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A B S T R A C T

The Yungas Redbelly Toad, Melanophryniscus rubriventris, is patchily distributed in Argentina, confined to the
upland portion (1000–2000 m above sea level) of the montane forests of northern and central regions of Salta,
and in central-eastern and south-eastern Jujuy. This species is known for its striking aposematic color variation
across its geographic distribution, and was once treated as a complex of three subspecies based on distinctive
color patterns. Here we assess the geographical genetic variation within M. rubriventris and quantify divergence
in color and pattern among individuals sampled from Northwestern Argentina. We compare multi-gene phy-
logeography of M. rubriventris to patterns of dorsal and ventral coloration to test whether evolutionary affinities
predict variation in warning color. Our results reveal two well-supported species lineages: one confined to the
extreme northern portion of our sampling area, and the other extending over most of the Argentine portion of the
species’ range, within which there are two populations. However, these well-supported evolutionary relation-
ships do not mirror the marked variation in warning coloration. This discordance between DNA genealogy and
warning color variation may reflect selection brought about by differences in local predation pressures, po-
tentially coupled with effects of sexual selection and thermoregulation.

1. Introduction

As phylogeographic studies accumulate on neotropical taxa, it be-
comes increasingly clear that cryptic species are pervasive (e.g. insects
– Hebert et al., 2004; Smith et al., 2008; Bernasconi et al., 2010; fishes –
Keck and Near, 2010; Piggott et al., 2011; amphibians – Elmer et al.,
2007; Fouquet et al., 2007; Townsend et al. 2013a; bats – Clare et al.,
2011; plants – Govindarajulu et al., 2011; birds – Welch et al., 2011;
reptiles – Devitt et al., 2008; Leaché et al., 2009; Jadin et al., 2011;
Townsend et al. 2013b), potentially more so in tropical versus higher-
latitude taxa. Moreover, detailed phylogeographic studies reveal deep
genealogical divisions within many long-recognized neotropical species
(e.g. Chek et al., 2003; Kerr et al., 2009; Gehara et al., 2014). Such
observations together imply that we have profoundly underestimated
the number of species at lower latitudes, presenting greater challenges
for conservation and implying a much steeper latitudinal gradient in
species richness than traditionally thought. Moreover, it implies that

lineages may diverge for millions of years without concomitant diver-
gence in the phenotypic characters that are typically used to classify
species.

Amphibians have featured prominently in discussions of cryptic
species, potentially because of their conserved morphology and diver-
gence in less appreciated aspects of phenotype including mate re-
cognition system (Cherry et al., 1977; Emerson, 1988). For example,
Fouquet et al. (2007) deployed a variety of analyses of 16S rDNA from
60 Amazonia-Guianan frog species and identified 129 new candidate
species. Elmer et al. (2007) found deep divergences between lineages
within what had been considered a single species of upper Ecuadorean
Amazon frog, Pristimantis ockendeni (previously Eleutherodactylus ock-
endeni).

Warning coloration can markedly impact patterns of diversification
and speciation (Mallet and Joron, 1999; Stevens and Ruxton, 2012;
Santos et al., 2014), but also can mask the presence of deep divergences
(Vences et al., 2003). For example, the striking New World radiation of
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Heliconius butterflies (Bates, 1862) is a classic example of Müllerian
mimicry, where subspecies may exhibit markedly divergent phenotypes
across a species range (Jiggins et al., 2001), while sympatric subspecies
of distantly related species can evolve similar color patterns in-
dependently in response to common predators (Turner, 1976; Mallet
and Gilbert, 1995). Importantly warning coloration plays a dual role in
many taxa, serving both as a signal to potential predators and in mate
choice (e.g. dart-poison frogs: Summers et al., 1999; Maan and
Cummings, 2008; Heliconius spp. Melo et al., 2009). Mate selection
based on warning coloration has been implicated in reinforcing re-
productive isolation (e.g. Brusa et al., 2013), and in driving the evo-
lution of new species (Wang and Summers, 2010) including via
homoploid speciation (Brower, 2013). Some aposematic species are
highly polymorphic, varying both within and among populations across
their distributions (e.g. Summers et al., 2003; Wollenberg et al., 2008;
Bonansea and Vaira, 2012; Rojas and Endler, 2013), raising the possi-
bility that multiple independent evolutionary lineages are found within
single diagnosed taxa. In sum, taxa with warning coloration provide
compelling albeit complicated systems for studying factors implicated
in speciation, divergence, and the evolution of cryptic species (Przeczek
et al., 2008).

