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In this work, high-order splitting methods of integration without negative steps are shown which can
be used in irreversible problems, like reaction–diffusion or complex Ginzburg–Landau equations. These
methods consist of suitable affine combinations of Lie–Tortter schemes with different positive steps.
The number of basic steps for these methods grows quadratically with the order, while for symplectic
methods, the growth is exponential. Furthermore, the calculations can be performed in parallel, so that
the computation time can be significantly reduced using multiple processors. Convergence results of these
methods are proved for a large range of semilinear problems, which includes reaction–diffusion systems
and dissipative perturbation of Hamiltonian systems.
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1. Introduction

The goal of the present article is to derive arbitrary-order splitting integrators for irreversible problems.
We are mainly interested in dissipative pseudo-differentiable problems which cannot be solved either by
the methods of lines or by the usual splitting integrators with negative steps. In order to avoid negative
steps, symplectic methods with complex steps are proposed in the literature, but in this case analytic
properties on the operators are required. These assumptions on the operators restrict the application of
this kind of method to reaction–diffusion-type problems.

In this article we obtain integrators that, at the same time, avoid the use of negative steps and do not
require special assumptions on the operator, as well as exploiting the simplicity of the decomposition
of the original problem. These methods can also be applied to problems with nonlocal nonlinearities as
shown below. It is possible to build arbitrary high-order integrators for which the number of basic steps
is lower than previous symplectic methods. Moreover, these methods can naturally be parallelized. In
this work, we present a rigorous proof of the convergence of the proposed methods, and we also test
their performance in several examples of interest.
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We study the initial value problem {
∂tu = A0u + A1(u),

u(0)= u0,
(1.1)

where A0 is a linear closed operator densely defined in D(A0)⊂ X, X is a Banach space, which generates
a strongly continuous semigroup of operators. We assume that the nonlinear term A1 : X → X is a smooth
mapping with A1(0)= 0. In many problems of interest, the partial differential equations (PDEs)

∂tu = A0u, (1.2a)

∂tu = A1(u), (1.2b)

can be easily solved either analytically or numerically, enabling approximated solutions of problem
(1.1) to be found, applying in turn the flows φ0 and φ1 associated with the partial problems (1.2a) and
(1.2b), respectively.

There exist many numerical integration methods for (1.1) based on splitting methods; the best known
are the Lie–Trotter and Strang methods defined by

ΦLie(h, u)= φ1(h,φ0(h, u)),

ΦStrang(h, u)= φ0(h/2,φ1(h,φ0(h/2, u))),

where h is the time step of the numerical integration. It can be proved that ΦLie has order 1 and ΦStrang

has order 2, where the order q represents the greatest natural number such that the truncation error
between the real flow φ of equation (1.1) and the numerical method Φ satisfies

‖φ(h, u)−Φ(h, u)‖X � M (u)hq+1

for 0< h< h∗.
A well known example of problem (1.1) is the nonlinear Schrödinger equation (NLS)

∂tu = iΔu + i|u|2u, (1.3)

where the partial flows associated with each term of the equation are given by

φ0(t, u)= exp(itΔ)u,

φ1(t, u)= exp(it|u|2)u,

which represent the evolution of a free particle and self-phase modulation, respectively. This is not
exactly the problem we are interested in solving since A0 generates a strongly continuous group of oper-
ators, that is, we are in the presence of a reversible system. In Ruth (1983), Neri (1987) and Yoshida
(1990), the authors present numerical integrators for Hamiltonian systems of order q = 3, 4, 2n, respec-
tively, which are known as symplectic integrators. The general form of these methods is

ΦSym(h)= φ1(bmh) ◦ φ0(amh) ◦ · · · ◦ φ1(b1h) ◦ φ0(a1h), (1.4)

with a1 + · · · + am = b1 + · · · + bm = 1. In the pioneering work Ruth (1983), a symplectic operator
ΦSym of order 3 is presented, taking a1 = 7/24, a2 = 3/4, a3 = −1/24 and b1 = 2/3, b2 = −2/3, b3 = 1.
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In Neri (1987), a symplectic operator of order 4 is considered, where

a1 = a4 = 1

2(2 − 21/3)
, a2 = a3 = − 21/3 − 1

2(2 − 21/3)
,

b1 = b3 = 1

2 − 21/3
, b2 = − 21/3

2 − 21/3
, b4 = 0.

