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Abstract (Co)variance matrices for the assumed model, and
thus the specification of the dispersion parameters, should take
into account both the negative competition and the positive
spatial correlations. In this context, we applied several ap-
proaches to identify and quantify the genetic and environmen-
tal competition effects and/or environmental heterogeneity in
three Douglas-fir genetic trials from the British Columbia tree
improvement program in total height and diameter at breast
height at ages 12 and 35. Then, we applied an individual-tree
mixed model to account jointly for competition effects and
environmental heterogeneity (competition + spatial mixed
model, CSM). We also compared the resulting estimates of
all dispersion parameters and breeding values (BVs) with cor-
responding estimates from three simpler mixed models. Our
analysis revealed that strong spatial environmental variation
(predominantly at large-scale) covered the effects of competi-
tion in the three Douglas-fir progeny trials. While diameter at

breast height at age 35 revealed strong competition effects at
both genetic and environmental levels, these effects were not
as strong for total height. In general, with strong competition
genetic effects, the CSM gave a better fit than the simpler
models. Ignoring competition effects and environmental het-
erogeneity resulted in lower additive genetic variances and
higher residual variances than those estimated from the
CSM. Ignoring competition effects leads to overestimating
environmental heterogeneity, while ignoring the environmen-
tal heterogeneity leads to underestimating competition effects.
Spearman correlations between BVs predicted from the sim-
plest model and total BVs from the CSM were moderate to
high. The implications of all these findings for the genetic
improvement of coastal Douglas-fir in British Columbia are
discussed.
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Introduction

Best linear unbiased prediction (BLUP) of breeding values
(BVs) depends largely on how well the correlation structures
among the effects in the model are specified. In forest tree
breeding, there is often a negative correlation structure caused
by competition among trees and a positive correlation struc-
ture caused by continuous environmental variation.
Competition is defined as the stress suffered by a plant due
to the genotypes and the spatial arrangement of neighboring
trees (Hinson and Hanson 1962) and is caused by genetic and
environmental sources (Magnussen 1989). Concerning the
genetic evaluation of trees, competition is an indirect genetic
effect (Griffing 1967, 1968a, b). Additionally, as a result of
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variations in soil characteristics and terrain orientation, there
are usually two types of spatial environmental variation (or
environmental heterogeneity) within forestry field trials: glob-
al trend (or large-scale variation) and local trend (or small-
scale variation). Specifying both structures (i.e., competition
and environmental heterogeneity) within the same model was
demonstrated by Costa e Silva and Kerr (2013) and later in
Cappa et al. (2015a) using an alternative formulation.

In coastal Douglas-fir, Ye and Jayawickrama (2008) found
strong competition in some progeny trials for diameter and
volume at ages 15 and 20. Yanchuk (1996) examined the
general and specific combining ability of Douglas-fir for total
height at ages 7 and 12, as well as volume at age 12. He
concluded that competition effects within these field tests
may have biased upward the specific combining ability
variance for volume by age 12. In contrast, he did not
observe this phenomenon in height at the same age. Stoehr
et al. (2010) evaluated the effects of spacing and competition
in three genetic classes from six low elevation coastal
Douglas-fir realized genetic gain trials in British Columbia
at ages 3 to 12. They concluded that diameter and volume
were fairly sensitive to spacing and competition but height
was relatively unaffected. Additionally, strong spatial patterns
of variation (mostly small scale) were found in more than
95 % of the 275 first-generation progeny trials in the Pacific
Northwest (Ye and Jayawickrama 2008) and in more than
90 % of the 88 trials in British Columbia (Fu et al. 1999).

Spatial analysis has been applied to Douglas-fir genetic
trials using different approaches (Thomson and El-Kassaby
1988; Fu et al. 1999; Ye and Jayawickrama 2008). However,
despite strong evidence of competition effects for growth traits
in Douglas-fir genetic trials (Yanchuk 1996; Ye and
Jayawickrama 2008; Stoehr et al. 2010), no empirical studies
in this species and only a few in other tree species (Cappa and
Cantet 2008; Costa e Silva et al. 2013) attempted to separate
genetic and non-genetic competition effects at the individual
tree level. Moreover, no studies in Douglas-fir and only a few
empirical studies in agronomic crops (Durban et al. 2001;
Stringer et al. 2011; Hunt et al. 2013) and in tree species
(Magnussen 1994; Resende et al. 2005; Costa e Silva et al.
2013; Cappa et al. 2015a) jointly consider competition (or
indirect genetic effect) and spatial variability.

Cappa and Cantet (2007) proposed using tensor products of
cubic B-splines based on a mixed model by treating the B-
spline functions as random variables (i.e., using a covariance
structure for the random knots effects) in a two-dimensional
grid. The mixed model with the fit of a two-dimensional sur-
face demonstrated its utility in accommodating complex pat-
terns of environmental heterogeneity (Cappa et al. 2015b).
Muir (2005) derived the mixed model equations with compe-
tition effects to analyze data from test trials of forest trees, but
he did not consider varying the number of competing neigh-
bors in a trial. Cappa and Cantet (2008) also presented a mixed

linear model that included direct and competition additive
genetic effects, as well as environmental competition effects,
where the competition effects of neighbors are expressed in
the phenotype of a focal tree by means of the Bintensity of
competition^ (IC). The ICs allow standardizing of the variance
of the effects of competition within the phenotypic variance,
so that the model can account for unequal number of neigh-
bors because of either mortality or border locations. Costa e
Silva and Kerr (2013) extended the calculation of ICs to ac-
count for unequal inter-row and inter-column distances.
Cappa et al. (2015a) presented an extension of the
individual-tree mixed model with additive direct genetic
effects, and genetic and environmental competition effects.
(Cappa and Cantet 2008) by incorporating a two-
dimensional smoothing surface (Cappa and Cantet 2007) that
accounts for environmental heterogeneity.

As part of the coastal Douglas-fir tree improvement pro-
gram, a large number of full-sib progeny trials were established
across the southern coast of British Columbia, Canada, in eight
series from 1976 to 1986. Because of the large number of
genetic entries, the recognized environmental heterogeneity
(Fu et al. 1999), and the evidence of genetic competition
(Yanchuk 1996) in these trials, the data provide us with a good
opportunity to identify and jointly model the effects of compe-
tition and spatial heterogeneity. The main objectives of the
present study are (1) to identify and quantify the effects of
competition at genetic and environmental levels and environ-
mental heterogeneity using different diagnostic tools; (2) to
apply the individual-tree mixed model proposed by Cappa
et al. (2015a) for estimating genetic parameters with joint con-
sideration of genetic and environmental competition effects and
environmental heterogeneity; (3) to compare the resulting esti-
mates of all dispersion parameters and predicted BVs for the
joint model with those from three simpler individual-tree mixed
models, namely standard (no competition and spatial continu-
ous effects), competition (Cappa and Cantet 2008), and spatial
(Cappa and Cantet 2007); and (4) to determine the impact of
simultaneously adjusting for competition genetic effects and
environmental heterogeneity on selection of individuals (for-
ward selections) in the Douglas-fir tree breeding program.

