(b) The centre of @ is a A-graded subalgebra,

Z(Q) = @565 Qg
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where = is the so-called central grading group:
E={AeA:Q"C Z(Q)}.
This is a free abelian group of rank z < n. Hence Z(Q) is a Laurent polynomial

ring in z variables, which we may take as t1,...,t, (these can be taken to be of
the form z* for suitable \s).

(c) We define

[Q, Q] = spang{[a,b] : a,b € Q},
a graded subspace of ). One knows (see, e.g., [BGK, Prop. 2.44(iii)] for F = C or
[NY, (3.3.2)] in general)
Q=2(Q)®[Q.Q (12.2)

(d) @Q is a domain: ab = 0 for a,b € @ implies that a = 0 or b = 0, whence
a nondegenerate and thus prime associative F-algebra. This implies that Q is
connected: the only idempotents in  are 0 and 1.

(e) An element u of Q is invertible if and only if 0 # u € Q* for some A € A.

(f) The grading properties of a quantum torus ) show that @ is fgc in the sense
of 1.1 if and only if = has finite index in A. Equivalently, for some (hence all)
coordinatization all entries g;; of the quantum matrix ¢ have finite order. If this
holds, then for every coordinatization the g;; have finite order.

(g) We let Z = Z(Q), and denote by Z the quotient field of Z, a rational
function field. The g—algebra B _

Q=0Q®zZ2

is called the central closure of Q. It has the following properties: Q: is a central 2-
algebra, ) is a domain (since @ is a domain), and @) embeds into Q. In particular,
if @ is fgc, then @ is a finite-dimensional central domain over Z , whence a central
division Z-algebra.

(h) (Trace, Z-grading, degree) As in (a) we fix a basis € = (1,...,&,) of A and
define the e-trace as tre(X) = >, A for A =~ \ie; with A; € Z. Since tre: A = Z
is a group homomorphism, the A-grading of ) can be made into a Z-grading

Q=@,czQne) With Quu.e) = By ()=n @ (1.2.3)

Every 0 # ¢ € Q can be uniquely written as ¢ = >, - () With qu) € Qe
and q(,,) # 0. We call m the e-degree of ¢ and denote it by deg.q. We put
deg, 0 = —o0.

In the following we may suppress the dependance on € and just speak of the
trace. Analogously for the Z-grading (1.2.3).

1.3. Lemma. Let @ be a quantum torus over the field ', and let q,q1,q2 € Q.
(a) For any Z-basis € of A we have

deg.(q1 + g2) < max{deg.(q1), deg.(g2)}, (1.3.1)
deg.(sq) = deg.(q) for0#seF, (1.3.2)
deg.(q1q2) = deg.(q1) + deg.(q2) (1.3.3)

with the obvious rules in case one of q,q1 or qo = 0.

(b) For 0 # q € Q we have ¢ € Q° = Flg <= deg.(q) = 0 for all Z-bases €
of A.
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Proof. (a) All formulas are easily verified in case one of ¢, ¢g; or go = 0 (using the
convenience that 0 is of degree —o0). Also, (1.3.1) and (1.3.2) follow immediately
from the definition. For (1.3.3) and g1, ¢2 # 0 we have g1¢> # 0 since @ is a domain.
We write g1 = anm q(n) With deg, ¢1 = m and ¢z = anp qzn) with deg.(g2) = p.
Since Q@ = @,,cy, Qn,e) is a Z-grading, it follows that q1ga = Q(m)qu)—l— terms of
lower degree in the Z-grading with respect to e.

(b) Let 0 # ¢ € Q. If ¢ € Q° then deg_(q) = 0 because tre(q) = 0 for any
Z-basis € of A. Conversely, we can assume g # 0 and write ¢ = Z)\Esupp(q) s
with ¢* € Q* and supp(q) = {\ € A : ¢* # 0}. Then trc(\) < 0 for every
A € supp(g) by assumption. But since both € and —e are Z-bases of A and
troe = —tre we get tre(A) = 0 for every A € supp(q). For a fixed € and A =
St tig; € supp(q) we therefore have Y | ¢; = 0. Our claim obviously holds
if A 2 Z. Thus we can assume that A has rank at least 2. With respect to the
Z-basis € = (e1 + 2e9,e9,¢€3,...) we have A = £1(e1 + 2e2) + (fo — 201)ea + -+ -.
Thus 0 =3, €; =01 + (€ —201) + Y ,~5¢; = 0, and £; = 0 follows. Similarly, all
Ei = 0, i.e., A=0. U

In the following lemma we will describe certain F-diagonalizable endomorphisms
¢ of a quantum torus @ over F. The term F'-diagonalizable means of course that
there exists an F-basis of the F-vector space @) consisting of eigenvectors of ¢ with
eigenvalues in F'.

1.4. Lemma. Let Q = @, Q* be a quantum torus over the field F, and let
deqQ.
(a) If dg = wq for some 0 # q € Q and w € F, then d € Q°. In particular, the
left multiplication Lq for d € Q is F-diagonalizable if and only if d € Flg = Q°.
(b) If [d,q] = wq for some 0 # w € F, then ¢ = 0. In particular, the endo-
morphism add € Endpr(Q), defined by (add)(q) = [d, q|, is F-diagonalizable if and
only if d € Z(Q).

Proof. (a) follows from the fact that @ is a domain and ¢ # 0.
(b) Suppose 0 # g. Then for any Z-basis € of A we get, using the formulas of
Lemma 1.3(a),

deg, (dq) = deg,(d) + deg.(q) = deg.(d) + deg.(—q) = deg.(—qd),
deg, (q) = deg.(wq) = deg.(dg — qd) < max{deg.(dq), deg.(—qd)}
= deg.(dg) = deg.(d) + deg,(q)
whence deg,(d) > 0. But since —e is also a basis of A, we in fact have deg,(d) = 0.
Thus, by Lemma 1.3(b), we have d € Q°. But then [d, q] = 0 yields a contradiction.

This shows ¢ = 0, and also that add does not have a non-zero eigenvalue. In
particular, if ad d is F-diagonalizable, necessarily add = 0, i.e., d € Z(Q). O

In the remainder of this section we present some results which are special for

fgc quantum tori.

1.5. Canonical presentation

Let @ be a quantum torus over the field F, coordinatized as @ = @, Fz* as in
(1.2.1), and let ¢ = (gi;) be the associated quantum matrix. We will say that the
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coordinatization (or presentation) is canonical if all entries of the quantum matrix
q outside of its diagonal blocks of size 2 x 2 are equal to 1. Equivalently, for every
i > 1 the generators xg;_1,z2; of  commute with all other generators x; where
J#£2i—1,2.

The following lemma is stated without proof in [CP, Rem. 7.2]. A proof is given
in [Nee, Thm. 4.5].

1.6. Lemma. Any fgc quantum torus Q has a canonical presentation.

1.7. Example (Quantum 2-tori). Let Q be a quantum torus whose grading group
has rank 2. Hence @ is generated by two elements, say x1, x2, and the correspond-
ing quantum matrix has the form

(1 Q12>
q <q1—21 1

where g2 € F'*. By definition, this presentation of () is canonical. The algebra Q)
is fgc if and only if g2 is a root of unity, say primitive of degree ¢. Let us assume
this in the following. The Z-algebra )z ) will be called a symbol algebra of degree
£. Tts centre Z is a Laurent polynomial ring (1.2(b))

zZ= k[t{dvtéd]
where t; = z{, to = 2% (observe that ¢ is independent of the coordinatization,
since A/Z = ¢?). We will usually denote this Z-algebra by (t1,t2)z, 4,, Or simply
(t1,t2) if there is no risk of confusion. Note that Q(z) has order £ in the Brauer
group Br(Z).
If £ € F* the subalgebra E = Z[zF!] is a maximal (abelian) étale subalgebra
of Q(Z )

1.8. Example. Let Q = @, Fa2* be an fgc quantum torus over a field F. By
Lemma 1.6 we can assume that ) is canonically presented, say with quantum
matrix ¢ = (¢;;). Up to re-numbering (=re-coordinatization), we may assume that
the elements qi2,¢34,...,q25—1,2s # 1, but g2;11,2i42 = 1 for all ¢ > s. Then @
admits a decomposition

Qz)y=Q1,z20z  ®z Qs =

where the Q; z = (t2;—1,t2;) are the symbol algebras in degree ¢; corresponding
to the nontrivial diagonal blocks of ¢ of size 2 x 2, i.e., to the block diagonal

sub-matrices
1 q2i—1,2i
q2i,2i—1 1

of ¢ where 7 < s. Here tg; 1 = scgii_l,tgi = xél and ¢; = |q2i—1,2;| is the order of
q2i—1,2i- Obviously,

Z=F, . Gt
where t25+1 = T2541y- - ,tn = Tp.
1.9. Remark. In the Setting of 1.8 assume that all I; € F'*. Then
+ + +
E = Z[l’l 1,353 1, e ,1’231,1] C Q(Z)

is a maximal étale Z-subalgebra of Q(z), and the pair (Qz), F) gives rise to a
reductive Z-group scheme GLq . , and its maximal torus S = Rg/z(Gm, k)
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2. Results on s0,(Q) (mostly in good characteristic)

2.1. Associative and Lie algebras

For an arbitrary associative algebra A over a base ring R we denote by .A°P
the opposite algebra: A°? = A as R-modules but the multiplication is given by
a- 400 b =0-4a. Note that for My(A), £ € N, , namely the associative R-algebra
of £ x £-matrices over A, we have

My (A)°P = M,(A%P). (2.1.1)

The algebra A becomes a Lie R-algebra, denoted Lie(A), with respect to the
commutator [a,b] = ab — ba as multiplication. We leave it to the reader to check
that the map

1°P: Lie(A°P) = Lie(A), ar~ —a, (2.1.2)

is an isomorphism of Lie R-algebras.
Abiding by the traditional notation we put

Lie (M¢(A)) = gl,(A).

