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Nitrogen (N) balance method is a valuable tool for estimating N losses. However, this
technique could lead to incorrect estimates of the amount of nitrate (NO3

−N) leaching
if processes relevant to N losses are not considered properly. The aim of this study
was to compare NO3

−-N leaching losses estimated using an N balance (nonrecov-
ered N, Nne) with data of NO3

−-N leaching losses (Nl). The experiment was made
on a Typic Argiudoll soil planted with corn (five growing seasons) under 0, 100, and
200 kg N ha−1. The ceramic soil-water suction samplers were installed (1 m deep).
Drainage was estimated by the LEACH-W model. The greatest overestimation with the
N balance method occurred for years with annual rainfall below the historical average
and at times of high NO3

−-N availability. Future research should focus on investigating
mechanisms of N losses relevant under limited water availability.

Keywords Nitrogen, nutrient cycling, water quality

Introduction

The high crop yields achieved in modern agriculture are closely related to high application
rates of fertilizers (Stewart, Lawrence, and Van Kauwenbergh 2005). Nitrogen (N) fertil-
izers are used the most, given the high demand of N by crops and its frequent deficiency.
Stewart, Lawrence, and Van Kauwenbergh (2005) examined the effects of nutrient inputs,
especially of commercial fertilizers, on crop yields. The authors report that the average per-
centage of yield attributable to fertilizer generally ranged from about 40 to 60 percent in the
USA and England and tended to be much greater in the tropics. Recently calculated budgets
for N, phosphorus (P), and potassium (K) indicate that commercial fertilizers make up the
majority of nutrient inputs necessary to sustain current crop yields in the USA. Worldwide,
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1230 V. Aparicio et al.

N fertilizer use reached almost 87 million tons of N by 2011 (IFA, 2013). In Argentina,
about 846,000 Mg of N was applied in the farming year 2011–2012 (Fertilizar Asociación
Civil 2012), which is almost two to three times more than the amount used in the middle
of the 1990s.

Raun and Johnson (1999) reported a global 33 percent recovery efficiency of N in
cereal grains. This poor recovery is probably due to a sum of inefficiencies in the produc-
tion process. In Argentina, the recovery efficiency in wheat and corn has been reported
to range from 50 to 60 percent of the N applied (Sainz Rozas et al. 1999; Melaj et al.
2003; Videla et al. 2004; Barbieri, Sainz Rozas, and Echeverría 2008). In well-structured
soils without drainage problems, nitrate (NO3

−) leaching is one of the main mechanisms
by which N is lost from the root zone and could potentially contaminate groundwater
(Martínez 1995; Costa and Vidal 1998; Costa et al. 2002; Andriulo et al. 2002; Rimski-
Korsakov, Rubio, and Lavado 2004; Portela et al. 2006). Groundwater contamination by
NO3

− is a widespread problem in the corn belt of the USA, particularly since the increase
in the use of N fertilizers between 1950 and 1980 (Burkart and James 1999).

Information on the effects of tillage systems on N losses by leaching is controver-
sial. In general, conventional tillage (CT) has greater mineralization of soil organic matter
(Studdert, Echeverría, and Casanovas 1997) and nitrification than no tillage (NT), resulting
in greater losses of N under CT if the period of maximum production of NO3

− coincides
with an excess of water. For instance, Jayasundara et al. (2007), working in imperfectly
drained soils, reported that CT increased N loss compared to NT during the fallow period
after a corn crop due to a greater residual NO3

− content in the soil at the time of harvesting.
In contrast, NO3

− leaching from a fertilizer source could be greater in soils under NT if
greater levels of N are applied because soils generally have greater moisture content and
a greater proportion of biopores. Nissen and Wander (2003), working in Mollisols with a
long history of NT and CT and under different moisture regimes, reported that total NO3

−
losses from leaching were similar under both tillage systems, but that under NT more N
was lost from the fertilizer and less from the soil because of a greater flow through macro-
pores. In Argentina, Abril et al. (2007) reported that that the application of high N fertilizer
doses under NT in wheat crops has the following disadvantages: (a) low fertilizer-N-use
efficiency and (b) N losses due to leaching that may contaminate groundwater with nitrates.