Here we examine phylogeographic patterns in an anuran taxon from
the montane forests of the Andes of Northwestern Argentina, the
Yungas Redbelly Toad (Melanophryniscus rubriventris), combining DNA
sequence data from three nuclear and three mitochondrial genes. This
aposematic toad is mostly diurnal, and reproduces throughout a pro-
longed spring-summer breeding season (November to February).
Breeding activities involve large aggregations that vary markedly in
numbers among years, with short and explosive reproductive events
where toads use shallow temporary ponds in marshy areas to lay eggs
(Vaira, 2005; Goldberg et al., 2006). The species is patchily distributed
in Argentina, confined to areas within 1000–2000 m above sea level
within the montane forests (Yungas) of northern and central Salta, and
central-eastern and south-eastern portions of Jujuy (Bonansea and
Vaira, 2012).

The species is polymorphic throughout much of its geographic
range, with four different dorsal patterns and three ventral patterns
varying within and among populations (Figs. S1 and S2). Warning
coloration of northern and central populations (Salta and central-east
region of Jujuy) is characterized by bright dorsa, differing mainly in the
extent of black patches. The bright dorsal coloration shows differences
in intensity, with bright patches ranging from vivid red, and orange to
pale pink. Individuals of southern populations (south-eastern Jujuy and
southern Salta) predominately exhibit a more cryptic olive or black
dorsal pattern, with brighter dorsal coloration limited to two small
patches of muted yellow. Concomitantly, individuals from northern and
central populations have a mostly uniform orange-to-red belly, whereas
toads from southern populations have well-demarcated yellow, red and
black speckled bellies (Bonansea and Vaira, 2012). The species was
once treated as a complex of three subspecies by Laurent (1973) based
on these color patterns; however, studies by Vaira (2000, 2002) showed
that M. rubriventris was one morphologically, osteologically, and
acoustically variable species with striking variability in color pattern,
and that color characters used by Laurent (1973) were not diagnostic of
subspecies.

The objectives of our study were two-fold. First, we wished to assess
the phylogeographic relationships within M. rubriventris and to examine
divergence patterns in terms of the dynamic history of Northwestern
Argentina and phylogeographic patterns of other sympatric taxa.
Contemporary Northwestern Argentina exhibits great topographic, cli-
matic, and phytogeographic complexity (Handford, 1988; Strecker
et al., 2007), and it is clear that climate and vegetation patterns have
changed dramatically over the Pliocene and Pleistocene coincident with
Milankovitch cycling (e.g. Hinojosa and Villagran, 1997; Hinojosa,
2005; Morrone, 2014). The few geographically intensive molecular
surveys of taxa from this region show striking north-to-south

phylogeographic structure, interpreted to result from episodic isolation
in historical refugia, followed by post-refugial expansion: sigmodontine
rodents, Akodon sp. (Braun et al., 2008), Podocarpus parlatorei (Quiroga
and Premoli, 2007); Polylepis australis (Hensen et al., 2011), and two
frog species (Hypsiboas andinus – Koscinski et al., 2008; Pleurodema
borellii – Koscinski et al., unpubl. data). Our second goal was to compare
phylogeographic patterns in M. rubriventris to patterns of dorsal and
ventral warning coloration described by Bonansea and Vaira (2012) to
test whether there is correlation between evolutionary history and
warning color patterns that might imply a role for range fragmentation
and shifting in the evolution of color patterns evident today.

2. Materials and methods

2.1. Sampling

Our study includes tissue samples from 59 individuals of M. ru-
briventris from 11 sites throughout all the mountain systems in
Northwestern Argentina spanning the known Argentine distribution
along the northern range of the ecoregion of Southern Andean Yungas,
provinces of Salta and Jujuy. The sampled populations ranged in ele-
vation from 1300 to 1700 m above sea level (Fig. 1A, Table 1). Samples
from locales reported by De la Riva (1995) and De la Riva et al. (2000)
from the inter-Andean valleys of the departments of Tarija, Chuquisaca,
and Cochabamba in southern and central Bolivia are not included in
this study. Liver tissues were obtained during multiple fieldworks
conducted from May 1998 through January 2008 (during the rainy
season). We took samples of toads along short transects in marshy areas
using diurnal encounter surveys (Crump and Scott Jr., 1994). Sampling
began at 0900 h, and ceased at 1900 h, by which time most of the toads
had ceased their breeding activities. Toads were killed by submersion in
an anaesthetic (MS 222, Syndel Laboratories, Qualicum BC) as re-
ference specimens and deposited in the amphibian collection of the
Instituto de Bio y Geociencias del NOA (IBIGEO-A; Table S1). Between
100 and 200 mg of liver tissue was excised from each specimen, and
stored in 70% ethanol at −20 °C until DNA extraction. We also ob-
tained tissue samples from 5 individuals for a single outgroup taxon,
Melanophryniscus stelzneri from the Smithsonian Institution – National
Museum of Natural History (USNM 253718 – 253722). DNA was ex-
tracted using a QIAGEN DNeasy Tissue kit (QIAGEN, Mississauga, ON,
Canada) following the manufacturer’s protocol.