Material and methods

Genetic material, trial description, and quantitative traits

The data used in this study are from the British Columbia
coastal Douglas-fir tree improvement program. They include
eight test series with various numbers of six-parent discon-
nected half diallels. A detailed description of the genetic ma-
terials can be found in Yanchuk (1996). Each of the 8 series
was established on 11 different sites (i.e., in total 88 test sites)
from 1976 to 1986. They are distributed along the southern
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Pacific coast of British Columbia and on Vancouver Island
(Fu et al. 1999). A randomized complete block design with
four replicates of four-tree row plots per full-sib family was
employed at each site with an initial spacing of 3.0 × 3.0 m.
The current study uses data from the three progeny test sites of
series 3, which demonstrated the highest heritabilities. These
trials are established at Adams River near Campbell River
(50° 24′ 42″ north, 126° 09′ 37″ west), Fleet River (48° 39′
25″ north, 128° 05′ 05″ west), and Lost Creek (Chilliwack)
(49° 22 ′ 15″ north, 122° 14 ′ 07″ west). Using the
Biogeoclimatic Ecosystem Classification (BEC) system
(Pojar et al. 1987), the sites were identified, respectively, as
montane very wet site, submontane moist maritime site, and
submaritime very wet site. At the three sites, total height (TH)
in centimeter using a laser hypsometer and diameter at breast
height (DBH) in millimeter were measured at ages 12 and 35.
All three sites were thinned at age 15 from four-tree to three-
tree plots by removing the shortest tree, a standard practice
across all test series. Table 1 provides some general informa-
tion about the three trials.

Identification and quantification of competition
and environmental heterogeneity effects

A central first step in the joint analysis of competition and
spatial variability is a pre-analysis to determine the significance

of both effects within each site. In this study, we employed
several diagnostic tools to identify and quantify the competition
effects (at genetic and environmental levels) and environmental
heterogeneity. First, we fitted an individual-tree mixed model
with fixed effects of genetic group and block, random effects of
plot, breeding value, and full-sib family (see standard model [1]
below), and residual covariance structure following a first-order
autoregressive process for rows and columns (AR(1) × AR(1);
autoregressive model) using the ASReml program (Gilmour
et al. 2006). The sign and magnitude of the autocorrelation
parameters for row and column can reveal the presence of
competition effects at residual level and/or environmental het-
erogeneity. Dutkowski et al. (2002) stated that environmental
heterogeneity emerges at autocorrelation coefficients greater
than 0.3 and become more definite at 0.6. Resende et al.
(2005) indicated that high (>0.3) positive autocorrelation coef-
ficient estimates reveal that environmental heterogeneity is pre-
dominant over competition, and negative (<−0.3) autocorrela-
tion coefficient estimates indicate competition effects at the re-
sidual level probably together with environmental heterogene-
ity. Therefore, autocorrelation coefficients larger than 0.3 and
smaller than −0.3were used to identify dominant environmental
heterogeneity and competition effects at residual level, respec-
tively. Additionally, we used a graphical diagnostic tool, the
two-dimensional sample variograms from the autoregressive
model at each combination of trait-age within each site, as

Table 1 Location, site characteristics, design information, means, and standard deviations for the diameter at breast height (DBH) and total height
(TH) measured at ages 12 and 35 across the three coastal Douglas-fir progeny trials

Site Montane very wet Submontane moist maritime Submaritime very wet

Latitud (north) 50° 24′ 42″ 48° 39′ 25″ 49° 22′ 15″

Longitude (west) 126° 09′ 37″ 128° 05′ 05″ 122° 14′ 07″

Altitude (m) 576 561 424

AMP 2363 3397 2421

AMT 7.6 8.3 7.3

MTCM (°C)/MTWM (°C) 0.7/15 2.1/16.2 −0.1/15.6
Age 12 35 12 35 12 35

No. of trees with records 2367 2093 2592 2263 2462 2058

No. of parents 78 78 78

No. of families 165 165 165

Experiment design RCB RCB RCB

No. of replicates 4 4 4

No. of diallels 10 10 10

No. of row 49 53 90

No. of column 99 65 55

Spacing (m) 3 × 3 3 × 3 3 × 3

Mean DBH (SD) (mm) 88.6 (21.9) 312.1 (63.6) 92.3 (19.6) 270.8 (51.9) 104.0 (30.5) 264.8 (67.0)

Mean TH (SD) (cm) 624.2 (113.5) 2332.2 (248.0) 705.1 (119.7) 2533.9 (258.7) 726.7 (161.4) 2405.4 (353.5)

The highest growth across sites at ages 12 and 35 are highlighted in bold

AMP annual mean precipitation, AMT annual mean temperature, MTCM minimum mean temperature of the coldest month (usually January), MTWM
maximum mean temperature of the warmest month (usually August). The highest growth across sites at ages 12 and 35 of age are highlighted in bold
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suggested by Gilmour et al. (1997). On the other hand, strong
spatial patterns expressed in global trends (i.e., high and positive
autocorrelation coefficients) may reduce the evidence of spatial
patterns in small scale (i.e., local trends) and/or competition
effects (e.g., Kempton 1982; Brownie and Gumpertz 1997;
Durban et al. 2001). Although simultaneous autoregressive
models (like the equal-roots third-order autoregressive model-
EAR(3)-) could be used to identify simultaneously spatial
trend and competition at the residual level, we fitted the
autoregressivemodel for the de-trended data, i.e., by subtracting
the fitted spatially dependent residuals from the original pheno-
typic data (Ye and Jayawickrama 2008). Second, for each trait-
age combination at each site, we calculated the Pearson corre-
lation coefficients between the residuals of the focal trees after
fitting the standard model (see Eq. [1]) and the phenotypic
means of the focal tree’s neighbors under various configura-
tions: (1) the m (maximum 8) first-order neighbor trees (i.e.,
adjacent to one another in the diagonal and in the same planting
row or column), (2) them (maximum 2) row-neighbor trees, (3)
them (maximum 2) column-neighbor trees, and (4) them (max-
imum 4) diagonal-neighbor trees. Statistically, significant posi-
tive (or negative) correlations between two adjoining trees pro-
vide evidence of environmental heterogeneity (or competition).
Then, we plotted these residuals versus the phenotypic means as
suggested by Durban et al. (2001). To account for the distance
and the number of competitive individuals either row-column
wise or diagonally, the average of the phenotypic means of the
row-, column-, and diagonal-neighbor trees were multiplied by
the ICs (Cappa and Cantet 2008) as a weight before calculating
the Pearson correlation coefficients. The growth traits studied
(i.e., DBH and TH) are more sensitive to recent competition
than at early ages (Gould et al. 2011), i.e., the sum of growth
over the entire life of the study. Therefore, we calculated the
difference between ages 12 and 35 for DBH (DBH growth) and
TH (TH growth). Finally, we examined the direct and competi-
tion additive correlation (Cappa and Cantet 2008) to study the
competition effects at genetic level from the competition model
(see competition mixed model [2]). A high and negative corre-
lation between both types of genetic effects (higher than −0.3)
suggests strong genetic competition (e.g., Muir 2005).