The main N loss from humid and subhumid regions and from irrigated agriculture
is through leaching and denitrification (Fageria and Baligar 2005). The Pampa region
in Argentina (30–40◦ S and 57–66◦ W) is known as one of the most important grain-
producing areas in the world (Satorre and Slafer 1999). The area has a humid to subhumid
climate (rainfall ranging from 800 to1000 mm) with water excess that generally occur at
the beginning of the growing season and during the fallow period. Wheat, corn, and soy-
bean are the main crops in the region, grown mainly on well-structured Molisolls (Typic
Argiudolls, Paleudoles, Typic Hapludoll) without internal drainage problems. Corn is the
crop with the greatest potential for leaching losses of N because of its high demand for N,
which leads to high N application rates, and because the growing season of corn coincides
with the period of high precipitation in the region. Sainz Rozas, Echeverría, and Barbieri
(2004), working on soils from the Pampas, estimated that 20 percent of the N applied as
fertilizer to corn under NT was not recovered using N balance, and it was assumed to have
been lost as NO3

− leaching.
Although the N balance method is a valuable tool to estimate N losses (Meisenger,

Calderon, and Jenkison 2008), the sum of errors incurred when each one of the pools
is determined could lead to incorrect estimations of the amount of leached NO3

−.
Furthermore, great care must be taken when interpreting the results and calculating the
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losses via leaching if all the components of the N balance are not measured. For example,
N loss through ammonia volatilization from plants is usually not taken into account when
the N balances are formulated, and the losses via this mechanism can become large under
water stress (Francis, Schepers, and Vigil 1993).

There are many reports in the literature of component N balances measured for var-
ious crops (Giletto and Echeverría 2013; Soltani and Sinclair 2012; Aparicio, Costa, and
Zamora 2008; Ju et al. 2006; Sainz Rozas, Echeverría, and Barbieri 2004; Costa et al.
2002; Schuman et al. 1999]. However, studies comparing the leaching of nitrate measured
in the field with estimated nitrate leaching from an N balance under contrasting soil water
availability conditions have not been reported in the literature. The aim of this study was to
estimate the amount of N leached (Nl) using an N balance technique and compare estimated
NI with measured NI in the field for five growing seasons.

Materials and Methods

Experimental Site

The field experiment was conducted in an area of 420 m2, in Balcarce County of the Buenos
Aires province in Argentina (37◦ 49′ 52.44′′ S; 58◦ 18′ 40.18′′ W). The soil was classified
a Typic Argiudoll (fine, illitic, thermic) of the Mar del Plata series (Mapa de Suelos de
República Argentina INTA, 1976). The soil at the site was sampled from four pits located
next to the field experiment. Soil characterization is shown in Table 1 and described in
detail by Aparicio, Costa, and Zamora (2008). The soil at the site is typical of the Pampa
region and of many other humid and subhumid agricultural regions of the world. It is well
structured and well drained and contains approximately 3 percent organic carbon at the
surface.

Variation in Precipitation During the Study Period

Monthly rainfall figures for the period studied are shown in Table 2. The extent of the study
period allowed a temporal variability in rainfall, rendering the study more valuable by
enabling data collection under a variety of field conditions. Yearly precipitations for 2004,
2005, and 2006 were lower than the long-term average (1968–97) by 5, 8, and 12 percent,
respectively; whereas yearly precipitations in 2002 and 2003 were greater than the long-
term average by 62 and 36 percent, respectively.

Treatments, Experiment, Design, and Crop Management

The field experiment started in 1998 and involved first conventional tillage. In the
2000–2001 growing season, the tillage system was changed to no-till. The experiment
reported here started after 1 year of no till and spanned five growing seasons (2001–2002,
2001–2003, 2003–2004, 2004–2005, and 2005–2006). Fertilization treatments consisted
of three N rates (0, 100, and 200 kg N ha−1) using UAN (32 percent N) as the N source.
The application of the fertilizer was carried out by backpack spraying at the time of sow-
ing. Plots were 3.5 m wide by 10 m long and treatments were arranged in completely
randomized blocks with four repetitions.