Thus, combining (2.1.1) and (2.1.2) we obtain a Lie algebra isomorphism, also
denoted (°P,
1P gl (AP) S5 gl (A), o —u.

2.2. The Lie algebra sly(.A)

Let A be a unital associative R-algebra, and let £ € N, £ > 2. The derived algebra
of the Lie algebra gl,(A) of 2.1, is called the special linear Lie algebra sl;(A):

sle(A) = [gl,(A), gl (A)].

Whenever we consider sly(A) in the future, it will implicitly be assumed that ¢ > 2.
Obviously, the restriction of the isomorphism ¢°P,

1P 5l (AP) = slp(A), =+ —z (2.2.1)

is an isomorphism of Lie R-algebras. We will later need the fine structure of sl,(A).
First, we have

sl(A) = {z € gl,(A) : tr(z) € [A, A},

where the trace tr(z) of z € gl,(A) is defined as usual. We denote by E;;, 1 <
1,7 < £ the usual matrix units. It is easy to see that

sle(A) = Lo ® (@19#3@ AL;j),

! (2.2.2)
,C() = [./47 A]EH (o) {Zizl CLZE“ ra; € A7 21 a; = 0}

In particular, for any unital subalgebra S of R the Lie S-algebra sl;(A) gy contains

slp(S) = {x € gl,(S) : tr(x) = 0}
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as subalgebra. We denote
hs = 5[@(5) NLy= {Zle siEi; :s; €8, ZZ S; = 0} (2.2.3)

the diagonal subalgebra of sly(S).

We will say that a domain R has good characteristic for sly(A) if the character-
istic of the fraction field of R is either 0 or p > 3 and such that p does not divide /.
In that case, if I is a subfield of R, the subspace h is an ad-diagonalizable subal-
gebra of sly(A) ) in the sense of Subsection 2.7, and (2.2.2) is the joint eigenspace
decomposition of hr.

It will be useful later to have a coordinate-free approach to sl;(.A). Namely, we
let

V=Vi=A® o A= A% (2.2.4)

be the free right A-module of rank ¢. We denote by B = {ey, ..., e/} the standard
basis of the A-module V:

e1=(1,0,...,0), --- e =(0,0,...,1), (2.2.5)

so that
V=@_ eA (2.2.6)

We let the associative algebra End 4(V') of A-linear endomorphisms of V act on V'
from the left. Representing f € End 4(V) by the matrix Matg(f) with respect to
B provides us with an R-algebra isomorphism

Matg: End4(V) = M,(A) (2.2.7)

and thus also an isomorphism of the associated Lie algebras, gl 4(V) ~ g[,(.A), and
of their derived algebras,

sla(V) == [gla(V), gl4(V)] = sle(A).
Moreover, observe
eiA=E;(V) and E;j:e;A = e;A is an isomorphism of .A-modules.

2.3. Lemma. In the Setting of 2.2 assume £-1 € R* and A= Z(A) & [A, A].
Then

aly(A) = Z(gl,(A) @ sle(A)  with Z(gl,(A)) = Z(A)E,

where Ey € gl,(A) is the £ x £ identity matriz.
Proof. Straightforward. O

The following result, determining the centroid of sl;(.A), is folklore.
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2.4. Lemma. Let R be a commutative ring with % € R, let A be a unital associa-
tive R-algebra, and let £ = sly(A) with £ > 2. Then for every z € Z(A) the map
C: L L, ¢ ((zij)) = (2345), is a centroidal transformation of L. The map

C: Z(A) = Ctd(L), z+ (2.4.1)
18 an isomorphism of associative algebras. In particular,
sl(A) is fge <= Ais fge. (2.4.2)

Proof. Since z[a,b] = [za,b] it is clear that ¢, is an endomorphism of £. It is
also immediate that ¢, € Ctd(£) and that ¢ is an injective homomorphism of
associative algebras. Thus it remains to prove surjectivity. Let x € Ctd(£).

We first consider the case £ = 2. For a,b € A we define

=7 o) =5 o)
e =, sl = (3 5,).  n=mran=(g O,

Then

{teL:[hl]=20}=e(A), {leLl:]hl==20}=/f(A),
{l e L:[h,]] =0} =span{H(a,b) : a,b € A} =: L.

It follows that x leaves e(A), f(A) and Ly invariant. In particular, we can define
X< € End(A) by

x(e(a)) = e(x+(a)), x(f(0)) = f(x-(b)).

Denoting by {abc} = abc + cba the Jordan triple product of A, we have the
following multiplication rules of L:

[H(a,b),e(0)] = e({abe}), [H(ab), f(e)] = f(~{bac)).

They imply x+({a b c}) = {a b x+(c)}. Define 2z € A by x+(14) = 2+. Then,
specializing a = ¢ = 14 we obtain

2x+(b) = x+ ({14 14 b}) = bx+(1a) + x(1a)b =221 0b,

where zoy = %(my—i—ym) is the Jordan algebra product of A. Thus x4 (b) = z4 ob.
From H(a,b) = [e(a), f(b)] we now get

H(zx 0a,b) = [x(e(a)), f(b)] = [ea), x(f(b))] = H(a,z- o b).
Comparing the (11)-entry of H, this proves

zyrab+ azy b =az_b+ abz_.
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In particular, for a = 14 we obtain 2z,b = z_b 4 bz_. Specializing b = 1 4 in the

formula above, this shows 2z, = z_ =: z, whence 22b = zb + bz, or zb = bz for all

be A, ie., z€ Z(A). Finally, X(H(a, b)) = H(za,b) = zH(a,b) proves x = (,.
Let now ¢ > 3, and ¢ # j. From

AEij = {l S 5[[(./4), [E” — Ejj7 l] = 2[}

we get X(AE;;) = AE;;, allowing us to define x;; € End A by x(aE;;) = xij(a)E;j.
For distinct 4, j,p and a,b € A we have the multiplication formula

abE;; = ([[aEij, Ejpl, Epil, bEj;]

which implies x;;(ab) = xij(a)b = ax;;(b), i.e., xi; € Ctd(A) ~ Z(A) by (1.1.3).
Thus, there exists z;; € Z(A) such that x;;(a) = z;ja. From [aE;j, Ejp] = aFEyp
we now obtain z;; = 2;, and from [Epis aEij] = aFE,; we get z;; = zp;. Hence the
z;; are independent of (i), say z;; =: z € Z(A). Finally x = (, follows. [

2.5. Lemma. Let ¢, ¢’ € N with £,¢' > 2, and let R be a commutative base ring
for which 2-1g, £-1g and ¢’ - 1g are invertible in R. Furthermore, let A and A’
be unital associative R-algebras satisfying

A=ZA) DA A and A =ZWW)a A, A

(a) Let f: sly(A) — slp(A") be an R-linear isomorphism of Lie algebras. The
R-linear algebra isomorphisms Ctd(f), (4 and (4 of (1.1.1) and (2.4.1) allow us
to define an isomorphism fz: Z(A) — Z(A’) by requiring commutativity of the
diagram

ZA) - —— - - Z(A)
cAl igA, : (2.5.1)

Ctd (st (A) — D7 God (sl (A)

For z€ Z(A) and X € sly(A) define
fg[: g[Z(A) — g[el(.A/)7 ZE( + X — fz(Z)E[’ + f(X)

Then fqi ts an isomorphism of Lie algebras. If sly(A) and gl,(A) are viewed as
Z(A')-algebras via the construction of (1.1.1), then both f and fg are Z(A')-
linear.

(b) Let ¢: My(A) — My (A’) be an isomorphism of associative algebras. The

induced Lie algebra isomorphism @gr: slg(A) — slp (A") obtained from ¢ satisfies
(Pst)gr = .
Proof. (a) is immediate from Lemma 2.3 and Lemma 2.4. For (b) we use that
© maps the centre Z(A)E; of My(A) into the centre Z(A")Ey of My (A’), hence
induces an R-linear isomorphism ¢: Z(A) — Z(A’) by p(2E¢) = ¢(2)Ey. Our
claim is (ps1)z = .
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Denoting by L and L’ the left multiplication of the associative algebras M,(.A)
and My (A’) respectively, we have

@ o LzEz ° (10_1 = L:O(ZE[) = L;l’(z)Eé’

for all z € Z(A). Note that L,g, stabilizes sl;(A). We denote by (L.g,)s the
restriction of L,p, to slp(A). Then a(z) = (L.g,)si- Using analogous notation
for My (A’) and taking the sl-components of the displayed equation above, we get

(Ctd(psr) ™" 0 Ca)(2) = @sr 0 Calz) 0yt = @sr 0 (Lap,)s1 0 o
= (Lyym, )st = Car (¥(2))

which proves our claim. [

2.6. Remark. We will later apply this Lemma in a situation where we are given a
Lie algebra isomorphism f: slp(A) — sl (A") and
(a) cither f extends to an isomorphism f: My(A) — My (A’) of associative
algebras,
(b) or fou°P: sl(A°P) — sl (A’) extends to an R-linear isomorphism

F o191 My(AP) — My (A)

of associative algebras.