2.2. PCR and sequencing

Multi-marker phylogeographic studies can provide great insight into
evolutionary relationships of closely-related species (Dupuis et al.,
2012) but are lacking in most phylogeographic surveys of neotropical
taxa (Turchetto-Zolet et al., 2013). Thus we assayed DNA sequence
variation from portions of 6 different genes: three mitochondrial – 12S
rDNA (838 bp), 16S rDNA (495 bp), and cytochrome b (858 bp), and
three nuclear – rhodopsin (RHOD, 360 bp), recombination activating
gene-1 (RAG1, 495 bp), chemokine receptor 4 (CXCR-4, 599 bp). De-
tails of amplification are provided in the Supplementary Methods.

2.3. Phylogenetic and phylogeographic analysis

Sequences were aligned using CLUSTALX v2.0 (Larkin et al., 2007).
Protein-coding genes were visually inspected to confirm lack of indels
and translated into amino acids to verify absence of stop codons. We
first conducted individual-based Bayesian phylogenetic analysis using
MRBAYES v3.1.3 (Huelsenbeck and Ronquist, 2001; Ronquist and
Huelsenbeck, 2003) on each dataset separately, and on a concatenated
dataset comprising DNA sequences from all six genes. For this analysis,
individuals heterozygous for polymorphic sites for the nuclear genes
were encoded as ambiguous using IUPAC codes. For each gene, we
selected the model of nucleotide evolution using JMODELTEST v2.1.2

R.B. Clemente-Carvalho et al. Molecular Phylogenetics and Evolution 116 (2017) 248–256

249



(Darriba et al., 2012). For the analyses of the concatenated data, all
partitions were unlinked, allowing parameter values to vary in-
dependently. All Bayesian analyses included two simultaneous runs
each with random starting trees, four incrementally heated Markov
chains, and default priors for all parameters. Analyses were run until
the standard deviation of split frequencies was< 0.01, implying con-
vergence (see Table S1 from model details and number of generations
run for each partition). We sampled trees every 100 generations, and
discarded the first 20% as burn-in. From the remaining trees for both
runs combined, we constructed a 50% majority-rule consensus tree. The
potential scale reduction factor (Gelman and Rubin, 1992) was close to
one for all parameters for all runs, indicating that we had sufficient
effective sample size to have adequately sampled the posterior

distributions. Finally, we used the ‘cumulative’ and ‘compare’ functions
implemented in the software AWTY (Nylander et al., 2008) to confirm
that runs had reached stationarity.

2.4. Estimating TMRCA and Extended Bayesian Skyline Plots

We used BEAST v1.6.1 (Drummond and Rambaut, 2007) to estimate
TMRCA of major clades using the only protein-coding mitochondrial
gene, cytochrome b. As we do not have fossils or defining geological
events to provide independent calibration for a Melanophryniscus spe-
cific clock, we use Crawford’s (2003) ND2 calibration of approximately
1% change per lineage per million years. We used an HKY + I model,
assuming a relaxed uncorrelated lognormal molecular clock, and a

Fig. 1. (A) Map of Northwestern Argentina showing sampling localities for Melanophryniscus rubriventris. Amber patches on the map delimit protected areas, including national parks.
Locality names: a = Huaico Chico, b = Reserva Nacional El Nogalar de Los Toldos, c = Canto del Monte, d = El Cedral de Baritú, e = Baritú, f = Abra Colorada, Parque Nacional
Calilegua, g = Tiraxi, h = El Cucho, i = La Almona, j = Rio Los Paños, and k = La Cornisa. (B) Bayesian phylogeny generated from a concatenated dataset comprising DNA sequences
from 3 mitochondrial and 3 nuclear genes (details provided in the text). At relevant nodes, posterior probabilities are indicated. The outgroup isMelanophryniscus stelzneri. Individuals are
color-coded according to site of origin in panel A. (C) Maximum parsimony network of cytochrome b haplotypes. Haplotypes are indicated by colored circles, scaled to number of
individuals that each possesses; number of individuals is also indicated beside each haplotype. Pie charts indicate relative proportions within locales for all diagnosed haplotypes. Small
open circles indicate missing haplotypes or those not found within our survey. The longest link between bottom and top comprising 30 steps is not drawn to scale.
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random starting clock, and ran the analysis for 50 million steps sam-
pling every 1000, and used a burn-in of 5 million steps. We examined
the output in Tracer v1.5 (Rambaut and Drummond, 2007) to evaluate
effective sample sizes for all parameter estimates (all > 2000), and
examine traces to ensure convergence. We conducted two separate
analyses using different tree priors: 1. Constant population size. 2. Ex-
ponential growth (reflecting probable population growth since the last
glacial maximum – see below).