Statistical models of analysis

Each trait-age combination within each Douglas-fir trial was
analyzed using the following individual-tree mixed models.

1. Standard mixed model (TM):

y ¼ Xβþ Z ll þ Zaaþ Z f f þ e ð1Þ

where the vector y contains the phenotype of individual i
(i = 1, …, n; n is the total number of trees with recorded data);
the vector β includes the fixed effects of blocks and genetic
groups to account for the means of the different diallels; l is the
vector of random plot effects; a is the vector of random additive
genetic effects (i.e., breeding values) distributed asN~(0,A σ2a),
where A is the expected relationship matrix from the pedigree
information and σ2a is the additive genetic variance; f is the
vector of random full-sib genetic effects (corresponding to spe-
cific combining ability, SCA) distributed as N (0, I σ2f), where I
is the identity matrix and σ2f is the family variance; and e is the
vector of random error; X, Zl, Za, and Zf are incidence matrices
relating the observations (y) to the model effects β, l, a, and f,
respectively. The vector e is distributed as e~N (0, I σ2

e ) where
σ2e is the residual variance.

2. Competition mixed model (CM):

y ¼ Xβþ Z ll þ Zdad þ Zcac þ Zppc þ Z f f þ e ð2Þ

where the effects β, l, f, and e and matricesX, Zl, and Zfwere
specified as described above. We follow closely Cappa and
Cantet (2008) to describe the CM. In Eq. [2], ad and ac are the
vectors of direct and competition random additive genetics ef-
fects (i.e., breeding values), respectively, and Zd and Zc are the
corresponding incidence matrices relating the observations in y
to the direct and competition breeding values. Every row (i) ofZd

has all elements equal to zero except for a 1 in the corresponding
column. Similarly, each row i of matrix Zc has all elements equal
to zero except in the positions corresponding to themi neighbors
of the tree i, with values fij, j = 1, …, mi. These positive coeffi-
cients can be interpreted as the intensity of competition (IC) that
each neighbor exerts over the phenotype of the ith tree (see
further details in Cappa and Cantet 2008). The covariancematrix
of ad is Aσ

2
Ad where σ

2
Ad is the variance of the direct additive

genetic effects. Also, ac~N (0,Aσ
2
Ac), whereσ

2
Ac is the variance

of the competition breeding values, and cov(ad, ac) = A σAdAc,
where σAdAc is the covariance between direct and competition
breeding values. Every row of the incidence matrix Zp has ele-
ments equal to zero except for a 1 in the column belonging to apj

of the nearest j neighbor competitor tree. The vector pc includes
the environmental competition effects (or permanent
environmental competition effects; Cappa and Cantet 2008;
Cappa et al. 2015a) distributed as pc~N (0, I σ

2
p), where σ

2
p is

the variance of environmental competition effects.

3. Spatial mixed model (SM):

y ¼ Xβþ Bbþ Zaaþ Z f f þ e ð3Þ
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where the effectsβ (including only genetic group effects), a, f,
and e and matrices X, Za, and Zf were specified as described
above. We follow closely Cappa and Cantet (2007) to describe
SM. In Eq. [3], the term Bb is the matrix expression approx-
imating the two-dimensional surface with a tensor product of
B-spline bases (Eilers and Marx 2003). The vector b is as-
sumed to be normally distributed with mean zero and covari-
ance matrix Uσ2

b. The scalar σ
2
b is the variance of the B-spline

coefficients for rows and columns, and the U matrix is the
covariance structure in two dimensions for the B-splines co-
efficients. A tridiagonal U matrix, originally proposed by
Green and Silverman (1994, p. 13) and then used by Durban
et al. (2001) to fit a fertility trend, was used in this study. Three
SM with different numbers of knots for rows and columns,
10 × 10, 20 × 20, and 30 × 30, were fitted for each trait-age
combination within each trial. The model including 20 × 20 or
30 × 30 knots had the better fits (based on the smallest deviance
information criterion, see below), i.e., capturedmost of the spatial
variability and was used for further comparison. For this SM, we
dropped the fixed block and random plot effects (i.e., the design
effects) as they became non-significant.

4. Competition + spatial mixed model (CSM):

y ¼ Xβþ Bbþ Zdad þ Zcac þ Zpap þ Z f f þ e ð4Þ

All vectors of fixed and random effects and matrices of
Eq. [4] were specified above. We followed closely Cappa
et al. (2015a) to describe the CSM. For this CSM, we also
dropped the design effects as they were non-significant.

Bayesian inference and models comparison

The Bayesian approach via Gibbs sampling was used to esti-
mate the parameters in the four individual-tree models studied
following closely Cappa and Cantet (2007, 2008) and Cappa
et al. (2015a). Conjugate prior densities were chosen for all
parameters. To reflect a prior state of uncertainty for the fixed
effects while keeping the posterior distribution proper, we
selected β ~N (0, K) with K, a diagonal matrix with large
elements (kii > 108). For the prior distributions of σ2

a, σ
2
b,

σ2
p, σ

2
f, and σ2

e, we used a scaled inverted chi-square with
hypervariances δ2a, δ

2
b, δ

2
p, δ

2
f, and δ

2
e and degrees of free-

dom υa, υb, υp, υf, and υe, respectively. The additive
(co)variance matrix of breeding values (G0) follows a priori
an inverted Wishart (IW) distribution with prior covariance

matrix G*
0 and degree of belief υg. Therefore, the joint and

conditional posterior densities are Gaussian for β, a, b, ad, ac,
af, and pc; scaled chi-square for σ

2
a, σ

2
b,σ

2
p, σ

2
f , andσ

2
e; and

scaled inverted Wishart distribution for G0.