Corn (Zea mays L.) was sown on 15 October in each growing season; soybean was
the crop immediately prior to the start of the experiment (2000–2001 growing season).
Calcium triple superphosphate was annually applied to avoid phosphorus deficiency. Weed
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Nitrogen (N) Balance 1233

Table 2
Monthly rainfall (mm) during the study period

Rainfall (mm)

Year J F M A M J J A S O N D Total

2001 119 119 106 48 69 66 26 118 103 156 198 123 1251
2002 152 71 147 40 197 18 45 100 90 276 169 39 1342
2003 124 90 167 61 69 61 64 49 54 108 142 136 1124
2004 28 97 47 154 9 27 86 125 32 51 70 62 788
2005 67 48 88 4 17 70 51 109 59 60 85 103 760
2006 119 125 21 52 1 79 59 11 45 76 27 113 728
68–97 103 80 77 58 63 46 48 34 46 94 66 113 827

control was carried out by applying atrazine and acetochlor at the time of sowing in each
growing season, and glyphosate was used as chemical fallow.

Extracting Soil Solution and Measuring NO3
−N Concentration

A single ceramic soil-water suction sampler was installed 1 m below the surface in each
plot. Suction samplers were made of 20-cm-long sections of polyvinyl chloride (PVC) pipe
with a diameter of 5 cm. A ceramic cup was cemented to one end, and the opposite end
was sealed with a two-hole stopper. Two tubes were placed in the suction sampler through
the stopper. One of them was needed to apply vacuum and the other to collect the water
sample. To install the suction probe, a vertical hole was drilled with a soil auger that has a
diameter similar to that of the probe. To optimize the contact surface between the suction
cup and the soil, slurry made with the soil extracted with the auger was put back into the
hole before inserting the suction probe. Once the suction sampler was in position, half of
the hole was further filled with the slurry. After that, a layer of approximately 3 cm of
bentonite was inserted in the hole to avoid the occurrence of preferential flow. The rest of
the hole was then filled with the slurry. The tubes from the soil-water suction samplers were
maintained at a depth of 30 cm below the soil surface to enable tillage operations. At the
end of the plots, the tubes were connected to a manifold where a vacuum pump supplied
a suction averaging 45 kPa for 15–20 h. Water samples were collected after a significant
rainfall event occurred (usually greater than 30 mm).

Estimating Drained Water Volume

The drained water volume (h) was estimated with the LEACH-W version of the LEACHM
(Wagenet and Hutson 1989). The LEACH-W model uses the water model retention model
of Campbell (1974) and the Richard’s equation to calculate soil water fluxes.

The LEACH-W model was calibrated with soil from the Mar del Plata series by
entering soil parameters measured in the experiment (saturated hydraulic conductivity,
bulk density, organic matter, water retention curve, texture, and depth of each horizon),
irrigation data, and crop variables (phenological stages). Climatic data (potential evap-
otranspiration and rainfall) was provided by the Balcarce weather station, located 8 km
from the test site.
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1234 V. Aparicio et al.

A neutron probe access aluminum tube was installed in each plot, to take volumetric
soil moisture (θv) measurements every 100 mm with a Troxler 4301 up to a depth of 1.2 m.
Soil water storage (SWS) was calculated as

SWS =
10∑

i=1

θvi �Di (1)

where �D is the thickness of soil layer i (mm).
We compared with the corresponding SWS simulated by LEACH-W model with the

purpose of verifying calibration of the model (Aparicio, Costa, and Zamora 2008). Water
drainage amounts for the dates corresponding to soil solution samplings were estimated
after model calibration.

Quantification of NO3
−-N Losses by Leaching

The amount of NO3
−-N leached below the root zone (NI), expressed in units of kg ha−1

was estimated as (Moreno et al. 1996)

NI = DJ C (2)

where Dj (mm) is the drainage estimated with LEACH-W, and C (mg L−1) is the NO3
−-N

concentration of the soil solution extracted from the porous suction capsule. Estimates of
Dj and C were obtained for each of the sampling dates, and the total amount of NO3

−-N
lost in the growing season was calculated by adding the values obtained in each sampling.
Further details are available in Aparicio, Costa, and Zamora (2008).