We evaluated the historical demography of M. rubriventris overall,
and for identified major clades separately using Extended Bayesian
Skyline Plots (EBSP) in BEAST v1.6.1. Results were visualized in Tracer
v1.5 (Rambaut and Drummond, 2007) and using Python scripts pro-
vided by Joseph Heled. The EBSP analysis employed all six loci (see
Heled and Drummond, 2008), and used relaxed uncorrelated lognormal
clock priors. Each analysis was run for 50 million generations with
every 5000 generations retained and the first 5 million generations
(10%) discarded as burn-in. We set the mtDNA cytochrome b mutation
rate to be consistent with a divergence rate of 1% per lineage per
million years, and estimated the rates for other data partitions relative
to this rate for each of the remaining loci under a lognormal prior. Site
models were those used in the TMRCA analysis (Table S1).

We used the program TCS v1.2.1 (Clement et al., 2000) to construct
maximum parsimony networks for our cytochrome b data as they formed
the single largest data partition. We systematically lowered the parsi-
mony limit until we found the value that allowed for connection be-
tween the two most divergent clusters of haplotypes (30 steps).

2.5. Analysis of color patterns

Between 2007 and 2009 we scored a suite of dorsal and ventral
color-pattern characters from 1076 individuals sampled from ten of the
11 previously sampled localities (excluding Rio Los Paños) to allow us
to quantify color pattern morph frequencies. Pattern morphs were de-
scribed from adult toads to obtain a reasonably comprehensive char-
acterization using standardized high-resolution digital color photo-
graphs of the dorsum and ventral parts of toads. Individuals of each
population were hand-captured on a single day and lightly anesthetized
with a diluted dose of Ethyl-p-Aminobenzoate (Benzocaine). Each toad
was placed on a blue board on flat ground and photographed in situ. We
used a tripod-mounted digital camera with macro lens, set 20 cm above
the board. The digital camera was set to 2 megapixel resolution, and we
manually controlled white balance, focus, and exposure. We main-
tained the consistency of ambient light conditions by taking pictures
only during cloudless days. Toads were released at the point of capture.
One of us (MIB) scored every individual based on our categorization
scheme for dorsal and ventral patterns, separately. Dorsal patterns of
toads were scored on a four-point scale with (1) comprising almost
completely black or drab morphs to (4) signifying an equal proportion
of black and bright colors. Ventral patterns were scored on a three-point

scale: (a) brightly uniform coloration; (b) bright belly with a few dark
patches; (c) completely speckled belly (see Figs. S1 and S2).

To allow comparison to relatedness of populations deduced using
DNA sequences, we summarized among-population differences in
dorsal and ventral color patterns using multidimensional scaling (MDS)
based on Morisita’s index distances. The significance of groupings was
tested with a nonparametric one-way analysis of ranked similarities
(ANOSIM) (Clarke, 1993), and the global R calculated based on a color-
pattern similarity matrix. Significance for global R was assessed by
creating a null distribution using 9999 random permutactions of po-
pulation membership. We used PAST v2.17 statistics software (Hammer
et al., 2001) to run MDS and ANOSIM analyses.

3. Results

In total we sequenced 3644 base pairs for 64 individuals, 59 ingroup
and 5 outgroup individuals. The Bayesian analysis of our concatenated
dataset revealed two well-supported clades (pp = 1.0), which we in-
terpret as diagnosing two species lineages: one confined to the extreme
northern portion of our sampling area near the border between Bolivia
and Argentina and centred on Baritú (hereafter the “Northern
Lineage”), and the other extending over most of the Argentine species
range from our Cedral de Baritú site to the border between the pro-
vinces of Jujuy and Salta (hereafter the “Southern Lineage”, Fig. 1B).
Within the broadly distributed Southern Lineage, there is further phy-
logenetic structure with one subpopulation including individuals from
Parque Nacional Calilegua (hereafter Calilegua), Cedral de Baritú, and
Baritú, while the other sublineage comprises individuals from Calilegua
and from all southernmost sites (Fig. 1B). The Cedral de Baritú site
shows admixture of haplotypes from the Southern and Northern
Lineages, while all individuals from the geographically proximate
Baritú site belong to the Southern Lineage. A maximum parsimony
network of cytochrome b haplotypes (Fig. 1C) reveals similar phylo-
geographic structure with a northern cluster, separated by more than
30 mutational steps from a southern cluster within which we found
evidence of two separate subclusters with high (≥95%) parsimony
support. Indeed most of the phylogenetic signal is contained within the
mitochondrial data, although no single gene tree contradicts our con-
clusions regarding the overarching phylogeographic patterns that we
describe above (Fig. S3). Two cytochrome b haplotypes were common
and presumably ancestral. In the northern cluster, the common haplo-
type was found in 15 individuals (68% of all individuals within that
cluster), while in the southern cluster the common haplotype was
present in 17 individuals (46% of all surveyed individuals).