A single Gibbs chain of 210,000 (SM with 30 knots
for row and column and CSM) and 1,010,000 (SM with
less than 20 knots, TM, and CM) samples was drawn,
and the first 10,000 iterates were discarded as burn-in.
Thus, 200,000 and 1,000,000 additional samples were
used for computing the summary from the marginal
posterior distribution. Marginal posterior densities for
all parameters were estimated by the Gaussian kernel
method (Silverman 1986, chap. 2). Convergence was
monitored by plotting the iterations against the mean
of the draws up to each iteration (running mean plots)
and using the Z criterion of Geweke (1992) for each
parameter. Mean, mode, median, standard deviation,
and 95 % high posterior density interval (95 % HPD)
were then calculated with BBayesian Output Analysis^
(BOA version 1.0.1; Smith 2003) for all parameters
from the individual marginal posteriors, under the free
software R (http://www.r-project.org/).

The deviance information criterion (DIC; Spiegelhalter
et al. 2002) was computed to compare the fit of each model.
The DIC criterion is defined as

DIC ¼ �
D θMð Þ þ pD

where
�D θMð Þ is the posterior mean of the deviance and pD is

the Beffective number of parameters.^ Hence, the DIC com-
bines a measure of model fit

�D θMð Þð Þ, with a measure of
model complexity (pD). A smaller DIC value indicates a better
fit and lower degree of model complexity. The total genetic
contribution to the genetic mean value of a population or total
tree breeding value (TBVi) from the CSM model [4] was
calculated following Costa e Silva and Kerr (2013); Eq. 14),

i.e., TBVi = adi + nR f ijR þ nC f ijC þ nD f ijD
� �

aci, where

nR f ijR þ nC f ijC þ nD f ijD
� �

is the sum of the products of

the means across all focal individuals in each Douglas-fir trial;
nR; nC; nD is the average number of their neighbors; and
f ijR; f ijC; f ijD is the average intensity of competition in

the row, column, and diagonal directions, respectively. The

values of the expression nR f ijR þ nC f ijC þ nD f ijD
� �

for

the three Douglas-fir trials at age 35 were 1.31, 1.85, and
1.37 for the montane very wet, submontane moist maritime,
and submaritime very wet progeny trials, respectively.
Additionally, to study the impact of simultaneously adjusting
for competition genetic effects and environmental heterogene-
ity on selection decisions, Spearman rank correlations were
calculated between the predicted tree BVs from the TM and
the TBVs from the CSM for DBH at age 35. The proportions
of common individuals (offspring) in the top 10 % (209, 226,
and 206 trees for the montane very wet, submontane moist
maritime, and submaritime very wet sites, respectively) from
the TM and CSM models were also compared.
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FORTRAN computer programs (available upon request)
were employed to carry out the Bayesian inference, solve
the mixed models equations, and obtain corresponding accu-
racies of all model analyses.

Results and discussion

Survival and growth

Overall mean survival across the three sites was 94 % at age
12 and slightly lower at age 35 (81 %) (Table 1). The
submontane moist maritime site demonstrated the highest sur-
vival rates at both assessment ages. Trees at the submaritime
very wet site had the best growth at age 12 but lagged behind
those at the montane very wet site at age 35.

Identification of competition and environmental
heterogeneity

Strong environmental heterogeneity (autocorrelation coeffi-
cient >0.8) was detected in 22 of the 24 cases studied
(Table 2). The sample variograms for residuals after fitting
an AR(1) × AR(1) model show that the spatial pattern of the
variation was usually a global trend (e.g., Supplementary
Fig. S1a). There were no negative autocorrelation coefficients
for any trait at ages 12 and 35 for the three sites (Table 2). In
general, there was an increase in autocorrelation coefficients
in both row and column directions from ages 12 to 35, which
probablymirrors the cumulative effect of growth on good sites
(Magnussen 1990). However, for DBH at the submontane
moist maritime site, the column autocorrelation coefficients
decreased substantially from ages 12 to 35 (from 0.89 to
0.27), which may have resulted from stronger negative corre-
lations indicating competition due to faster diameter growth at
this site (Table 1). Strong global trends may mask patterns of
small-scale (i.e., local trends) environmental variation and

competition effects (e.g., Kempton 1982; Brownie and
Gumpertz 1997; Durban et al. 2001). After these predominant
global trends were removed from the original data, i.e., using
the de-trended data, most of the autocorrelation coefficients
among neighboring units became negative in both directions
(Table 2). Moreover, strong competition effects in row and
column directions were shown in DBH at age 35 at all three
sites (negative autocorrelation coefficients from −0.08 to
−0.38), suggesting that competition is dominant over the en-
vironmental heterogeneity at small scale. The trait TH at age
35 at the submontane moist maritime site also showed strong
competition effects in row (autocorrelation coefficients −0.54)
and column (autocorrelation coefficients −0.81) directions
when the de-trended data were used. An example of sample
variogram showing a competitive effect at residual level is
given in Supplementary Fig. S1b. This is consistent with the
results reported by Ye and Jayawickrama (2008) that strong
aboveground competition starts from ages 10~15 in most
Douglas-fir progeny trials in the Pacific Northwest. Ye and
Jayawickrama (2008) also reported negative autocorrelation
coefficients for diameter and volume at age 15 or 20 when
studying the efficiency of the AR(1) × AR(1) model of 275
Douglas-fir progeny trials in the US Pacific Northwest.