In the first case, the Lie algebra isomorphism fq(: gl,(A) — gl (A’) of Lemma 2.5
is in fact an isomorphism of associative algebras, namely f = fg( (as maps), while

. —_—
in the second case we have f o %P = (f 0 °P)g.

2.7. Definition (AD and MAD subalgebras). We now come to the central con-
cept of this paper. Let F be a field. Following [CGP, §6] we call an F-subalgebra
bh of a Lie algebra £ over F' an AD subalgebra if the adjoint action of each element
x € hon L is F-diagonalizable, i.e., £ admits an F-basis consisting of eigenvectors
of ady(z) for all x € b.

A maximal AD subalgebra of L, i.e., one which is not properly included in any
other AD subalgebra of L, is called a MAD subalgebra, or a MAD for short.

It is not difficult to show, see, for example, [Hu, Lem. 8.1], that an AD subal-
gebra is necessarily abelian. Hence, AD can be thought of as an abbreviation for
“abelian k-diagonalizable” or “ad k-diagonalizable”.

Let Q be a quantum torus over F. Denote by Z(gl,(Q)) the centre of the Lie
algebra gl,(Q). Assuming that F' is of good characteristic for gl,(@), by Lemma
2.3 we have

al,(Q) = Z(g1,(Q)) ®sl(Q), Z(al,(Q)) = Z(Q)E,.

It follows that b C sl;(Q) is an AD or a MAD of sl,(Q) if and only if Z(Q)E, @b
is an AD or a MAD of gl,(Q) respectively.
We next give a first example of a MAD.
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2.8. Proposition. Let @ be a quantum torus over a field F' of good characteristic
for sly(Q), £ > 2. The subalgebra hr of (2.2.3) is a MAD of the Lie algebra
sl (Q)(r)-

We note that in the case that sl,(Q) is an fgc Lie torus over a field of charac-
teristic 0, cf. 1.2(f) and (2.4.2), the lemma has been proven in [Al, Cor. 5.5]. The
methods of [Al] cannot be applied in our case.

Proof. 1t is clear that h = hp is an AD: the joint eigenspaces of § are the sub-
spaces QE;; and Ly of (2.2.2). To show maximality, let d € sl,(Q) be an ad
F-diagonalizable element commuting with h. It follows that d € sl,(Q)o = {l €
slp(Q) : [h,]] = 0forall h € h}. Thus, d = diag(dy,...,ds) is a diagonal ma-
trix. For fixed i, 1 < ¢ < ¢, and ¢ € [@Q,Q] we have ¢E;; € sl;(Q)y and
[d,qE;;] = [di,q]Eii. Because @ = Z(Q) @ [Q, Q] it follows that ad d; € Endp(Q)
is F-diagonalizable. Hence, by Lemma 1.4(b), all d; € Z(Q). Consider now the
action of d on an off-diagonal space QE;;, i # j. Clearly, ad d leaves QE;; invari-
ant and acts on ¢E;; by (d; — d;)qE;;, Thus, the left multiplication by d; — d; is
diagonalizable, forcing d; — d; € F' by Lemma 1.4(a). Now consider the equation

[Q,Q] B Zl d; = (d1 - dz) + 2(d2 — d3) + -+ (n - 1)(dg,1 - de) + 4dy € Z(Q)

It follows that ) . d; = 0 and that dy € F. Analogously, all d; € F, and d € b
follows. [

2.9. Complete orthogonal systems

Let B be a unital associative R-algebra. A complete orthogonal system (of idem-
potents) in B is a family O = (eq, ..., e,,) of elements e; € B satisfying

€i€; = 57;]‘61' for 1 S Z,] S m and er+--+e, = 15. (291)

In B = My(A), A unital associative, the standard orthogonal system is Oy =
(E11, Faa, ..., Ey), where the E;; are the usual standard matrix units. But also
(E11+ E22, E33, ..., Ey) is a complete orthogonal system. Part (a) of the following
Lemma 2.10 says that there is a natural bijection between complete orthogonal
systems in My(A) and decompositions of V4 as a direct sum of .A-modules.

2.10. Lemma. Let A be a unital associative R-algebra, and let V = V4 = At be
the right A-module of (2.2.4). We identify B = M;(A) = End (V) using (2.2.7).

(a) Let O = (eq,...,em) be a complete orthogonal system in B. Define V; =
e;(V), 1 <i<m. ThenV decomposes as V. =V, @ --- ® V,, where each V; is
a right A-module. Conversely, let V =V, & --- @ V,, be a decomposition of V as
a direct sum of A-modules. Define e; € B as the canonical projection of V' onto
Vi C V. Then (e1,...,em) is a complete orthogonal system in My(A).

The constructions O ~»V =V1&--- @V, and V=V ®---®V, ~ O defined
above are inverses of each other.

/

(b) Let O = (e1,...,em) and O' = (é},...,¢€..,) be complete orthogonal systems

in Mg(A), inducing by (a) decompositions Va=V1&--- &V, =V/d---adV,,.
Let

D(O) = {f € Enda(V4) : f(Vi) CVi,1<i<m} =@, Enda(V;)
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and define D(O") analogously. Suppose that all End 4(V;) and End 4(V}) are con-
nected. Then the following are equivalent for g € B*.
(i) gD(0)g ' = D(O)).
(i) m = m' and there exists a permutation o € &,, such that ge;g~' = ea(l)
1<i<m.
(iii) m = m' and there exists a permutation o € &, such that g(V;) = V],
for1<i<m.

(¢) Let A = Q be a quantum torus. Let Oy = (F11,...,Ew) be the standard
orthogonal system in B = My(Q), and let O = (e1,...ep) be another complete
orthogonal system in B with associated decomposition Vg = Vi@®--- @V, V; = e;(V)
for 1 < i < £. Define D(Og) and D(O) as in (b). Then the following are
equivalent.

(i) Each Vi, 1 < i <{, is a cyclic Q-module.
(ii) Fach V;, 1 <1i < ¥, is a free Q-module of rank 1.
(iii) There exists g € B* such that gD(Og)g~ ! = D(O) and each Endg(V;)
1s connected.
Assuming (c.iil) holds, let g € B* be as in (c.iil) and let

Bst = {Ele 5iEi s € F,Y , si = 0}

be the standard MAD of sl,(Q) and define h C D(O) analogously. Then the au-
tomorphism Int(g) of sly(Q) maps by onto b. In particular, b is also a MAD of

sl(Q)-

Proof. (a) That V = >""", V; follows from the second equation in (2.9.1), and that
the sum is direct from the first. The converse is equally straightforward.

(b) Assume (b.i). Since (ge;g~')i1<i<m is a complete orthogonal system of B
contained in D(0’), it follows from our connectedness assumption that each e; € O
is a sum of some of the €] € O0’, and that distinct idempotents in O’ are used for
each e;. Hence m < m/. By symmetry, m’ < m, whence m = m’. The remaining
part of (b.ii) is now clear. The implications (b.ii) = (b.iii) = (b.i) are immediate
from the definitions.

(¢) A cyclic @-module is free since @ is a domain. Thus (c.i) <= (c.ii). For
the proof of (c.ii) = (c.ii) put Vig = Eii(V). We know V; & >~ Q by (2.2.6).
Also, by assumption, there exist ()-linear isomorphisms g;: V; & — V5, 1 < i < E
Hence g = g1 @ - - - ® g is an invertible endomorphism of V such that g(V; &) =
1 < i < £. Tt then follows from (b) that ¢D(Og)g~! = D(O) (note that (b) ca
be applied since @ ~ Endg(V;) is connected by 1.2(d). The implication (c.iii) =
(c.ii) also follows from (b). O

3. Isomorphisms between two Lie algebras of type A over rings

3.1. Torsion bijections
We start by reviewing some of the techniques of non-abelian Cech cohomology
used later on.

Let G be a smooth affine group scheme over a (commutative, unital) ring R.
The pointed set of non-abelian Cech cohomology on the étale site of X = Spec(R)
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with coefficients in G, is denoted by H}, (X, G). This pointed set measures the
isomorphism classes of torsors over X under G (see [Mi, Ch.IV §1] and [DG] for
basic definitions and references). Abusing notation a bit we will identify the set of
isomorphism classes of G-torsors over X with H} (R, G).