In Yoshida (1990), a systematic way to obtain integrators of arbitrary even order, based on the Baker–
Campbell–Hausdorff formula, is presented. These integrators can be set inductively,

ΦSym,2n+2(h)=ΦSym,2n(z1h) ◦ΦSym,2n(z0h) ◦ΦSym,2n(z1h),

with z0 + 2z1 = 1 and z2n+1
0 + z2n+1

1 = 0. The total number of steps of the method of order q = 2n is
ST = 3n. Nevertheless, for order q = 6, 8 there can be shown to be symplectic integrators with 8 and 16
steps, respectively.

In recent years, many authors have started the rigorous study of the convergence of symplectic
methods applied to Hamiltonian systems of infinite dimension. In Besse et al. (2002) the NLS problem
given by (1.3) in dimension 2 is considered and the convergence of the Lie–Trotter and Strang methods
in L2(R2) with order 1 and 2, respectively, is proved (see also Descombes & Thalhammer, 2010, 2013).
In Lubich (2008) and Gauckler (2011) similar results are proved for the Gross–Pitaevskii equation
given by

i∂tu = −Δu + |x|2u + |u|2u.

In both cases, the solutions are required to be differentiable with respect to time, and therefore initial
data in D(Ak

0) is considered, where A0 is the corresponding differential operator.
The symplectic methods with order q> 2 require some steps to be negative (see Goldman & Kaper,

1996), inhibiting their application to irreversible problems. In Castella et al. (2009), the authors develop
splitting methods for irreversible problems, that use complex time steps having positive real part: going
to the complex plane allows the accuracy to be considerably increased, while keeping small time steps.
The total number of steps using the so-called triple jump method of order q = 2n is ST = 3n−1 for order
not greater than 8 and for the quadruple jump method is ST = 4 × 3n−2 for order not greater than 12.
Finally, we recall that the rigorous approach given in this article is based upon the results for linear
operators given in Hansen & Ostermann (2009) while the nonlinear problem is only formally discussed.

Since our interest is focused on irreversible pseudo-differential problems, the paradigmatic example
we have in mind is the regularized cubic Schrödinger equation

∂tu = iΔu − (−Δ)βu + i|u|2u, (1.5)

where 0<β < 1. It is natural to split the problem into the linear equation ∂tu = iΔu − (−Δ)βu and the
ordinary differential equation (ODE) system given by u̇ = i|u|2u, where the linear problem is ill posed
for negative times. Note that the same procedure can be applied to nonlocal nonlinearities like con-
volution potentials as in Example 5.3 (see also Borgna et al., 2015, example 4.1). Since iΔ− (−Δ)β
is a pseudo-differential operator, it cannot be discretized in space in order to use a method of lines,
as Runge–Kutta schemes. Observe that the strongly continuous semigroup generated by the linear
part of equation (1.5) cannot be extended to an open sector {z ∈ C : | arg(z)|< θ} since its spectrum
is {−iλ− λβ : λ� 0} 	⊆ {λ ∈ C : arg|λ− ω| � π/2 + θ} for any ω ∈ R, contrary to the Hille–Yosida–
Phillips theorem (see Reed & Simon, 1975, theorem X.47b). Therefore, the splitting methods with
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complex times described in Castella et al. (2009) cannot be used. The case β = 1 corresponds to the
complex Ginzburg–Landau equation (see Aranson & Kramer, 2002 and references there)

∂tu = aΔu + b|u|2u, (1.6)

where a, b ∈ C with Re(a) > 0. The spectrum of the operator aΔ is {−aλ : λ� 0} and generates a
strongly continuous semigroup on the open sector {z ∈ C : | arg(z)|<π/2 − | arg(a)|}. In Castella et al.
(2009), it is shown that the arguments of the complex steps grow with the order of the method, exceed-
ing the value π/2 − | arg(a)| for order high enough. Therefore, among integrators proposed in Castella
et al. (2009), only the low-order methods can be used.