Pearson correlation coefficients among the residual of the ith
focal tree after fitting the standard model and the phenotypic
mean of m (maximum 8) first-order neighbor trees were also
calculated (Table 3; Supplementary Fig. S2). Estimated nega-
tive correlations confirm the tendency revealed by the autocor-
relation coefficients that competition is present for DBH at age
35 in the three Douglas-fir trials. The mean correlation coeffi-
cients are ranging from −0.19 to −0.36 (Supplementary
Fig. S2). In general, Pearson correlation between the residual
of the ith focal tree and the phenotypic mean ofm (maximum 4)
diagonal-neighbor trees was weaker than that between the ith
focal tree and the mean of m (maximum 2) row- and column-
neighbor trees for all the trait-age combination, which reflect
that competition can vary as a function of the distance between

Table 2 Autocorrelation
coefficients for row (ρrow) and
column (ρcol) for diameter at
breast height (DBH) and total
height (TH) at ages 12 and 35 for
the original phenotype and the de-
trended data (subscript dt) from
the autoregressive model (see
text) using the ASReml program
(Gilmour et al. 2006)

Trait Age Site
Montane very wet Submontane moist maritime Submaritime very wet

ρrow ρcol ρrow ρcol ρrow ρcol

DBH 12 0.76 0.95 0.86 0.89 0.90 0.91

DBHdt 12 −0.01 −0.04 −0.09 −0.05 −0.05 −0.10
DBH 35 0.95 0.98 0.98 0.27 0.90 0.89

DBHdt 35 −0.38 −0.33 −0.27 −0.24 −0.08 −0.14
TH 12 0.86 0.96 0.86 0.90 0.87 0.89

THdt 12 −0.02 0.00 −0.08 −0.03 −0.06 −0.08
TH 35 0.96 0.97 0.96 0.99 1.00 1.00

THdt 35 −0.05 0.01 −0.04 −0.07 −0.54 −0.81
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the focal tree and its neighbors (Supplementary Fig. S2). In
addition, the mean Pearson correlations for 35-year-old DBH
at the montane very wet site were stronger than those at the
other two sites (Table 3; Supplementary Fig. S2), likely due to
the faster diameter growth (Table 1).

Similar results (i.e., high R2 = 0.96 across the combination
trait-age and the three trials) were obtained when the Pearson
correlation coefficients were calculated between the pheno-
type values (instead of the residual values) of the focal tree
and the phenotypic means of the m (maximum 8) neighbor
trees (Table 3; Supplementary Fig. S3). When DBH and TH
growth (i.e., the difference in these traits between ages 12 and
35) were used as response variables following Gould et al.
(2011), Pearson correlation coefficients were stronger and
more negative (results not shown), suggesting that competi-
tion became stronger as trees got older (or larger).

At early ages, trees may compete for water and nutrients, but
after canopy closure they compete mainly for light
(Brotherstone et al. 2011). In our work, first-order neighbor
trees were used in both CM and CSMmodels; thus, the implicit
assumption is that light is a more important factor than water
and nutrients (Magnussen 1989). This assumption can be
regarded as reasonable since, as mentioned above, crown clo-
sure for Douglas-fir usually starts after age 10 in the Pacific
Northwest (Ye and Jayawickrama 2008). However, in single-
tree plots or small row plot designs (like the four-tree row plot
used in this study), the sharing of these resources can never be
equal because the interacting plants are genetically different

(Stringer et al. 2011). Positive correlation between adjoining trees
suggests that they are less competitive but more cooperative in
responding to their shared environment, while negative correla-
tion indicates that they compete with each other as one tree’s gain
is the other tree’s loss. These two types of trees are classified as
two categories of ideotypes, i.e., crop ideotype and competition
ideotype, respectively (White et al. 2007).

In general, differences in the autocorrelation coefficients
(Table 2) and Pearson correlation coefficients between the
residual of the ith focal tree and the phenotypic mean of m
first-order neighboring trees (Supplementary Fig. S2) in the
direction of the rows and columns were small. However, and
in particular to the DBH trait at age 35, these differences
follow the same trend of lower values for rows than for col-
umns, except for DBH at the submontane moist maritime site
age 35 where much smaller autocorrelations were estimated
for rows (0.98) than those for columns (0.27). Thus, the ob-
served trend of stronger negative autocorrelation coefficients
and residual Pearson correlation coefficients between rows
than between columns, suggests that inter-family competition
(i.e., competition between trees from different families) was
often stronger than intra-family competition (i.e., competition
between adjoining trees from the same family). However, re-
search in Douglas-fir and other forest tree species showed
considerable disagreement on whether genetic relatedness be-
tween adjoining trees increase (Sakai et al. 1968; Gould et al.
2011) or decrease (von Euler et al. 1992; Boyden et al. 2008;
St. Clair and Adams 1991) the intensity of competition.

Table 3 Pearson correlation coefficients between the residual or
phenotype of the ith focal tree and the phenotypic mean of m
(maximum 8) first-order neighbors trees (rrp or rpp), average of row and
column residual autocorrelation coefficients for the original phenotypic
data (ρ), de-trended data (ρdt) from the autoregressive model (see text)

using the ASReml program (Gilmour et al. 2006), correlation between
direct and competition additive genetic effects from the competitionmod-
el (rAdAc), and intensity of competition for diameter at breast height
(DBH) and total height (TH) at ages 12 and 35

Site Trait Age (year) rrp rpp
a ρ ρdt rAdAc Competitionb

Montane very wet DBH 12 −0.03 0.01 ns 0.86 −0.03 0.16 + +

Submontane moist maritime DBH 12 0.06 0.22** 0.88 −0.07 0.06 +

Submaritime very wet DBH 12 0.08 0.16** 0.91 −0.08 0.14 +

Montane very wet DBH 35 −0.36 −0.39** 0.97 −0.36 −0.32 + + + + +

Submontane moist maritime DBH 35 −0.29 −0.29** 0.63 −0.26 −0.47 + + + +

Submaritime very wet DBH 35 −0.19 −0.21** 0.90 −0.11 −0.72 + + +

Montane very wet TH 12 0.05 0.10** 0.91 −0.01 0.32 +

Submontane moist maritime TH 12 0.09 0.23** 0.88 −0.06 0.34 Nil

Submaritime very wet TH 12 0.12 0.24** 0.88 −0.07 0.35 Nil

Montane very wet TH 35 −0.03 0.04 ns 0.97 −0.02 0.28 + +

Submontane moist maritime TH 35 −0.08 −0.06** 0.98 −0.06 −0.07 + +

Submaritime very wet TH 35 0.01 0.06** 1.00 −0.68 0.09 +

ns not statistically significant (p > 0.05)
a The p values showing difference from zero:
b Conclusion based mainly on the information from rrp and rpp
*Statistically significant, 0.01 < p < 0.05; **statistically highly significant, p < 0.01
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When competition is present, it may exist at both residual
and genetic levels (e.g., Stringer et al. 2011; Brotherstone et al.
2011; Costa e Silva et al. 2013). At age 12, correlations between
direct and competitive additive genetic effects from competition
model were all positive, whereas at age 35, they were negative
and strong (especially for DBH). Negative correlation between
additive direct and competition genetic effects indicates com-
petition for a limited resource at genetic level, where an indi-
vidual with a positive heritable effect on its own growth has, on
average, a negative heritable effect on the growth of its neigh-
bors (Costa e Silva et al. 2013). Our work is one of the first
empirical studies applying a competition genetic model to for-
est genetic trials. Therefore, making comparisons with other
forest studies is limited. However, for DBH, the estimated cor-
relations in the present study were somewhat lower than those
reported by Cappa and Cantet (2008) for Pinus taeda (−0.79) at
age 13 and tree spacing of 3.5 m × 3.5 m and by Costa e Silva
et al. (2013) for Eucalyptus globulus (−0.92, average across 2
and 4 years and planting spacing of 5.0 m × 2.125 m).