Recall that any morphism G — H of group schemes induces a natural map
H}(R,G) — H} (R,H). If [E] € H},(R, G) we will denote its image in H}, (R, H)
by [EH]

For a G-torsor E we denote by G the twisted form of G by E. This is a
smooth affine group scheme over X. Recall that according to [Gi, I111.2.6.3.1] there
exists a natural bijection

TE - H(}t(X’EG) - H;t(Xv G)a

called the torsion bijection, which takes the class of the trivial torsor under ¥G
to the class of F.
Let [E] € H}, (R, G). Any exact sequence
15GLHSF o1

of smooth affine group schemes induces a commutative diagram

F(R) HY(R,PG) — H} (R, PnH) — H) (R, F)

EF(R) = F(R) — H}(R,G) —— H}, (R, H) HL(R,F)

3.2. Lemma. Using the notation of 3.1, the torsion bijection T induces a bijec-
tion between Ker(vg) and the fiber =1 (Y(E)) = ¢y~ (Ex).

Proof. This follows from an easy diagram chase. [

3.3. Azumaya algebras

Let A be an Azumaya algebra over a (commutative, associative, unital) ring R. If
A has rank ¢2| it is a twisted form of the matrix algebra M,(R). Since

Autp(My(R)) ~ PGLy R

(see [Mi, Chap. IV, Prop. 2.3]), the elements of H}, (R, PGLy ) are in one-to-one
correspondence with the isomorphism classes of Azumaya algebras over R of degree
¢ (the bijection is given by twisting). It follows that A ~ $M,(R) for some class
(€] € H}(R,PGLy g) and that Autr(A) ~ PGL 4.

3.4. Automorphisms of sl 4

(a) Let A be an Azumaya algebra over R. Every ¢ € Aut(A)(R) leaves the
Lie algebra
H[A = [.A, .A]
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invariant, thus induces an automorphism g of sl4. Since the construction ¢ —
s is functorial, it gives rise to a homomorphism

PGL4 — Aut(sly) (3.4.1)

which is injective since s[4 generates A as an associative algebra.

(b) Assume A has an anti-automorphism «. Then
Ker: Sla — sla, a— —k(2)

is an automorphism of sl4. Again by functoriality of the construction, this gives
rise to an element of Aut(sl4), also denoted kq;. In case A = My(R) we use the
transpose as anti-automorphism and put

7:sl(R) — sly(R), x+— —'2. (3.4.2)

As before, this gives rise to an automorphism in Aut(sly(R)), also denoted 7.

(c) Putting together the maps in (a) and (b) we have constructed homomor-
phisms of R-group schemes

PGLy r — Aut (5[2(R)) (3.4.3)
and for m > 3
PGL,, g % (Z/2Z)g — Aut(sl,,(R)); (p,2) — psroT°. (3.4.4)

The reader will easily check that both maps are injective homomorphisms (one
needs the assumption m > 3 to get injectivity in the second case).

3.5. Theorem. Assume R is a domain of good characteristic for sl,, containing a
field F'. Then the maps (3.4.3) and (3.4.4) are isomorphisms of R-group schemes.

Proof. Since all groups involved are obtained from F' by base change, and since
base change preserves isomorphism, we may assume that R = F' is a field of good
characteristic. In this case it is shown in [St, 4.7] (or see [Ja, Thm. IX.5] for F' of
characteristic 0 and [Se, p. 67] for characteristic > 0) that for any field extension
E/F the maps (3.4.3) and (3.4.4) evaluated at the E-points are isomorphisms of
abstract groups. In particular this holds for the algebraic closure of F'. A standard
fact in the theory of group schemes (see [KMRT, Prop. 22.5]) then proves the result.
O

3.6. Consequences

We will derive some consequences of Theorem 3.5. Let again A be an Azumaya
algebra over R. Assume that R is a domain. Since then A has constant rank as
an R-module, it is a twisted form of M,(R) for some /.

For the remainder of this section we will assume that R contains a field of
good characteristic for sl,(R). We consider the corresponding Lie R-algebra s[4 =
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[A, A]l. By a standard twisting argument, it follows from Theorem 3.5 that we
have an R-group scheme isomorphism

PGL 4 ~ Autg(sly)
if £ = 2, and the exact sequence of R-group schemes.
1= PGL4 — Autg(sla) — (Z/2Z)r — 1

if £ > 3.
Evaluating at R-points we have

1 = PGL4 = PGL4(R) < Autp(sly) = Autp(sls)(R) — Z/2Z.

Note that this last map is trivial when ¢ = 2. We will say that an automorphism
@ € Autg(sla) is inner if it is in the image of PGL 4. Otherwise we say that ¢ is
outer.

3.7. Theorem. Let ¢ € Autgr(sla). Then the following holds:

(a) If ¢ is inner, it is the restriction of a unique automorphism ¢ : A — A.
(b) If ¢ is outer, it is the restriction of the negative of a unique anti-automor-
phism ¥ : A — A.

Proof. The subset Y = Autg(sl4) \ PGL 4 is a closed subscheme of Autg(sl4)
consisting of outer automorphisms of sl 4. The group PGL 4 acts simply transi-
tively on Y by left multiplication. Thus Y is a PGL 4-torsor. It is trivial if and
only if sl4 has at least one outer automorphism.

Along the same lines, let X be the scheme of anti-automorphisms of A:

X ={¢: A— A| 9 is bijective and (zy) = ¥(y)y(z) for all z,y € A}.

We observe that if ¢ is an anti-automorphism of A and ¢ > 3 then —|q, is an
outer automorphism of sl4. The automorphism group PGL 4 of A acts simply
transitively on X on the left (because the action is simply transitively in the split
case). Thus, X is also a PGL 4-torsor. As before, if £ > 3 then X is a trivial
torsor, i.e., there exists at least one anti-automorphism of A, if and only if s[4 has
at least one outer automorphism.

Note that the natural restriction map A : X — Y which takes ¢ into —t|q1, is
an isomorphism of torsors (because it is an isomorphism in the split case).

(a) Let ¢ be inner. Then there exists a unique g € PGL 4(R) whose image in
Autpr(slys) is ¢. This element g corresponds to the automorphism of A which we
denote by ¥ : A — A. By construction, the restriction 9|s1, is ¢. The uniqueness
of such a v is immediate, since s[4 generates A as associative algebra.

(b) Now let ¢ be outer. Then since A is bijective there exists a unique ¢ € X (R)
such that A(¢) = —9|s1, equals ¢. O

3.8. Corollary. Let A be an Azumaya algebra over R, thus a twisted form of
My(R). Assume £ > 3. Then A ~ A°P if and only if slq has an outer automor-
phism.
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Proof. Assume A ~ A°?. We have seen in 3.4(b) that an isomorphism «: A — A°P
induces an automorphism k4 of sl 4. We claim that x4 is an outer automorphism.
It suffices to show this after some base change. Take any base change R — S
which splits A, i.e., Ag ~ My(S). Then « is a composite of an inner conjugation,
say int(g), and the transpose 7. It is well known that for ¢ > 3 the restriction of
—7 to slp is an outer automorphism (because it induces the automorphism —1 of
the corresponding root system), while the restriction of int(g) to sl4 is an inner
automorphism. Therefore kg is indeed outer.
The other direction follows from Theorem 3.7(b). O

3.9. Theorem. Let A, A" be Azumaya algebras over our domain R of the same
rank 12. If slq ~ sl as R-algebras, then

(a) A\~ Aifl=2;
(b) A"~ A or A =~ A°P 4f ¢ > 3.

We note that the converses in (a) and (b) are obvious.

Proof. We abbreviate H' = H}, and let [¢],[¢'] € HY(R,PGLy r) be the classes
corresponding to A and A’. Because A = $M,(R) the Lie algebra sl 4 is the twisted
form of sl,(R) by &.

Case { = 2: Recall from Theorem 3.5 that
AutR(ﬁlg(R)) = PGLQVR,
i.e., the Lie algebra sly(R) and the Azumaya algebra Ma(R) have the same auto-

morphism group scheme. Therefore, if the twisted forms sl4 and sl4 of the Lie
algebra sly(R) are isomorphic, then [¢] = [¢’] implies A ~ A’ as R-algebras.

Case ¢ > 3: Recall from Theorem 3.5 that
Autp(sl;(R)) = Autr(PGLyr) = PGLy g x (Z/2Z)R.
Hence we get the exact sequence of group schemes
1= PGLyr — Autr(sly(R)) = (Z/2Z)r — 1 (3.9.1)

which induces a canonical map
HY(R,PGLy ) % HY(R, Autp(sl,(R)) = H'(R, Auts(PGLy )

in cohomology. By assumption, 9([£]) = ¥([§']) (because s[4 £ sla). I [€] = [€]
then the twisted Azumaya algebras A = M,(R) and A’ = &€ M, (R) are isomorphic
as R-algebras, and we are done.