Our coalescent analysis of cytochrome b to estimate TMRCA in-
dicates that the deepest divergence within M. rubriventris probably
dates to the early Pleistocene or late Pliocene. Assuming a lineage-
specific rate of divergence of 1% per million years yields estimates of
2,069,400 years before present (95% HPD: 704,470–3,615.100) and

Table 1
Sampling details for Melanophryniscus rubriventris including locality name and province, approximate geographical coordinates, and number of individuals sequenced and photographed
for the present study. Localities are arranged from northernmost to southernmost distribution in Argentina.

Locality name Latitude Longitude Individuals sequenced Individuals with photo

Arroyo Huaico Chico, Los Toldos, Departamento Santa Victoria, Provincia de Salta 22 °16′23.82″S 64 °42′46.72″W 5 44
Reserva Nacional El Nogalar de Los Toldos, Departamento Santa Victoria, Provincia de Salta 22 °16′41.06″S 64 °42′42.62″W 5 16
Canto del Monte, Departamento Santa Victoria, Provincia de Salta 22 °22′13.74″S 64 °43′16.69″W 10 248
El Cedral de Baritú, Parque Nacional Baritú, Departamento Santa Victoria, Provincia de

Salta
22 °27′35.76″S 64 °44′33.54″W 4–5 184

Baritú, Departamento Santa Victoria, Provincia de Salta 22 °29′55.59″S 64 °45′56.65″W 5 18
Abra Colorada, Parque Nacional Calilegua, Departamento Valle Grande, Provincia de Jujuy 23 °40′52.36″S 64 °53′53.00″W 5 202
Tiraxi, Departamento Dr. Manuel Belgrano, Provincia de Jujuy 24 °01′23.92″S 65 °23′24.78″W 4–5 296
El Cucho, Departamento Palpalá, Provincia de Jujuy 24 °14′38.41″S 65 °07′03.35″W 5 14
La Almona, Departamento Dr. Manuel Belgrano, Provincia de Jujuy 24 °16′29.64″S 65 °24′29.21″W 4 34
Rio Los Paños, Departamento Dr. Manuel Belgrano, Provincia de Jujuy 24 °18′12.34″S 65 °24′58.10″W 5 –
Abra de la Sierra (Camino de La Cornisa), Departamento La Caldera, Provincia de Salta 24 °29′55.59″S 65 °18′29.47″W 5 20
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2,231,700 years before present (95% HPD: 809,970–3,816,900) for the
constant and population growth tree priors, respectively. TMRCA esti-
mates for all other diagnosed subpopulations within this species fall
into the second half of the Pleistocene (Table S2).

Our extended Bayesian skyline analysis (Fig. 2) implies that the

Northern Lineage has been more or less demographically stable over the
last 2–3 million years, while the signature of population expansion is
evident in the Southern Lineage (one demographic change is the most
frequently identified outcome within the credible set – 95% HPD; see
Fig. 2).

Melanophryniscus rubriventris shows substantial variation in warning
coloration across the sampled range (Fig. 3). Our MDS analyses of
dorsal and ventral color patterns revealed three different groups of
populations (Fig. 4). ANOSIM for the MDS-based analysis yielded a
highly significant global R = 1 (p < 0.001). Populations from Huaico

Fig. 2. Extended Bayesian Skyline Plots (EBSP) showing historical demographic patterns
for M. rubriventris overall, and for the Northern Lineage and Southern Lineage separately.
Extended Bayesian skyline plots provide a means for graphically visualizing trends in
effective population sizes through time estimated using multi-locus DNA sequence data.
The dashed line shows the estimated median value for population size (millions of in-
dividuals), with the light blue shading within solid lines indicating the 95% highest
posterior density (HPD) or credible interval, analogous to a 95% confidence interval in
traditional frequentist statistics. The inset shows a bar chart of frequencies for each
number of inferred demographic changes, with blue bars indicating those changes that
are within the credible set, and red bars those that are outside. If zero is not included
within the credible set (i.e. colored red), then this implies that there has been at least one
detected shift in population size. Overall demographic population size changes occur only
at change points inferred for any single gene. These are generated through an approxi-
mately coalescent process, and thus not evenly distributed through time. Our sampling of
only 3644 base pairs for six genes also constrains our ability to quantify deeper historical
population changes, and thus the apparent constancy over longer durations simply may
be a consequence of recent demographic changes having overwritten the signatures of
deeper events.