The genetic basis for response to competition depends on
the trait measured (expression) (von Euler et al. 1992). As we
observed, DBH was more sensitive to competition than TH at
both non-genetic (i.e., residual) and genetic level in the three
Douglas-fir trials. These results confirm findings from previ-
ous studies in Douglas-fir (Ye and Jayawickrama 2008; Stoehr
et al. 2010) and other forest tree species (Sakai et al. 1968;
Magnussen 1989; Hannrup et al. 1998; Dutkowski et al.
2006). Concerning forest genetic evaluation, Gould et al.
(2011) suggested that selection based on TH rather than
DBH may help produce families that have consistent perfor-
mance across different competitive environments.

It has been reported that competition effects become con-
sistently stronger as the trees become older (e.g., Kusnandar
2001; Stoehr et al. 2010; Costa e Silva et al. 2013). In our
study, we observed a general increase in the competition effect
from age 12 to 35 for de-trended phenotypic values in DBH
and TH at the three sites (Tables 2 and 3; Supplementary
Fig. S2), suggesting an increase in interaction among individ-
uals over time; thus, trees that are truly superior will exert their
superiority over others due to an inherent higher growth rate
and/or a stronger competitive advantage (Stoehr et al. 2010).
For example, the average autocorrelation coefficients across
row and column for the de-trended DBH data became more
negative at all sites (Table 3). The presence of weak (at age 12)
and strong (at age 35) tree-to-tree competition for DBH is also
shown in the Supplementary Fig. S4 for the three trials.

Model comparison

When strong competition was dominant over the environmen-
tal heterogeneity (i.e., for DBH at age 35), CSM showed better
fit (i.e., smaller DIC) than simpler models with no competition
and spatial continuous effects or either of these effects alone

(i.e., TM, CM, and SM; Table 4). The only exception is for
DBH at age 35 at the submontane moist maritime site where
CMwas themodel with the best fit (Table 4). Generally speak-
ing, CSM is the model of choice when both competition ef-
fects and environmental heterogeneity are expected to be
strong. Similar results have been reported in crop species
(Stringer et al. 2011; Hunt et al. 2013) and forest tree species
(Resende et al. 2005 and Costa e Silva et al. 2013) when
competition and environmental spatial effects are present re-
gardless of whether the spatial trend predominated over com-
petition or vice versa.

However, when competition effects were weak (e.g., for all
traits at age 12 and TH at age 35; Table 3), the fits of the
models were inconsistent across traits and ages. For TH at
age 35, TM was the best at the montane very wet and
submontane moist maritime sites. At age 12, TM was the
best for DBH at the montane very wet site and TH at the
submontane moist maritime site, while CM was the best for
DBH at the submaritime very wet site. The causes of these
results are not clear, but they suggest that the first important
step in analyzing joint competition and environmental
heterogeneity effects is to identify the significance of these
effects. Through simulation, Costa e Silva and Kerr (2013)
compared a base model (not fitting competition at either the
residual and genetic levels), a spatial autoregressive model for
the residual, a genetic competition model, and a competition
spatial model using likelihood ratio tests. They concluded that
the ability to detect the correct model depends on the rAdAc, the
magnitude of the σ2

Ac, and genetic relatedness levels within a
neighborhood for a given level of survival. This ability

Table 4 Deviance information criterion (DIC) calculates for each com-
bination trait-age and all models fitted

Site Model Trait-age

DBH TH

12 35 12 35

Montane very wet TM 10,250 11,253 13,494 13,268

CM 10,307 11,267 13,789 13,505

SM 10,387 11,029 13,696 13,349

CSM 10,349 10,722 13,611 13,377

Submontane moist maritime TM 9281 11,449 12,614 14,293

CM 9210 11,325 12,425 14,366

SM 9207 11,558 12,506 14,391

CSM 9054 11,347 12,259 14,346

Submaritime very wet TM 11,499 11,259 15,236 13,911

CM 11,366 11,263 15,179 14,275

SM 11,531 11,063 14,864 13,801

CSM 11,404 10,922 14,800 13,695

Smallest DICs (i.e., better fits) are highlighted in bold. See text for traits’
and models’ abbreviations
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appeared to diminish when the rAdAc became less negative, the
σ2

Ac decreased for a given magnitude of rAdAc, and the level of
relatedness decreased for a given magnitude of the rAdAc and
σ2

Ac. Additionally, a decrease in the survival rate (from 100 to
80 %) seemed to reduce the ability to detect the most appro-
priate model for a given genetic relatedness. In our study, low
negative (−0.07) and low to moderate positive (from 0.06 to
0.35) rAdAc values (i.e., weak recognizable competition effect
at genetic level) were observed for all traits at age 12 and TH
at age 35 (Table 3). The additive genetic relatedness is also
relatively high (i.e., control pollination mating with four tree
row plots). These results may have limited the ability to iden-
tify the best model for jointly modeling the competition and
environmental heterogeneity effects for those traits.
Moreover, Cappa et al. (2015a), also in a simulation study,
concluded that the worst performance of the CSM was under
a scenario with weak competition effects. However, strong
and negative values of the rAdAc for DBH at age 35 (Table 3)
assure that CSM is the most appropriate model for this trait.

The appropriate choice of model is likely influenced by how
well the competition and environmental effects can be

separated analytically (Durban et al. 2001). In the cases present-
ed here for DBH at age 35, the better fit by the CSM is aided by
the fact that both processes are strong and were detected oper-
ating at different spatial scales, i.e., the competition effects at
small scale and the environmental heterogeneity at large scale.

Based on the identification and quantification of competi-
tion and environmental heterogeneity (summarized in Table 3)
and the DIC values (Table 4), we retained only DBH at age 35
to conduct all the analyses in relation to the study of the impact
of simultaneously adjusting for competition genetic effects
and environmental heterogeneity on the variance components
and selection decisions.