Mineral Soil N

To evaluate the initial and final quantities of NO3
−-N in the soil in each growing season,

soil samples were taken at presowing and physiological maturity stage at the following
depths: 0–10, 10–20, 20–30, 30–40, 40–60, 60–80, and 80–100 cm. Each sample was a
composite of 10 subsamples collected away from the area where the ceramic cup was
installed. Determination of NO3

−-N in soil was carried out using colorimetric procedures
(Spectrophotometer Beckman DU 65) (Keeney and Nelson 1982). The NO3

−-N content in
each soil layer expressed per unit area was calculated using the equation:

Nm = (NO−
3 − N)δah10−1 (3)

where Nm is the mineral N content (kg ha−1), NO3
−-N is the concentration of NO3

−-N
(mg kg−1), δa is the soil apparent density (Mg m−3), and h is the thickness of the layer
(cm).

Accumulated N in Crop Biomass

Each growing season, N accumulated in plants was estimated by collecting six plants
from each plot. Plants were selected at random during crop physiological maturity and
dried in a forced ventilation oven at 60 ◦C to constant weight. Total N was determined
using the micro-Kjeldahl method (Bremner and Mulvaney 1982) and N absorbed by the
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Nitrogen (N) Balance 1235

crop was obtained as product between N concentration and aerial biomass dry weight.
At physiological maturity, grain yield was determined at 14 percent moisture content.

Nitrogen Balance in the System

A general N balance in the soil for a crop cycle was defined as (Meisenger 1984):

Nf + Na + Nom + Nii = Np + Nr + Ng + Npg + Nl + Ne + Niin + Nif (4)

where Nf is N provided by the fertilizer (kg N ha−1); Na is N provided by biological
fixation and/or rain (kg N ha−1); Nom is the amount of net organic N mineralized during
the growing season (kg N ha−1); Nii is initial inorganic N (kg N ha−1); Np is N absorbed
by biomass area (kg N ha−1); Nr is N absorbed by the roots (kg N ha−1); Ng is N lost as
gases (N2, N2O, or NH3) (kg N ha−1); Npg is N lost as NH3-N from plant; Nl is N lost
through leaching (kg N ha−1); Ne is N lost through erosion (kg N ha−1); Niin is the amount
of inorganic N immobilized during the growing season (kg N ha−1); and Nif is inorganic
final N (kg N ha−1).

Estimation of the Components of the Balance

Considering that determinations carried out in Balcarce have shown annual inputs of 3 to
4 kg N ha−1 from electrical discharges in the atmosphere (Cecilia Videla, personal com-
munication) and that there is no biological fixation in corn, the component Na in Eq. (4)
was not included in computing the N balance.

Estimation of net organic N mineralization was conducted as follows: The difference
between gross organic N mineralization and of gross inorganic N immobilization can be
defined as net N mineralization (Nmin). The value of Nmin can be approximated using
models which take into account the potentially mineralizable N pool, the rate of poten-
tial mineralization, and the effect of the soil moisture and soil temperature on this rate
(Echeverría and Bergonzi 1995). In this study, Nmin was estimated using the components
of the N balance obtained in the nonfertilized treatment as

N min = (Np + Nr + Ng + Nl + Nif ) − Nii (5)

Each variable in Eq. (5) was either measured or obtained from local research under simi-
lar conditions. Values of Niin reported by Sainz Rozas, Echeverría, and Barbieri (2004) for
similar N rates, the same crop sequence, and soil management were used. Values of Nii and
Nif were measured [see Eq. (3) in mineral soil N]. Np was determined by aerial biomass
sampling (see accumulated N in crop biomass) and NI from model output (see quantifica-
tion of NO3

−-N losses by leaching). Values of Nr were estimated as a proportion of total N
uptake in the aerial biomass as 6.6 percent N and 5.3 percent N for the control and fertilized
treatments, respectively (Sainz Rozas, Echeverría, and Barbieri 2004; Uhart and Andrade
1996). Losses through volatilization (Ng) were taken from García et al. (1999), and losses
through denitrification from Sainz Rozas, Echeverría, and Barbieri (2004). Finally, losses
caused by erosion (Ne) and as NH3-N (Npg) were considered negligible.