Fig. 3. Variation in dorsal and ventral pattern coloration of M. rubriventris across its
Northwestern Argentine geographical distribution. Numbers and letters in each pie chart
reflect the classification scheme used (four dorsal patterns and three ventral patterns
respectively, see text and Figs. S1 and S2 for details). Populations are color-coded ac-
cording to Fig. 1A.
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Chico and Nogalar de Los Toldos (MDS I in Fig. 4) exhibit pale pink to
orange dorsal colors with varying extents of black and bright dorsal
color patches (dorsal patterns 2–4; see Fig. S1), and vivid red to orange
bright ventral coloration with a few dark patches but almost no
speckled patterns (mostly ventral patterns a and b; see Fig. S2). Toads
from Canto del Monte, Cedral de Baritú, Baritú, and Calilegua (MDS II
in Fig. 4) had larger extents of bright dorsal colors or equal extents of
black and bright dorsal colors (primarily dorsal patterns 3 and 4), and
mostly vivid red to orange bright ventral colors with fewer individuals
with dark patches, but almost no individuals with speckled patterns
(ventral patterns a and b). Populations from Tiraxi, El Cucho, La Al-
mona and La Cornisa (MDS III in Fig. 4) show no bright coloration
(dorsal pattern 1) or a small extent of dull yellow coloration (dorsal
pattern 2), and red or yellow/red coloration with predominantly
speckled venters (ventral pattern c).

4. Discussion

Our analysis revealed marked phylogeographic structure with two
well-supported lineages in Northwestern Argentina, the Northern
Lineage confined to the extreme north centered on Parque Nacional
Baritú, and the Southern Lineage extending from Baritú to the southern
extent of the species distribution on the border between the Argentine
provinces of Salta and Jujuy. One site, Cedral de Baritú, was a zone of
admixture between the Northern and Southern Lineages, although even
within the Northern Lineage individuals from this locale exhibited
substantial diversity (Fig. 1). The estimated time of divergence implies
early Pleistocene or late Pliocene origins to this split, and we find some
evidence of population expansion within the last 100,000 years, con-
sistent with historical range fragmentation and subsequent expansion,
and similar to patterns that have been documented for other broadly-
sympatric taxa. While there exists substantial variation in color and
pattern among populations (Bonansea and Vaira, 2012), we found no
compelling evidence to suggest that aposematic coloration is related to
phylogeographic history of this species. We discuss these results in turn
in the ensuing text.

4.1. Phylogeographic patterns and Pleistocene history of Northwestern
Argentina

While the evolutionary history of the biota of many temperate and
polar regions has been directly influenced by glaciation and post-glacial
range expansion (e.g. Patagonia – Zemlak et al., 2008; northern North
America – Weir and Schluter, 2004; Europe and Asia – Hewitt, 1996),
global climate change and shifting vegetation have also been posited to
have influenced phylogeographic patterns of taxa in tropical and sub-
tropical regions around the world (e.g. Bell et al., 2012; Fjeldså et al.,
2012; Fouquet et al., 2012; Shirley et al., 2014).

Paleoclimatic data are relatively scarce for Northwestern Argentina,
but those that do exist suggest a dynamic local climate with highly
variable precipitation patterns both spatially and temporally during the
Holocene (e.g. Trauth et al., 2003; Tchilinguirian and Morales, 2013),
but extending throughout the Quaternary (e.g. May et al., 2011). Such
climatic shifts have influenced the distribution and extent of montane
habitats across the Andes (e.g. Cárdenas et al., 2011; González-Carranza
et al., 2012), including the humid forests of the eastern flanks of the
Central Andes from Bolivia south to Argentina (Williams et al., 2011).