Impact of simultaneously adjusting for competition
and environmental heterogeneity effects on variance
components

Posterior means and standard deviations for σ2
Ad, σ

2
Ac, rAdAc,

σ2
p, σ

2
f, σ

2
plot, σ

2
b, and σ2

e are shown in Table 5 and
Supplementary Fig. S5. TM yielded smaller posterior σ2

Ad

estimates than those estimated from CSM for DBH (from

Table 5 Posterior means (standard deviation) for the additive variance for direct effects (σ2
Ad), additive variance for competition breeding values

(σ2
Ac), correlation between direct and competitive additive effects (rAdAc), variance of environmental competition effects (σ2

p), family variance (σ2
f), plot

variance (σ2
plot), variance of the knot effects (σ

2
b), and error variance (σ2e) for diameter at breast height (DBH) at age 35

Trial TM CM SM CSM

Montane very wet σ2Ad 371.77 (109.77) 259.30 (70.54) 429.50 (128.06) 752.42 (186.80)

σ2Ac – 491.91 (117.64) – 1073.65 (167.36)

rAdAc – −0.32 (0.18) – –0.66 (0.09)

σ2p – 166.22 (49.24) – 177.32 (57.53)

σ2f 129.49 (44.66) 108.66 (36.84) 121.04 (40.21) 110.48 (35.15)

σ2plot 362.58 (77.90) 45.64 (17.88) –

σ2b – – 2453.28 (520.44) 144.07 (90.83)

σ2e 3124.30 (140.01) 3461.78 (348.47) 3012.29 (130.15) 2154.82 (155.43)

Submontane moist maritime σ2Ad 373.12 (85.10) 387.67 (83.39) 462.05 (108.61) 622.46 (138.91)

σ2Ac – 181.22 (50.51) – 276.54 (80.40)

rAdAc – −0.47 (0.13) – −0.59 (0.11)
σ2p – 141.90 (38.59) – 168.55 (48.13)

σ2f 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

σ2plot 196.56 (44.41) 152.37 (37.95) – –

σ2b – – 360.21 (234.85) 134.15 (73.58)

σ2e 2123.33 (101.99) 1989.30 (124.43) 2150.31 (100.51) 1733.67 (123.91)

Submaritime very wet σ2Ad 419.67 (125.18) 417.69 (124.58) 460.40 (141.10) 828.61 (256.62)

σ2Ac – 60.37 (23.84) – 117.32 (50.93)

rAdAc – −0.72 (0.12) – −0.84 (0.08)
σ2p – 252.26 (72.43) – 310.19 (89.46)

σ2f 133.83 (44.05) 128.61 (43.18) 141.47 (45.75) 125.93 (40.68)

σ2plot 139.49 (48.92) 41.43 (18.39) – –

σ2b – – 217.83 (180.17) 148.42 (98.44)

σ2e 3842.32 (153.17) 4024.22 (312.77) 3849.12 (154.89) 3258.84 (214.00)

See text for models’ abbreviations
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40.1 to 50.6 %, across trials), while σ2e estimates were higher
than those estimated from CSM for DBH (from 17.9 to 45.0 %,
across trials). This observation is due to competition effects and
environmental heterogeneity not entirely accounted for by TM.
In a simulation study where the competition was dominant over
environmental trend (i.e., rAdAc = −0.9), and with level of relat-
edness (full-sib mating design and multi-tree row plots, i.e.,
medium relatedness level) and survival similar to those of this
work, Costa e Silva and Kerr (2013) showed higher direct ad-
ditive variance estimates (approximately 55 %) and lower error
variance estimates (approximately 48 %) when a base model
was fitted (see Fig. 3 in Costa e Silva and Kerr 2013). When
studying diameter in a 19-year-old Sitka spruce clonal trial in
Scotland, Brotherstone et al. (2011) also reported a 19.9 %
increase in σ2Ad and a 10.5 % reduction in σ2e after adjusting
a simple competition model proposed by Bijma (2007) jointly
with an AR(1) × AR(1) covariance structure for the residual.
There was evidence of a global trend in the latter model, but this
effect was not formally accounted for. Moreover, the posterior
means of σ2Ad from CSM were higher and σ2e smaller than
those estimated from SM for DBH (Table 5; Supplementary
Fig. S5). Therefore, these empirical results show that by not
fitting competition effects (i.e., TM or SM), a consistent de-
crease resulted in the estimated posterior mean of σ2Ad and an
increase in the estimated posterior mean of σ2

e (Table 5;
Supplementary Fig. S5). Given the strong genetic competition
effects for this trait (especially when rAdAc was stronger than
−0.72), these patterns of variation in both variance components
estimated (i.e., σ2Ad and σ

2
e) can be explained by the negative

sign and the absolute value of σAdAc relative to the small value
of σ2c, which gives more weight to the second than the third
term in the expression of the genetic covariance between two
records (see Eq. [26] in Cappa and Cantet 2008, p. 52). Then,
these sources of (co)variation (i.e., σAdAc and σ2

c) not
accounted for the model (i.e., TM or SM) are absorbed into
the error term and result in an increment of σ2e. This phenom-
enon is particularly large in multi-tree plot field designs (Cappa
and Cantet 2008; Costa e Silva and Kerr 2013). A similar phe-
nomenon has been observed by Cappa and Cantet (2008) in
loblolly pine trial data when comparing models with and
without fitting competition genetic affects, by Costa e Silva
and Kerr (2013) when comparing the base model with the
model that fits both competition and spatial effects using an
AR(1) × AR(1) residual structure, and by Cappa et al.
(2015a) using the same empirical dataset as Cappa and Cantet
(2008) when comparing TM with CM and CSM models.

Estimates of σ2
b from SM were grossly overestimated

compared with those estimated from CSM (Table 5;
Supplementary Fig. S5), suggesting that ignoring the genetic
and environmental competition effects leads to overestimating
environmental heterogeneity. Cappa et al. (2015a) showed the
same results using an empirical dataset of loblolly pine, i.e.,
the SM yielded estimates of σ2

b that were higher than those of

CSM. A similar trend due to ignoring competition effects has
been observed by Costa e Silva and Kerr (2013), where the
variance for the correlated residual effects increased by ap-
proximately 65 % (see Fig. 4 in Costa e Silva and Kerr 2013).