Taking all these factors into account, the simplified equation of the N balance to
estimate Nl with N nonrecovered (Nne) was reduced to the following expression:

Nne = (Nf + N min +Nii) − (Np + Nr + Ng + Niin + Nif ) (6)
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1236 V. Aparicio et al.

The response to the application of N (Nresp) was calculated as the difference between grain
yields obtained from fertilized and unfertilized (control) treatments. The calculation was
performed for each fertilization treatment and growing season.

Statistical Analysis

The Shapiro and Wilk (1965) test was used to providing evidence of normality. Under no
evidence of normality, log transformations of the data were made.

Analyses of variance (ANOVA) were performed with SAS version 6.12 software (SAS
Institute 1989–1996). The estimated parameters were compared among N rates and crop-
ping seasons as repeated measurement using a mixed linear model (PROC MIXED). The
random effect was block and the fixed effects were N rates and cropping seasons. Mean
comparisons were evaluated with a significance level of 0.05 using LSMEANS. Simple
and multiple linear regressions were utilized for analysis of information.

Results and Discussion

ANOVA of Crop Yield

Grain yield was different by N rate and growing season, but there was no interaction
between these two variables. Crop yield increased with N rate (Figure 1a) and the great-
est yields were obtained in those growing seasons where the average annual rainfall was
above the historical average (Figure 1b; Table 1). Response of corn to N (Nresp) was
related to the amount of precipitation around the flowering stage, that is, from December
to February (PAF) (Calviño, Andrade, and Sadras 2003) and an association between both
variables was observed (Nresp = 0.62 + 0.01∗ PAF; r2 = 0.50). Nevertheless, once the ini-
tial availability of N-NO3

− (Nii) was included as an independent variable, the r2 increased
(Nresp = 0.99 + 0.011∗ PAF—0.0103∗ Nii; r2 = 0.71). This indicates that Nresp is partly
conditioned by the initial availability of N, as previously reported (Sainz Rozas et al. 2008;
Alvarez and Steinback, 2012).

ANOVA of N Balance Components (Nmin, Nii, Nif, Np, and Nl)

There was no interaction effect between N and growing season on nitrate Nii (P = 0.3291).
Although Nii was significantly affected by growing season (P < 0.0001), it was
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Figure 1. Yield crop in function of (a) N treatment (N0, N100, and N200 in kg ha−1) and (b)
cropping seasons. The bars indicate standar error.
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Nitrogen (N) Balance 1237

Table 3
N balance in the soil system corn by N treatment for the growing seasons 2001–2002,

2002–2003, 2003–2004, 2004–2005, and 2005–2006

Growing Available N (kg ha−1) Determined components of N balance (kg ha−1)

season Nf Nmin Nii Np Nra Nga Niin Nl Nif Nne

2001–2002 0 122 61 115 8 5 30 25 30
2001–2002 100 122 51 199 11 13 12 62 26 12
2001–2002 200 122 48 253 13 14 9 68 53 27
2002–2003 0 128 111 134 9 5 52 39 52
2002–2003 100 128 73 155 8 13 12 59 39 74
2002–2003 200 128 89 227 12 14 9 78 71 84
2003–2004 0 75 30 67 4 5 3 26 3
2003–2004 100 75 34 87 5 13 12 18 31 62
2003–2004 200 75 40 151 8 14 9 41 38 95
2004–2005 0 54 19 56 4 5 0 8 0
2004–2005 100 54 23 61 3 13 12 1 3 84
2004–2005 200 54 34 98 5 14 9 2 14 147
2005–2006 0 91 26 96 6 5 0 10 0
2005–2006 100 91 27 113 6 13 12 0 16 60
2005–2006 200 91 34 143 8 14 9 0 29 123

aN estimated using the data reported by Sainz Rozas, Echeverría, and Barbieri (2004). In Ng a 1%
loss through volatilization was also considered (García et al. 1999).