The distributions of the Northern and Southern Lineages (Fig. 1) and
the evidence that we found for recent population expansion (Fig. 2) in
M. rubriventris are consistent with patterns reported for other North-
western Argentine taxa across different habitats and altitudes. The au-
thors of these studies have invoked a dynamic regional history of vi-
cariance and range expansion driven by changing climate in the late
Pliocene and Quaternary to explain contemporary phylogeographic and
genetic patterns. For example, Koscinski et al. (2008) found well-sup-
ported mitochondrial DNA lineages distributed along a north-south axis
in the treefrog, Hypsiboas riojanus, asserted to be evidence of Pleisto-
cene range fragmentation and subsequent range expansion. D'Elía et al.
(2008) reported that the grassland sigmodontine rodent, Necromys
lactens, also has well-supported northern and southern mtDNA cyto-
chrome b clades, which they interpreted as the signature of the range
fragmentations driven by shifting distributions of high-altitude grass-
lands in the central Andes. In a mitochondrial DNA phylogenetic survey
of a different sigmodontine taxon (Akodon varius group) from Paraguay,
Bolivia and Argentina, Braun et al. (2008) diagnosed four Yungas forest
lineages/species distributed in a latitudinal series from Bolivia to Cat-
amarca Province, Argentina. The timing of divergence was suggested to
span the Pliocene and Pleistocene, consistent with a vicariant regional
history. Podocarpus parlatorei (Podocarpaceae) is a tree of the Yungas
forests distributed from 1000 to 2000 m elevation. Using allozyme data,
Quiroga and Premoli (2007) described genetically distinct northern,
central, and southern populations for this species, with a diminution in
genetic diversity from south to north and from low to high elevations,
interpreted as evidence of northern expansion during episodes of
cooling, and range contraction towards the highlands during periods of
warming. Finally, Hensen et al. (2011) investigated the genetic struc-
ture of Polylepis australis, a tree endemic to mountainous regions of
central and western Argentina, using AFLPs. For the Northwestern Ar-
gentine populations they concluded that patterns of genetic diversity
reflected waxing and waning habitat connectivity and historical cli-
mate-driven range shifts.

Within the Southern Lineage there appears to be additional phylo-
geographic structure with a north-south split (Fig. 1B and C) that may
correspond to contact zones that have been diagnosed for other anuran
taxa in the region (e.g. Hypsiboas riojanus – Koscinski et al., 2008).
Ultimately the contemporary phylogeographic patterns evident in M.
rubriventris potentially reflect the interaction of complex orogenic and
paleoclimatic factors in this region, with diversification potentially in-
itiated during the Tertiary but evolutionary trajectories shaped by
changing climate and vegetation throughout the Pleistocene (see
Turchetto-Zolet et al., 2013).

Fig. 4. Two-dimensional non-metric scaling (nMDS) plot based on a matrix of pairwise
Morisita’s index distances of color patterns for north-western populations of M. ru-
briventris. MDS is an ordination method that visualizes the relationship among objects
(here locales or populations) seeking to preserve the between object-distances. Here
populations were grouped into three clusters, MDS-I through –III according to the extent
of dorsal (Dimension 1) and ventral black patches (Dimension 2) of individuals. Color
circles represent population origin and are coded as in Fig. 1A. Frequencies of color
patterns vary regionally (Fig. 3), but specific ventral and dorsal patterns tend to pre-
dominate regionally. Exemplars of these are shown for each nMDS cluster of populations.
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4.2. Warning coloration and divergence among lineages

We see striking among-population variation in both dorsal and
ventral color patterns (Fig. 3) and three clusters that emerge from our
MDS analysis (Fig. 4). While these MDS clusters do make sense geo-
graphically, they do not mirror the deepest phylogeographic divisions
that we found in our Bayesian analyses. Indeed our northernmost two
populations (Huaico Chico and Nogalar de Los Toldos) are as pheno-
typically divergent from their geographically proximate counterparts
(Canto del Monte, Baritú) within the northern clade, and from the ad-
mixed population (Cedral de Baritú), as they are from the southernmost
populations (Tiraxi, El Cucho, La Almona and La Cornisa – see Fig. 4),
differing clearly from the northern populations in the extent of dorsal
black coloration and the speckled venter. That warning color patterns
in M. rubriventris do not exhibit a strong relation to phylogeographic
history is consistent with at least one other study that shows aposematic
coloration to be evolutionarily malleable in anurans. Wang and Shaffer
(2008) used ancestral character-state reconstruction on a mtDNA tree to
document very frequent changes in color and pattern in the Central
American populations of Oophaga pumilio, with multiple independent
shifts to neutral dorsal coloration (see also Galindo-Uribe et al., 2014).