Assume therefore [€] # [¢']. Twisting (3.9.1) by £ we get an exact sequence of
group schemes

1—-PGL4 — Autp(PGLy) — (Z/2Z)r — 1
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which in turn induces an exact sequence

PGL(R) — Autgr(PGL4)(R) — Z/2Z 592
3.9.2
— HY(R,PGL4) % H'(R, Autr(PGL,))

of pointed sets. According to Lemma 3.2 there is a natural one-to-one corre-
spondence between the fiber ¢~1(1(£)) and the kernel of ¢. Since [¢] # [¢] €
P7L((€)), the class [¢'] corresponds to some nontrivial element in Ker(¢). On
the other hand, by (3.9.2), Ker(¢) consists of at most two elements implying
|[Ker(¢)] = 2. We then get from (3.9.2) that PGL4(R) = Autr(PGL4)(R),
i.e., every automorphism of PGL 4 over R is inner. By Corollary 3.8, this implies
A o AP,

Now we observe that the opposite Azumaya algebra A°P also corresponds to
some element in H'(R,PGLy ), call it [¢°P]. We have [¢] # [£°P] because A 2
A°P. Furthermore, it is straightforward to verify that the map GL4 — GL 4op,
given by x — !, is an isomorphism of group schemes which induces in turn an iso-
morphism PGL 4 — PGL go0. This implies that ¢([¢]) = ¥([£°P]), hence the class
[€°P] also corresponds to the nontrivial element (# [€]) in the fiber =1 (2 ([€])).
Since [~ 1(¥([€]))] = |Ker(¢)| = 2, necessarily [¢'] = [¢°P] in HY(R,PGLy R),
implying A’ ~ A°?. O

As a by-product of the proof we obtain that the converse statement in Corol-
lary 3.8 also holds.

3.10. Corollary. Let A be an Azumaya algebra over R of rank (> > 4, where R
has good characteristic for slp(R). Suppose A 2 A°P. Then every automorphism of
the Lie R-algebra sl 4 is inner. If in addition Pic(R) = 1 then every automorphism
of sl 4 is the restriction of the conjugation map by an element a € A*.

Proof. Without loss of generality we may assume that £ > 3. We use the notation
of Theorem 3.9. Since A % A°P we have [{] # [£°P]. Therefore, in sequence
(3.9.2) the kernel of the canonical map ¢ consists of two elements and this implies
PGLA(R) = Autr(PGL4)(R) = Aut(A). Thus every automorphism of sl4 is
induced by an automorphism of A. It remains to note that if Pic(R) = 1 the
natural map A* — PGL4(R) is surjective. [

In the following sections we apply all these results to the case of fgc quantum
tori viewed over their centres.

4. sl,(Q) for Q an fgc quantum torus

Our analysis will use the following description of isomorphisms between special
linear Lie algebras over rings. The theorem below is an immediate consequence of
our Theorem 3.7 and is originally due to Jacobson-Seligman when the Lie algebras
in question are defined over fields.

4.1. Theorem. Let A and A’ be Azumaya algebras of the same rank over a do-
main R containing a field of good characteristic. Let f: sl — sl4 be an R-linear
isomorphism of Lie algebras. Then after possibly replacing A by A°P, the map f
uniquely extends to an R-linear isomorphism f: A" — A of associative algebras.
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Proof. Since it is clear that f o (°P is a Lie R-algebra isomorphism, we only need
to show that f extends to a map f: A" — A which is either an isomorphism
or the negative of an anti-isomorphism of associative algebras. By Theorem 3.9,
after possibly replacing A by A°P we can assume that there exists an isomorphism
g: A — A of associative R-algebras. Since the composition f o g~!|s, is an R-
automorphism of sl4, by Theorem 3.7 it can be extended uniquely to either an
automorphism or the negative of an anti-automorphism of A and the assertion
follows. O

4.2. Remark. For the special case of central-simple algebras over a field K of
characteristic 0, the theorem is proven in [Ja, Thm. IX.5]. The characteristic 0
case can easily be extended to positive characteristic by using the description of
Autsly(K) in [Se, p. 67].

We will apply this result in the case that A and A’ are matrix algebras over fgc
quantum tori.

4.3. Theorem. Let £ =sl(Q) and L' = sly (Q') where Q and Q' are fgc quantum
tori over a field F' of good characteristic for L and L. We denote by Z = Z(Q)
the centre of Q, and let f: L — L be an F-linear isomorphism of Lie algebras.
Then the following hold.

(a) After possibly replacing Q by Q°P, the map f uniquely extends to a Z-linear
isomorphism f: My (Q")(zy = M¢(Q)(z) of associative algebras.
(b) ¢/ =¢.

Proof. (a) By 2.4 the centre Z of @ is isomorphic to the centroid of £ — we will
take this as an identification. Applying 1.1, Example 1, our map f is a Z-linear
isomorphism

VE El(z) :5[2’(Q/(z)) = Lz) = sk(Qz))-

Observe that the two Azumaya algebras M,(Q) and My (Q') over Z have the
same rank. Indeed, passing to a proper étale base extension we may assume that
they are split. Let m? and (m/)? be their ranks. Then dim£ = m? — 1 and
dim £" = (m/)* — 1 implying m = m’. Now Theorem 4.1 applied to A = M;(Q)z)
and A" = My (Q')(z implies the claim.

(b) Let K be the fraction field of Z (recall from 1.2(b) that Z is a Laurent
polynomial ring over F'). Then after possibly replacing @ by Q°P we can assume
that f uniquely extends to a K-linear isomorphism

fr: Mp(Q) @z K = My(Q) @z K

of associative algebras. But D’ = Q’(Z) ®z K and D = Q(z) ®z K are central

division algebras over K. Now by the theorem of Wedderburn (see [He, Thm.
2.1.6]) we have D'~ D and ¢’ =¢. [

The spirit of Theorem 4.3, in a sense that will be made precise, will allow us to
reduce questions of isomorphisms of Lie algebras to questions of isomorphisms of
associative algebras. These are handled in the following result.
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4.4. Theorem. Let Q and Q' be fgc quantum tori over the field I and let A =
My(Q) and A" = M(Q'). We assume that the characteristic of F is very good: it
is either 0, or p > 3 where p does not divide £ or any of the ¢;;, ql’-j occurring in
the quantum matrices of Q and Q' respectively with respect to a canonical presen-
tation. We let Z be the centre of @, and assume that f: A" — A is an F-linear
isomorphism of associative algebras. As in 1.1 we will view f as a Z-linear iso-
morphism “4/(2) — A(z). The isomorphism f induces an isomorphism ¢: G' — G
of the associated reductive group schemes G' = GLA/(Z) and G = GLy ., over Z.

Let T' (resp. T) be the split torus in G' (resp. G) corresponding to the diagonal
matrices in Al z) = M(Q(z)) (resp. in Az) = My(Qz))). Then ¢(T") and T
are conjugate in G.

Proof. Clearly, T" and T are generically maximal split tori in the sense of [CGP],
i.e., T}, and Tk are maximal split tori in Gx and G’ where K = Z is the fraction
field of Z (because @ =Qz)®z K and @(2) ®z K are central division algebras
over K by 1.2(g)). Note that the centralizer of T (resp. T”) in G (resp. in G’) is
isomorphic to the reductive group scheme Cq(T') ~ GLq ., X --- x GLq, over
Z (resp. Ce (T") ~ GLq x - X GLQQZ>)'

Since 7" and T are generically maximal split tori, the proof of [CGP, Prop. 8.1]
shows that an obstacle for conjugacy of ¢(7”) and T in G is given by a class

[f] € H%ar(zv CG(T)) = H%ar(Z7 GLQ(z)) XX H%ar(z7 GLQ(z))
and that

$(Co(T)) = Ca($(T")) =~ Car(T') = GLg;, -+~ x GLqy .
Let £ = (&1,...,&). Since 51’GLQ<Z) ~ GLQEZV for the proof of conjugacy of ¢(T")
and T it suffices to show that &; = 1.

We now recall some general facts from the theory of reductive group schemes.
Let H be any reductive group scheme over Z, S C H a maximal torus and [{] €
H}(Z,H). Let N = Ng(S) and W = N/S.

(i) By [CGP, Lem. 8.2], W is a finite étale Z-group and the canonical map
H}(Z,W) — H} (K, W) is injective; in particular H}, (Z,W) = 1.

(ii) According to [Gi, Rem. 3.2.5] if the twisted group scheme *H contains a
mazimal torus then the class [€] is in the image of HL(Z,Nu(S)) —
H),(Z, ).

(iii) Let S C H be another mazimal torus. Then the transporter Transy (S, S")
is an N-torsor over Z, hence it corresponds to a unique class \€ H}(Z,N).
If S,S" are conjugate over K then X is in the image of HL(Z,S) —
H}(Z,N). If in addition H'(Z,S) = 1 then S and S’ are conjugate
over Z.

For the proof of the first statement in (iii) we refer to [CGP, Lem. 8.3]. The
second assertion follows from (i) and the commutativity of the following diagram:
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Hé}t(Z,S) - Hét(ZvN) - Hélt(ZaW)

l | l

Hélt(Kv §) —— Hélt(Ka N) — Hét(K7 w).

We will apply these facts in the following two situations. Let m be an integer
such that the matrix algebra M,,(Z) is the split form of Qz). Take the pair
(E,S) consisting of a maximal commutative étale subalgebra E' C Q(z) and the
corresponding torus S = Rp/z(G,,g) constructed in Remark 1.9. Fix any em-
bedding E — M,,(Z) (for instance, we can take the regular representation of E).
This also gives rise to a closed embedding S — H = GL,, z. Note that the torus
S determines uniquely the subalgebra E. Indeed, E is the centralizer of S(Z)
in M,,(Z2). When we view E as a subalgebra in (z) we will denote it by Eg.
Similarly the corresponding torus S will be denoted by Sg. Consider now another
embedding E — M,,,(Z£). We denote its image by E’ and the corresponding torus
by S’.