N from fertilizer; Nmin: organic mineral N; Nii: inorganic initial N; Np: N absorbed by biomass
area; Nr: N absorbed by roots; Ng: N lost as gases (N2, N2O, NH3); Nl: N lost through leaching; Ne:
N lost through erosion; Nif: final inorganic N.

independent of N rate (P = 0.3604) (Table 3). There was no interaction effect between
N rate and growing season on nitrate Nif (P = 0.3881) either, but Nif was significantly
affected by N rate (P < 0.0001), with greater accumulation in treatment 200 N compared
to 0 N and 100 N. Also, Nif differed among growing seasons (P < 0.0001) (Table 3).
Increases in Nif in response to the application of high N rates has been reported by other
authors (Zhu and Fox 2003; Jayasundara et al. 2007; Meisenger, Calderon, and Jenkison
2008). Moreover, Sainz Rozas, Echeverría, and Barbieri (2004), working with similar N
rates, time of fertilizer application, and type of soil, did not detect increases in the concen-
tration of Nif , which could be attributed to the greater plant N uptake determined by these
authors.

In this work, the Nif of 200 N treatment was superior compared to the other treat-
ments and would indicate that the 200 N rate exceeded the crop uptake N capacity. Pagani
et al. (2008) proposed thresholds of available N (soil + fertilizer) at planting of 160 to
170 kg N ha−1 to achieve a 95 percent maximum yield. In our study, these values were in
general achieved with a rate of 100 kg N ha−1 (Table 3), and this rate did not increase Nif .
Nevertheless, when initial available N was greater than 200 kg N ha−1, Nif increased expo-
nentially (Figure 2), which increases the risk of N losses during the fallow period. There
was no link between Nii and Nif of the previous crop, with positive (net mineralization
during the fallow period) and negative (losses during the fallow period) differences being
recorded over the duration of the experiment (Table 3).

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 0
1:

21
 0

6 
Ju

ne
 2

01
5 



1238 V. Aparicio et al.

y = 18.9 – 0.07*AN + 0.0007AN2

r2 = 0.48
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Figure 2. Relationship between available N in the soil (NO3
−-N at depth of 0–100 cm + fertilizer)

at the time of planting and the residual NO3
−-N (Nif ) at soil depth of 0–100 cm at harvest.

There was no interaction effect between nitrogen and growing season on Np
(P = 0.1685), but Np was different by N rate (P < 0.0001) and by growing season
(P < 0.0001) (Table 3). Soil available N (AN), defined as soil NO3

−-N content plus fer-
tilizer N at planting, was linearly related to Np (Np = 60.5 + 0.48∗ AN; r2 = 0.50). The
slope of this relationship indicates that AN recovery efficiency by the crop was similar to
those reported by other authors for similar rates and time of N application in continuous
corn systems (Sainz Rozas, Echeverría, and Barbieri 2004; Stevens, Hoeftb, and Mulvaney
2005).

There was an interaction effect between N and growing season on Nl (P = 0.018),
with Nl being significantly affected by N rate (P < 0.0001) and growing season
(P < 0.0001) (Figure 3). The precipitation amounts during the initial crop stages (October
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Figure 3. N leaching at 1 m by growing season and Ntrat. The bars indicate standar error.
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Table 4
Multiple regression model to predict the NO3

− losses through leaching as a function of
the rainfall in October and November (rainfall O–N) and the available N (NO3

−N
soil + fertilizer) at planting (AN)

Dependent
variable

Independent
variable

Value of
paramater

Standard
error

P
value

r2

partial
r2

adjusted

Losses through
leaching

Ordered −41.2 7.52 0.001

Rainfall O–N 0.173 0.024 0.001 0.82 0.90
ANa 0.097 0.03 0.001 0.08

aVariables chosen according to stepwise criteria.

and November) and AN were positively correlated with Nl, with 82 percent of the variabil-
ity in Nl explained by the first variable (Table 4). For wetter growing seasons, values of
Nl determined in this experiment were greater than those reported by Walters and Malzer
(1990) and Jemison, Jabro, and Fox (1994) for similar N rates and for corn crops grow-
ing on sandy and silty loam under conventional tillage. These authors reported leaching
losses, mainly at the beginning of the growing season, ranging from 18 to 54 kg N ha−1.
On the other hand, Nl measured in our experiment were similar to those reported by Sainz
Rozas, Echeverría, and Barbieri (2004), for irrigated corn under no tillage and fertilized at
planting.