Strong divergent natural selection mediated by predation is thought
to be one of the primary drivers of diversification among populations in
aposematic species. Such effects have been noted in other aposematic
frogs (e.g. Dendrobates tinctorius – Noonan and Comeault, 2009; Oo-
phaga pumilio – Hegna et al., 2012). Predator-mediated selection on
warning coloration in M. rubriventris may be more intense in northern
compared to southern populations, favoring greater signal con-
spicuousness and less variable pattern (Joron and Mallet, 1998). If
population differences in coloration arise because of divergence in local
predators’ ability to interpret aposematic signals, this implies that there
may be differences among suites of predators in their capacity to learn
avoidance of different morphs among our surveyed locales; in other
words, different suites of local predators would exert differential se-
lection on local morphs (Endler and Mappes, 2004; Mochida, 2011;
Willink et al., 2014).

In brightly-colored, diurnal toads like M. rubriventris, mate choice
may involve both acoustic and visual cues, providing another me-
chanism for divergence among populations. For example, Crothers and
Cummings (2013) suggest that sexual and natural selection work sy-
nergistically to cause brighter morphs when toxicity is high in Bocas del
Toro, Panama populations of Oophaga pumilio. Brusa et al. (2013) found
two deeply-diverged, putatively reproductively-isolated lineages of the
Costa Rican dart-poison frog, O. granulifera, and suggested that warning
coloration plays a role in mating-system evolution and ultimately re-
productive isolation at a secondary contact zone. However, there is
little evidence to suggest that color variation in M. rubriventris is im-
plicated in mate selection, or evidence for such synergistic effects.
Studies of several populations show that color pattern and intensity do
not correlate with toxicity (alkaloid composition), immune response
(ectoparasite levels), or mate choice (Bonansea and Vaira, 2012; Bo-
nansea, unpubl. data). Moreover, skin reflectance measurements of
males and females of the same populations do not reveal the sexual
dichromatism that would be expected under a scenario of sexual se-
lection (Bonansea and Vaira, unpubl. data).

An alternative explanation for the geographical patterns in skin-
color variation is selection for thermoregulatory efficiency. Dorsal color
is expected to affect the amount of visible light absorbed. Dark-colored
toads absorb all wavelengths of visible light, while lighter-colored toads
reflect some wavelengths, reducing heat absorption during daylight
hours when toads are most active. Sanabria et al. (2014) showed ex-
perimentally that dark M. rubriventris have consistently warmer body
temperatures than light ones after exposure to an infrared lamp.
However, it seems unlikely that the remarkable among-population
differences in coloration could be attributable to thermoregulation
alone – given that, throughout its range the species occupies a diverse

range of habitats, including primary or secondary forests, open areas,
and even human-modified landscapes (e.g. drainage ditches along dirt
roads).

4.3. Conclusions and recommendations for future work

The montane forests of the eastern flanks of the Andes contain a
diverse array of species that is under increased threat from climate
change (Pacheco et al., 2010). Our study implies that this biota may be
even more diverse than previously thought with long-recognized spe-
cies containing cryptic lineages as we found for M. rubriventris, mir-
roring what has been found in other taxa. The marked phylogeographic
patterns that we describe, with deepest divisions dating to the early
Quaternary or late Pliocene, are probably the result of historical range
fragmentation and subsequent expansion driven by Milankovitch cycles
(Bennett, 1990) and shifting distributions of these southern montane
forests. We found no apparent similarity between warning coloration
and phylogeographic patterns. Patterns in warning coloration may thus
reflect the signature of selection from local predation, perhaps coupled
with the effects of sexual selection and thermoregulation – matters that
should be considered for future research.

Future work would also benefit from increased sampling in the
middle part of the Argentine distribution, and from the Bolivian portion
of the species’ range. Particular attention should be given to the Cedral
de Baritú population, where there is admixture of haplotypes of the two
lineages and perhaps some interesting consequences of contact between
the two. Yungas Redbelly Toads breed in small ephemeral ponds in
humid montane forest, and can reach high breeding densities in these
wetlands. This implies that dispersal may be low despite suitable ha-
bitat being almost continuously distributed within their range.
Mountain ridges and major rivers can be effective physical barriers for
amphibians (Lougheed et al., 1999; Li et al., 2009; Turchetto-Zolet
et al., 2013). While little is known of either juvenile or adult movement
patterns in M. rubriventris, its distribution within the montane forest
encompasses many major rivers and disjunct mountain ridges that
might contribute to the observed phylogeographic structure that we
document. Clearly further work on dispersal is needed.

We feel it premature to recommend taxonomic revisions for M. ru-
briventris despite the pronounced molecular and phenotypic divergence
among sampled Argentine populations, and recommend more detailed
quantification of ecological, genetic and morphological variation. Our
study does provide some guidelines for conservation prioritization to
mitigate loss of genetic diversity in M. rubriventris.
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