4.5. Lemma. The two étale subalgebras E, E' C M,,(Z) are conjugate under the
action of GLp,(Z).

Proof. Tt suffices to show the conjugacy of S and S’. The obstacle for conjugacy
of S,5" is the N-torsor Transy (S, S") where N = Ngu,, . (S). By the Skolem—
Noether Theorem (see [KMRT, Thm. 1.4]) the algebras E and E’ are conjugate
over K. Furthermore, we have

H}(Z,9) = HY{(E,G,, g) = Pic(E) = 1,

because FE is a Laurent polynomial ring and hence has trivial Picard group. The
claim now follows from (iii). O
We next pass to adjoint groups.

4.6. Lemma. We keep the above notation. Let H = PGL,, z and let S be the
image of S under the canonical map GL,, z — PGL,, z. There exists a class
0] € HY(Z,S) such that "PGL,, z ~ PGLgq,.,-

Proof. Since PGLg,,, has a maximal torus, by (ii) the group scheme PGLq ., is a
twisted form of PGL,, = by some cocycle A with coefficients in N = Npgu,, - (5).
The cohomological class [A] corresponds to the maximal torus Sg C PGLq,.,
where Sq is the image of Sg C GLq ., under the canonical map GLq ,, —
PGLq,.- The argument in [Ch, Thm. 3.1] shows that there is another closed
embedding S < PGL,, z, whose image will be denoted by S, such that [A] is
equivalent to some class [\] € Hl(Z,?). Let S’ C GL,,,z be the preimage of
S’ Its centralizer E' in Q(z) is a maximal commutative étale subalgebra of Q z)
isomorphic to E. Since by the above lemma F and E’ are conjugate over Z, so
are the maximal tori S,S’. This in turn implies the conjugacy of S and S in
PGL,, z. Thus the cocycle A is equivalent to some cocycle 6 with coefficients in
S. O
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Assume for a moment that E also admits an embedding into @/ 2y Then as
above the group scheme PGLQEZ) is a twisted from of PGL,, z with some cocycle

' with coefficients in S. Consider the exact sequence
HY(2,8)=1— HY(2,5) = H*(Z,G,, z) = Br(2).

The images of [8] and [¢] in Br(Z) coincide, because the base change morphism
Br(Z) < Br(K) is injective and @z and Q’(Z) are isomorphic over K. It follows
that [0] = [0] and this implies Q(z) ~ Qézﬁ in particular, & = 1 as required.

To sum up: to finish the proof of Theorem 4.4 what is left to show is that F
admits an embedding in Q’(Z), i.e., there exist elements y1,¥s,...,y2s_1 € (Q’(Z)) X
which commute and such that

¢ £ 12 _
yll = tlv y?{5 = t3a cee 73/22,1 = t2s5_1.

Here the positive integers ¢1,...,¢s; and variables ty,...,t, are the same as in
Example 1.8 applied to Q.

Fix a presentation Q' = @,/ kx'*. As usual it induces a grading of Q’. The
isomorphism f: A'( z) A(z) induces an isomorphism

M(Q(z)) ®z K =M(Q(z) ®z K) = My(Q(z)) ®z K = My(Q(z) ®z K).

From the theory of central simple algebras over fields we know that the last im-
plies that QZZ) ®z K ~ Qz)®z K. Hence, there exist commuting elements
21,23, ...,225_1 € Ql(z) ®z K such that zé@;l =t9;_1 forall i = 1,...,s, where
we view t; € Ql(z)- Choose an element r € Z such that rzq;_1 € Q/(z) for all i.
Then

(rzaim1)' = rlity1. (4.6.1)

Recall that Q’( z) has a natural grading transferred from Q'

Let ug;—1 (resp. a) be the highest homogeneous component of rz4;_1 (resp. r)
with respect to any order on A. Taking the highest components on the left and on
the right in (4.6.1) we get (u2;_1)% = a'ta;_1. Note that a is some monomial in
the centre Z* of Q’( N hence it commutes with u9;_1. Then the elements

Yoi—1 = a 'ugi1 € Q)" i=1,3,...,2s - 1,

have the required properties. [

4.7. Corollary. Let L = sly(Q) and L = slp(Q") where Q and Q' are fgc quan-
tum tori over a field of very good characteristic, let m C sly(Q) (resp. m' C sl (Q"))
be the MAD consisting of diagonal matrices with entries in F, and let f: L' — L
be an F-linear isomorphism of Lie algebras. Then f(w') is conjugate to m.

Proof. This follows by combining Theorem 4.3 and Theorem 4.4. [
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5. Specialization of quantum tori

Our main method of dealing with non-fgc quantum tori is specialization which
we develop in this section. In this section k denotes a field of characteristic 0.

5.1. Proposition. Let F be a finite subset of a field k of characteristic 0 con-
sisting of non-zero elements and let £ € Ny.. Then there exists a finitely generated
subring R C k and a mazximal ideal m < R such that

(a) F C R\ m, and
(b) R/m is a finite field of characteristic p > £.

Proof. We can assume that f~! € F for every f € F. Let R = Z[F] C k
(resp. C = Q[F] C k) be the Z-subalgebra (resp. Q-subalgebra) generated by
F. By the Noether Normalization Lemma there exist algebraically independent

u,...,us € C over Q such that C is integral over its subring Q[uq, ..., us] and of
finite type as a Q[uy, ..., us]-module, say with generators cy,...,c;.
Observation. For finitely many polynomials ¢i,...,¢n € Q[ui,...,us] there

exists n € Ny such that ¢1,...,qm € Z[1/n]u1,...,us] (here Z[1/n] is the local-
ization of Z in {n®: a € N}).

Apply this observation to the coefficients of the minimal polynomials of the
integral elements c1, ..., c; and to the coefficients appearing in the linear combina-
tions expressing the elements of F in Zle Q[u1, ..., us)c;. This yields that there
exists n € Ny such that

(1) all coefficients of the minimal polynomials of the elements ¢1, ..., ¢; belong
to E :=Z[1/n]us,...,us] and
(2) R:=Z[F] C Eley,...,ci] =: D C C=Q[F].

Because of (1), each ¢; is integral over E, whence D/F is an integral extension of
finite type. Now choose a prime number p such that p fn and p > £. The ideal
p< E, generated by p and the uq, ..., us, has the property that E/p ~ Z[1/n]/{p),
where (p) = pZ[1/n] C Z[1/n] is the ideal generated by p, whence (p) C Z[1/n]
and therefore also p C F are maximal ideals. Since D is integral over E, there
exists a maximal ideal n< D lying over p< E. By construction, D /n is a finite field
of characteristic p. Recall R C D, and put m = RNn. Then R/m < D/n. So
R/m is a finite subring of the field D/n, whence a field itself. It remains to observe
that f ¢ m for every f € F because f is a unit in D. O

5.2. Corollary. Let @ be a quantum torus over a field k of characteristic 0, let ¢ =
(gij) € My, (k) be the quantum matriz associated with a coordinatization of Q and
write @ = Py kx? asin (1.2.1). Further, let ay,...,a; € k\{0}, by, ..., b, € Q
be non-zero elements and let g1, ..., g, € M¢(Q) be non-zero matrices.

Then there exists a finitely generated subring R < k and a mazimal ideal m< R
with the following properties:

(i) All a; and q;; € R, all by, ..., by, lie in the unital graded subalgebra A =

@D,y Rz of Q, and all gy, ..., gp € My(A).
(ii) Denoting by  the canonical quotient map, we have
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(a) R = R/m is a finite field of very good characteristic p > 0 for sly(A);

(b) all @; and g;; € R are non-zero, hence roots of unity;

(c) A= @AeA in‘ 18 aquc quantum torus over R with quantum matriz
(qij) and p f[A: Z(A)];

(d) allb; #£0 in A;

(e) all g; are non-zero in My(A).

Proof. Let F be the finite subset of £ consisting of all a;, g;;, all non-zero k-
coefficients of by,...,b,, and g1,..., g, and their inverses (the k-coefficients are
taken with respect to a natural k-basis of @ and M(@)). Let R and m be as in
Proposition 5.1. Then all claims follow immediately from F C R\m. O

5.3. Lemma. Let Q be a quantum torus over a field k of characteristic 0. Then
the Lie algebra sl,(Q) is finitely generated over k.

Proof. This fact is known for all Lie tori ([Nel, Thm. 5]). In our concrete case, it
can be proven as follows. We fix a parametrization Q = @, czn kx?; in particular
this gives us coordinates z;, 1 < i < n corresponding to the standard basis of Z™.
It is straightforward to check that sl,(Q) is generated by {Eij,x?flEij 1< #
i<t¢. O

We have seen in 1.2(f) that a quantum torus is fgc if for one coordinatization,
equivalently for all coordinatizations, the entries of the associated quantum matrix
are roots of unity. Hence, in a coordinatization of a non-fgc quantum torus with
quantum matrix g = (g;;) at least one of the g¢;; is not a root of unity.