Nitrogen mineralization Nmin estimated from the unfertilized plots ranged from 54 to
128 kg N ha−1 (Table 3) and it is lower than the reported (96 to 145 kg N ha−1) by Sainz
Rozas, Echeverría, and Barbieri (2004) for soils with lower soil organic-matter content and
similar management practices (tillage and crop sequence). These authors used the labo-
ratory methodology proposed by Echeverria et al. (1994) with soil disturbed sample and
the field experiment carried out without water limitation, factors that could have increased
Nmin (Rice and Havlin 1994).

Estimation of Nl using the Simplified N Balance

There was no interaction effect between N and growing season on Nne (p = 0.0867).
Although Nne was significantly affected by Nrate (P = 0.0001), it was not affected by
growing season (P = 0.0595). For the growing seasons 2001–2002 and 2002–2003, aver-
age values of Nne and Nl for N rates of 100 and 200 kg N ha−1 were 43 and 55 kg N ha−1,
and 60.5 and 73 kg N ha−1, respectively. For the drier than historical average growing sea-
sons (2003–2004, 2004–2005, and 2005–2006), average values of Nne and Nl for N rates
of 100 and 200 kg N ha−1 were 69 and 122 kg N ha−1 6.3 and 14.3 kg N ha−1, respectively.
In addition, a relationship was determined between Nne and precipitation amount during
the growing season (PP) and AN (Nii + N fertilizer) (Nne = 58.8–0.098∗ PP + 0.41∗ AN;
r2 = 0.65). This indicates that overestimation was greater for drier than average growing
seasons (Table 1) and when drainage was negligible. These results suggest that existence
of other mechanisms of N loss not measured in this work that became much more relevant
when water availability decreased.

In soils under no-tillage and corn monoculture, the amount of N fertilizer that was
still in organic form at the end of the growing season was reported to vary between 24 and
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65 kg N ha−1 (Kitur et al. 1984; Jokela and Randall 1997; Stevens, Hoeftb, and Mulvaney
2005), which is greater than the values found in this investigation (Niin, Table 3). However,
for the same region and for similar tillage system, Divito et al. (2011) reported that par-
ticulate organic N and potential Nmin in the surface layer (0–20 cm) were not changed
by N fertilization. These authors mentioned that application of N enhances soil organic N
turnover and, as a consequence, reduces the size organic N pool. Therefore, the process
of immobilization could explain only a small part of Nne attributed to Nl, mainly for drier
growing seasons.

On the other hand, Francis, Schepers, and Vigil (1993) reported that losses through
volatilization of NH3 from plants increase when N concentration in corn plant is high and
under water stress conditions, factors which increase the concentration of ammonia in the
apoplast and therefore of NH3-N losses from the leaves. These authors reported losses of
fertilizer N, which varied from 7 to 35 kg N ha−1, according to the N application rate,
which explained the 52 to 73 percent of Nne determined using 15 N. Therefore, this loss
mechanism could also lead to an overestimation of the Nl when it is estimated with the
Nne. Caution must be taken when linking values of Nne to Nl in simplified N balances.

Conclusions

Measured and estimated components of a nitrogen balance over five growing seasons
encompassing contrasting soil water availabilities are discussed in this work. The con-
ditions analyzed are representative of regions in the world growing corn on well-structured
soils of the Mollisol order.

Numerous studies have measured nitrate leaching or estimated it through nonrecov-
ered N, but few researchers have compared measured and estimated values of nitrate
leaching. Results of this investigation suggest that Nl had a low contribution to nonrecov-
ered N in dry growing seasons. Furthermore, the N balance overestimates nitrate leaching
(Table 3), particularly in dry years and under high N availability. Future research should
focus on investigating mechanisms of N losses relevant under limited water availability.
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