The CM yielded posterior σ2
Ad, σ

2
Ac, and σ2

p estimates
smaller than those estimated from CSM for DBH (from 37.7
to 65.5 %, from 34.5 to 54.2 %, and from 6.3 to 18.7 % for
σ2

Ad, σ
2
Ac, and σ2

p, respectively). Moreover, the estimated
posterior means rAdAc from the CM indicated weaker negative
correlations than those estimated from the CSM (Table 5;
Supplementary Fig. S5). These differences from the CM and
CSM tended to be larger when the estimated correlation
(rAdAc) from the CM was weaker. For example, for DBH at
the trial montane very wet, the estimated rAdAc was −0.32 and
−0.66 (i.e., 53.3 %) for the CM and CSMmodel, respectively.
On the contrary, for the same trait at the submaritime very wet
site, those values were −0.72 and −0.84 (i.e., 14.3 %) for the
CM and CSM, respectively. Therefore, ignoring the environ-
mental heterogeneity leads to underestimating genetic and en-
vironmental competition effects. These underestimates were
greatest for the strongest competition effects (last column
Table 3). Our results are similar to those reported by Durban
et al. (2001), where ignoring the fertility trends resulted in
underestimates of competition effects, and similar to the
simulation results of Costa e Silva and Kerr (2013) (see
Figs. 5 and 6 in Costa e Silva and Kerr 2013).

Impact of simultaneously adjusting for competition
and environmental heterogeneity effects on selection

Competition and environmental heterogeneity may affect the
effectiveness and efficiency of genetic selection. Therefore,
from a tree breeder’s point of view, a relevant question is
whether or not the predicted tree BVs from TM and the pre-
dicted TBVs from CSM lead to a different ranking. In our
study, Spearman rank correlation between these predicted
BVs was positive and from moderate to high for DBH at all
sites (from 0.58 to 0.95). Lower correlations values are direct-
ly associated with highest σ2

Ac and highest ratio σ2
Ac/σ

2
Ad,

suggesting that strong contribution of the competition genetic
effects on TBVs leads to a change in the ranking. In fact, as we
expected, Spearman rank correlations between BVs estimated
from the TM and direct BVs from the CSM were higher than
those between the TM and the TBVs from the CSM. These
correlations varied from 0.81 to 0.94 for DBH across the stud-
ied trials (results not shown). Additionally, the Spearman rank
correlation between BVs from the TM and the SM were al-
ways very high (from 0.97 to 0.99, results not shown), indi-
cating that similar selection will result from both models.
Assuming 100 % survival and using simulated data with sim-
ilar relatedness and additive covariance matrix of breeding
values (rAdAc from −0.3 to −0.9 and ratio σ2

Ac/σ
2
Ad = 10

and 50 %), Costa e Silva and Kerr (2013) found similar
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Spearman correlations between predicted BVs from the base
model and TBVs from a model including both competition
and spatial effects (see Tables 3 and 4 in Costa e Silva and
Kerr 2013). Although our empirical study showedmoderate to
high correlations between predicted tree BVs from the TM
and the TBVs from the CSM, the absolute values changed.
Given the high and negative competition BVs, the TBVs (the
total genetic contributions to their population) of the selected
individuals were overestimated for the simplest model (i.e.,
TM). When the differences between the predicted tree BVs
from the TM and the TBVs from the CSMwere calculated for
DBH at age 35, their distribution were very skewed, with
many small and large positive values (results not shown).
These results confirm the inefficiency of simpler models cur-
rently used in forest tree-breeding programs when there is
genetic competition and environmental heterogeneity within
forest genetic trials, and highlight that the CSM provide a
more realistic prediction of future performance, as concluded
by Brotherstone et al. (2011). Moreover, the ranking among
the top 10 % individuals from TM and CSM showed differ-
ences. The proportion of common individuals within the top
10 % of the selected trees between the BVs of TM and TBVs
from CSM varied from 45.9 to 88.9 % for DBH at age 35.
These differences demonstrate that simpler models may have
a substantial direct impact on selection decisions and genetic
progress.

Implications for the coastal Douglas-fir British
Columbia tree improvement program
and conclusions

In British Columbia, stand volume predictions for growth
projections and allowable cut determinations are based on site
index, which is determined by heights of dominant trees.
Therefore, we made early selections based on height and in-
corporated the estimated (or predicted) height gains to project
stand volume at rotation (Xie and Yanchuk 2003). Since TH is
not strongly affected by competition, the effects of competi-
tion on stand volume projection are minimized by early selec-
tion and by selection for height. Indirect evidence for this also
comes from our realized gain trials where estimated gains at
age 12 are in line with the observed gains based on progeny
testing (Stoehr et al. 2010).

A summary of the findings and implications to be drawn
from the current study is as follows:

1. It has been shown that both competition and environmen-
tal heterogeneity effects are present in the same forest
genetic Douglas-fir progeny trials.

2. Strong spatial patterns of variation (predominantly large-
scale spatial variation) generate positive correlations that

hide the competition effects in the three Douglas-fir prog-
eny trials.

3. While DBH at age 35 revealed strong competition effects
at both genetic and environmental levels, these effects
were weak for TH.

4. In general, with strong competition genetic effects, the
CSM gave a better fit (lower DIC value) than the simpler
models (i.e., TM, CM, and SM). Thus, we recommend
using CSM in the estimation of dispersion parameters and
prediction of BVs in forest trees.

5. Ignoring the genetic and environmental competition ef-
fects leads to overestimating environmental heterogene-
ity, i.e., the SM yielded higher random knots variance
estimates than those of the CSM.

6. Ignoring the environmental heterogeneity leads to
underestimating genetic and environmental competition
effects, i.e., the CM yielded smaller direct and competi-
tion additive correlation (from 6.3 to 53.3 %) and envi-
ronmental competition variance estimates (from 6.3 to
29.4 %) than the CSM.

7. Spearman correlations for DBH between BVs estimated
from the TM and TBVs from the CSM were moderate to
high (from 0.58 to 0.95).

Finally, this empirical example confirms the results obtain-
ed in the study of Cappa et al. (2015a) using simulated and
real data from a loblolly pine progeny trial, and shows the
importance of accounting simultaneously for competition
and spatial effects to understand the dynamics of both phe-
nomena and their effects on the estimation of genetic param-
eters and predicted BVs in single forest genetic trials.

Compliance with ethical standards

Data Archiving Statement We followed the standard Tree Genetics
and Genomes policy. Supplementary information of the three Douglas-
fir trials, family numbers, and pedigree data including identity informa-
tion of trees, fathers, and mothers is available in the Zenodo repository,
http://dx.doi.org/10.5281/zenodo.159552. In addition, phenotypic data of
the three Douglas-fir trials will be available upon request.
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