5.4. Theorem. Let Q = @, ., kax? and Q' = S INIY ky/\/ be non-fgc quantum
tori over a field k of characteristic 0 with associated quantum matrices ¢ = (g;j) €
M, (k) and ¢' = (q};) € My (k). We assume that we are given:

e non-zero elements by, ..., by, € Q and non-zero elements by,..., bl € Q’;
e non-zero elements ¢1,...,9s € gl,(Q), and non-zero elements gi,...,q% €
glf’ (Q/);

e a k-linear isomorphism f : sl;(Q) — sly (Q") of Lie algebras.
Then there exists a subring R < k and a mazimal ideal m < R with the following
properties:
(i) all gij € R and all q;; € R;
(ii) all by,..., by, lie in the unital graded subalgebra A = @, Ra* of Q, and
all g1,...,gs are in gl,(A);
(iii) all b}, ..., by, lie in the unital graded subalgebra A" = @,/ Ry of Q,
and all g,...,q9% € gly(A');
(iv) Flst(A)) = slor(4).
(v) Denoting by  the canonical quotient map, we have
(a) R = R/m is a finite field of very good characteristic for sl;(A) and
5[@/(A),‘
(b) all ¢ij,q;; € R are non-zero, hence roots of unity;
(c) A=A/mA =@, Ra* and A = @, cp Ry are fgc quantum tori
over R with associated quantum matrices (gi;) and (g;;);
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(d) f : sly(A) — slp(A') is an R-isomorphism of the corresponding Lie
R-algebras;

(e) all b; are non-zero in A and all b, are non-zero in A';

(f) all g; are non-zero in gl,(A) and all . are non-zero in gl (A').
Proof. By definition, the coordinates of 0 # b € @ are the non-zero sy € k when
b is written as b = >, .4 sax*. The coordinates of 0 # g = > 95 € Me(Q)
are the coordinates of the non-zero g;; € Q. The coordinates of 0 # 0’ € Q" and
0 # ¢ € Mp(Q') are defined analogously. We choose finite generating systems
S C sl,(Q) and S” C sl (Q') as in Lemma 5.3, and put g = f~1. We let F C k
consist of

— all g5, gj;, the coordinates of all b;, b}, g;, g; together with their inverses,

— the elements (g;; —1)~" and (gj; —1)~! whenever g;; or ¢j; is not a root of
unity, and

— the coefficients of all elements in f(S) and g(5").

We now apply Proposition 5.1 for this F but with the ¢ there replaced by
max{¢, ¢'}. This provides us with (R, m) as required in the Theorem. Indeed, by
construction we have f(sly(A)) C sl (A’) and similarly g(sly (A")) C slp(A). It
follows that f(slp(A)) = sl (A’) (because g is the inverse for f), so that (iv) holds.
The remaining claims follow immediately from 7 C R\m. O

6. Some preliminaries for Step 3 of the proof of the main theorem

6.1. Setting I
In this section we use the following setting:

e () is a quantum torus over a field F' with grading group A ~ Z™;

e We fix a basis € of A; the e-trace, the corresponding Z-grading, and the
e-degree will all be taken with respect to the fixed e. We will therefore
simply write deg instead of deg.. We identify A = Z" via e, and define
At =N C 7Z".

e Corresponding to € there exists a coordinatization of Q as Q@ = @,y Fa?.
We let 0 # x; € @ denote the element that corresponds to the ith basis vector
e; in €, and put QT =@, 4+ Q*. Note that Q7 is a unital subring of Q.

e For ¢ > 2 welet V be a free right ()-module of rank ¢. We fix a basis e1, ... e,
of V so that we can write V = @le Q. Weput VT = @521 e Q7.

e We say that x; divides ¢ € Q% if every A € supp(q) has the form \ =
(A1,...,An) with respect to € and A\; > 0. In this case q:z:i_1 eQt.

e Any 0 # v € V can be uniquely written as v = Zle e;q; with ¢; € Q. We
put

deg(v) = max{deg(g:) : ¢ # 0}.

We refer to the g; as the coordinates of v.

6.2. Lemma. Let 0 v eV and let 0 # g € Q. Then vqg # 0 and

deg(vq) = deg(v) + deg(q).
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Proof. We write v = Zle e;q; as above. The first claim is obvious: ¢;q # 0 <—
q; # 0, and at least one coordinate g; # 0. For the non-zero ¢; we have deg(g;q) =
deg(g;) + deg(q) by (1.3.3). Hence, if for simpler notation deg(v) = deg(qy) then
deg(qiq) < deg(q1q) for all ¢ with ¢; #0. O

6.3. Setting II

We continue with the Setting of 6.1. In addition, we fix a non-zero Q-submodule
UcCV,and put Ut =UNV™T. Observe UT # {0} since ¢Q N Q" # {0} for any
0 # q € Q. Since deg(u) > 0 for every 0 # u € U™ there exist minimal vectors
ug € UT such that

deg(ug) < deg(u) forall 0 AueUT.

We call u € U indivisible if u # 0 and the coordinates of u do not have a
common divisor z;, 1 <1 <n, in QT. It is obvious that indivisible vectors exist.
Moreover,
every minimal vector ug € U™ is indivisible.

Indeed, write ug = Z§=1 e;q; with all g; € U, Assume that all ¢; are divisible
by some z;. Then 0 # uoz;* = Zf.:l ejqjr;t € Ut since all gjz;* € QF. But
deg(uminz; ) = deg(ug) + deg(x; ') = deg(ug) — 1 < deg(uy), a contradiction.

6.4. Lemma. Assume Setting 6.3, and let ug € U™ be indivisible, and let q € Q.
Then

uwq e Ut <= qe Q.

Proof. We only need to show that the left-hand side implies the right-hand side.
We reason by contradiction. Assume ¢ € Q. We write ug = Z§:1 ejq; with all
qj € Q*. We choose a minimal A\ = (A,...,\,) € AT such that gz* € QT. Here
“minimal” means that gz x; ' ¢ Q7 for all 4. Since ¢ € Q*, some \; > 0. Let I be
the ideal of the ring QT generated by x;. Note I = z;QT = QVz;. By definition
of an indivisible element, at least one of the coordinate ¢; of ug is not divisible by
x; in Q% (for 7 with \; > 0). To simplify notation, assume this is g1, i.e., ¢1 & I.
Then the following holds.

(i) gz* & I. Otherwise, gz = ¢'z; for some ¢’ € QF, whence qztz; ' € QF,
and so gz* € QT for p =X —¢; € AT,

(i) q1gz* € Q% because ¢; € QT and gz* € Q. Furthermore, 2* € I because
A; > 0. Hence qigz* € I. Thus z1|q1qgz*, but ;1 fq1 and =1 fgx*. This
contradicts (iii) below.

(iii) @1 /I is a subring of the quantum torus with associated quantum matrix
¢ = (qgij) where 2 <1, j < n. It is therefore a domain.

Our assumption g € Q" has thus led to a contradiction. I

6.5. Corollary. Let ug € UT be an indivisible vector. Then

U=uQ <<= UT=uQ".
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Proof. If U = uoQ and ut € U™, then u* = ugq with ¢ € Q and Lemma 6.4
shows ¢ € Q1. Conversely, if UT = uoQt and u € U is arbitrary, we can take
z* € @Q such that uz® € U, whence uz® = wuyg for some ¢ € Q. But then
u=upq(zM) " €upQ. O

6.6. Lemma. In addition to the Setting 6.3 assume that U admits a complement:
V =U®U' for some Q-subspace U'. Let ug € U™ be a minimal vector and put

Q= Brern 0y Q. Then ug € v(QTT) for anyv € V7.

Proof. Assume to the contrary that uy = vq for some ¢ € QT+ and v € V.
Decompose v = u+u’ with w € U and v’ € U’. Then ug = ug+u'q shows u'q = 0.
So without loss of generality we can assume v € UT. Now apply Lemma 6.2 to get

deg(v) + deg(q) = deg(vg) = deg(uo) < deg(v)

(because ug is minimal) and hence deg(q) = 0, i.e., ¢ € F* - 1, a contradiction.
O

7. Proof of the main theorem

7.1. Setting and plan of the proof

Throughout this section, k is a base field of characteristic 0 and @Q and Q' are
non-fgc quantum tori. We assume that they are coordinatized as

Q:@AeAlm’\ and Q':@A,GA/kyX

for A = Z" and A’ = Z" with associated quantum matrices ¢ = (qij) € My (k)
and ¢’ = (q/;) € My (k). We assume that

f: slyr (Q/) — 5[4(@)

is a k-linear isomorphism. We apply Lemma 2.5 to extend f to an isomorphism

fat: 0l (Q) — 9l,(Q).

In the first step of the proof (Proposition 7.2) we will show ¢ = ¢/. Next, it will
follow from Proposition 7.3 that we may assume that

¢ = far: Me(Q")) = Me(Q)

is an isomorphism of associative algebras. In the final step of the proof we will
establish that if b’ C My (Q') (resp. h C My(Q)) is the standard MAD of My (Q')
(resp. My(Q)) then ¢(h’) is conjugate to h by an element of GL,(Q).

7.2. Proposition. In the setting 7.1 we have £ = {'.

Proof. According to Theorem 5.4 there exist a subring R C k and a maximal ideal
m< R such that f induces an R-isomorphism

fT: sly (./ZV) — ﬁ[g(j).

Since A and A’ are quantum tori over R of fgc type, by Theorem 4.3 we have
(=¢. 0O
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7.3. Proposition. Consider the following two maps:

(a) far: gl (Q) = al,(Q),
(b) the extension of fo°P: sl;((Q")°P) — sly(Q) to a Lie algebra isomorphism

(f 0 t™)gr: gl ((Q)P) = gli(Q).
Then one of these maps is an isomorphism of the underlying associative k-algebras.

Proof. Assume the contrary. Then there exist g1, g2, 93, 94 € M¢(Q') such that

Jat(g192) # far(91) far(g2) and  fa(—g394) # fa1(94) far(g3)-
Put
91 = for(9192), 95 = fai(g1), 95 = farlg2), 94 = g1 — 9595

and similarly

g5 = fai(—=g394), 96 = fa1(93), g5 = fai(9a), 95 = 95 — 9796-

Recall that by Lemma 2.3 one has the decomposition

0l (Q) = Z(Q)Er @ 51,(Q)

and similarly

9l(Q") = Z(Q")Er @ sl(Q").

So every element g; (resp. g¢j) can be written as the sum ¢; = ¢;E¢ + §; (resp.
9, = ¢;Eo+ g;) where g; (resp. ¢}) is in the centre of Q (resp. Q') and g; (resp. (J})
is a sum of commutators of elements of gl,(Q) (resp. gl, (Q")). We add to our list
of elements g1,..., 94 (resp. gi,...,gs) all their components arising in the above
two decompositions (including elements appearing in the writing of g;, g} as sums
of commutators).

We now apply Theorem 5.4 with these data. This provides us with a subring
R C k and a maximal ideal m < R satisfying the many conclusions of loc. cit. In
particular, denoting by

fA: 5[@(./4/) — 5[@(./4)
the isomorphism obtained by restriction of f, we have an isomorphism
fA: 5[@(.,[1/) — 5[4(@)

where now both A’ and A are fgc quantum tori over the finite field R/m of very
good characteristic. This allows us to apply Theorem 4.3. In view of Remark 2.6
we get that either

(fa)gi: gly(A) = gl,(A) or  (faoiP)g: al,(A”") = gl,(A)

is an isomorphism of the underlying associative algebras.
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On the other side, arguing as in Lemma 2.5 we get the following: if Z(A) (resp.
Z(A")) denotes the centre of A (resp. A’) our map f4 has a canonical extension
to

Z(.A/)Eg EBE[((A/) — Z(A)E, ®sly(A)

which abusing notation we will still denote by (f4)g1. Note that (f4)4 coincides
with the restriction of fg to Z(A’)E, @ sly(A’) and that by our construction all
matrices ¢;Fy, ¢,Ew, g, and g; live in Z(A)E; & sly(A’) and Z(A)E, @ sly(A).
Passing to the residues we get an isomorphism

(fa)gr: Z(A) @ slp(A) — Z(A) @ sly(A).

It is easily seen from the construction that

(fa)gr = ((J?A)gr)|m@5[(j,) =: 1.

We now obtain a contradiction: In case (f4) gt is an isomorphism of the underlying
associative algebras we have

91 = ¥(g192) = Y(@)¥(92) = 9595
whence o o
94 =91 — 9295 = 91 — 9295 = 0,
contradicting i # 0 by Theorem 5.4. In the other case, one obtains a contradiction

in the same way. O

7.4. Final step

As indicated above, from now on we will assume that
¢+ My(Q) = Me(Q)
is an isomorphism of associative k-algebras. Let
V=Q®...0Q

be the free right @-module of rank ¢ defined in (2.2.4) for A = Q. We know that
M,(Q) acts on V from the left while @ acts from the right. We denote by B =
{e1, ..., e} the standard basis of the @Q-module V', defined in (2.2.5). Furthermore,
we know that E/ = E/, € My(Q'), i = 1,...,¢ form a complete orthogonal system
of idempotents in M,(Q’). Since ¢ preserves the associative multiplication, the
image of the standard orthogonal system (E7,,...,E},) of My(Q’) is a complete
orthogonal system in M,(Q). We put

Ei = ¢(El) € Mg(Q),1 <i < /.
We then know from Lemma 2.10 that V' decomposes with respect to (El, cee E@):

V=Wia --aV, for V;=EV).
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As shown in Lemma 2.10(c) conjugacy will follow once we know that all the V; are
cyclic @-modules. We will prove this using again specialization.

To simplify the notation we let U = V; for any one of the ¢, 1 <1i < £. We can
apply the results of §6 and choose a minimal vector ug € UT. For t € N define

Py ={q€ Q" : deg(q) < t},

Vi ={ve VTt deg(v) <t}

U =V,nUT.
The spaces P;, V; and U; are finite-dimensional k-vector spaces. We denote by
P(-) the corresponding projective spaces. Since 0 # ¢ = wupqg # 0 we have a
well-defined regular map

P P(Pt) — P(Ut+deg(uo))7 [Q} = [qu}-

Its image is the zero set of a finite set Gy of non-zero homogenous polynomials (in
fact linear forms) with coefficients in k:

Im(p:) = Zero(Gy).
Similarly, for 0 < s < deg(up) we have a regular map

¥s: P(Vs) % ]P)(Png(uo)fS) - IED(Vdog(uo))7 ([v]; [g]) = [val-

Since we are dealing with projective spaces, the image of «; is a closed subvari-
ety, whence given by a finite set H; of non-zero homogeneous polynomials with
coefficients in k:

Im(ys) = Zero(Hy).

By Lemma 6.6, [ug] € Im(ys) for all 0 < s < deg(ug). Hence:
hs(ug) # 0 for some hy € Hy, 0 < s < deg(up). (7.4.1)

Recall that our goal is to show U = uQ, i.e., in view of Lemma 6.4: Ut = uoQ™.

For the purpose of contradiction, assume this is not the case. Thus there exists
vo € UT \ uoQ™". Observe

d := deg(vg) — deg(ug) > 0.
Therefore [vo] & Im(pq), i.e.,
ga(vo) #0 for some gq € Gy. (7.4.2)

We now apply Corollary 5.2 to construct a subring R < k. The finitely many
elements a; € k, b; € Q and g; € My(Q) of loc. cit. are the following.
e in k: the elements hs(up) and gq(vg) of (7.4.1) and (7.4.2) respectively; all
qij; the coefficients of the polynomial g4 and of all polynomials in Hy, 0 <
s < deg(uo);
e in ): the (by definition non-zero) coefficients of the vectors ug and vo;
e in M,(Q): the matrices E‘i, 1<i </
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As in Corollary 5.2 let A = @, Rxz*. We then have objects “over R”:
Vi = @le el A, AT =@,z Rz, V)= @le e; At
Since all matrices E; € My(A) we get a decomposition
Va=Va1 @ @®Vae, Vai=VanV,.

In particular, U4 = UNV 4. We choose the maximal ideal m<R as in Corollary 5.2,
and denote by  the quotient objects:

R = R/m,
A= AfmA=@,_, R, At = A /mAY = @, . R,
Vo =Va/mVy = @le e A=A Vi=Vi/mV]= @le e, AT ~ AL
Ua = Ua/mUa.

By construction, A is an fgc quantum torus over the finite field R which has very
good characteristic for sl,(A). Hence, by Corollary 4.7, conjugacy holds in sly(A).
Thus, by Lemma 2.10, Uy is a free A-module, say Uy = ¢ - A. We can apply the
results of §6: without loss of generality, ¢ € Uj =U4N \7;{. We can even assume
that ¢ is indivisible. Thus, by Corollary 6.5, UX = ¢A*. Since g € Uj\' we get
from Lemma 6.4 that

Wy=c-a forsomeac AT.

Our next goal is to show that @ € R-1 4. To this end we use the “bar”-versions
of the vector spaces and maps defined above:

Po={qe A" : deg(q) <t}, Vi={veV]:deg(v)<t}, U;=V,NnUT,
@2 P(P;) = P(Upydeg(uo))s [0 = [H0d),
¥s: P(V5) x ]P)(Png(uO)*s) = P(Vaeg(uo))» ([v], [g]) — [vq].

By base change, Im(@;) is the zero set of the polynomials {g : ¢ € G;}. Similarly,
Im(7,) is the zero set of the polynomials h, h € H,. From @y = ¢ - a we obtain
deg(@g) = deg(¢) + deg(a). Assuming deg(a) > 0, it follows that @y € Im(7,) for
0 < s = deg(¢) < deg(tip) = deg(up). Hence h(ig) = h(ug) = 0 for all polynomials
h € H,. But this contradicts (7.4.1): hs(up) # 0 by construction of R and m.
Hence deg(a) = 0, proving that % is also a generator of UX: Uj = g AT,

Recall the element vg € Ut \ ugQ". We have 0 # vy € U} = o A"T. Hence
G(To) = g(vo) = 0 for all ¢ € G4. But this contradicts (7.4.2): gq(vg) # 0 by
construction of R and m. Thus, we have arrived at the final contradiction: There
does not exist vg € Ut \ uoQ™. Tt follows that U is indeed generated by ug.
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