In this work, we present a family of splitting-type methods for arbitrary order with positive time step,
that exploit the simplicity of the partial flows in nonreversible problems. Here we describe the methods
proposed: given the associated flows φ0,φ1 of the partial problems (1.2a) and (1.2b), respectively, we
define the maps Φ+(h)= φ1(h) ◦ φ0(h), Φ−(h)= φ0(h) ◦ φ1(h) and Φ±

m (h)=Φ±(h) ◦Φ±
m−1(h) with

Φ±
1 =Φ±, and consider the following methods:

Φ(h)=
s∑

m=1

γmΦ
±
m (h/m) (asymmetric), (1.7a)

Φ(h)=
s∑

m=1

γm(Φ
+
m (h/m)+Φ−

m (h/m)) (symmetric). (1.7b)

We will show below that under appropriate assumptions, the integrators given by (1.7a) and (1.7b) are
convergent with order q, if γ = (γ1, . . . , γs) satisfies the following conditions:

1 = γ1 + γ2 + · · · + γs,

0 = γ1 + 2−kγ2 + · · · + s−kγs, 1 � k � q − 1,
(1.8a)

1

2
= γ1 + γ2 + · · · + γs,

0 = γ1 + 2−2kγ2 + · · · + s−2kγs, 1 � k � n − 1,
(1.8b)

respectively, where 2n = q. The first method (1.7a) is the h-extrapolation of the first-order Lie–Trotter
splitting method and the second method (1.7b) is the h2-extrapolation of the symmetrization of this
method. The general extrapolation technique is described in Hairer et al. (1993) and an application of
these techniques applied to classical Hamiltonian systems is shown in Chin (2010).

The possibility of computingΦ±
m simultaneously, allows the total time of computation using multiple

processors to be reduce significantly. The total number of steps for (1.7a) is given by ST = 2
∑

γm |= 0 m
and ST = 4

∑
γm |= 0 m for (1.7b). Neglecting the communication time between the processors, the total

time of computation, working in parallel, turns out to be proportional to SP = 2 maxγm |= 0 m in both cases.
System (1.8) has a solution for s � q, and hence there exist methods of arbitrary order q with SP = 2q and
ST = q(q + 1). On the other hand, system (1.8b) has a solution for s � n, which shows that there exist
integrators of arbitrary even order q = 2n with SP = q and ST = q(q/2 + 1), using double the number of
processors. As can be seen, the minimum number of steps working in parallel for the symmetric method
is smaller than the corresponding one for the asymmetric method. Also, in the examples considered
below, the symmetric method presents less error than the asymmetric method. These two issues justify
the choice of the symmetric method over the asymmetric one. Even using one single processor, the total
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number of steps grows quadratically with the order, while both methods presented in Yoshida (1990)
and Castella et al. (2009) have exponential growth.

Since the methods (1.7) are an affine combination of Lie–Trotter integrators, they do not preserve
the structure for Hamiltonian systems. Nevertheless, there is numerical evidence, which is beyond the
scope of this article and therefore not presented here, that shows that the performance is comparable
with symplectic methods.

The paper is organized as follows: in Section 2 we give basic definitions and preliminary results.
Following the ideas of Besse et al. (2002), Lubich (2008) and Gauckler (2011), we consider a decreas-
ing sequence of dense subspaces where the flows are repeatedly differentiable. In Section 3 we prove
consistency and stability results for the methods (1.7), from where we deduce convergence in the stan-
dard way. In Section 4 we study the full discretization of methods (1.7). In Section 5 we give several
examples of the application of the methods to initial value problems for ODEs and irreversible PDEs.

2. Notation and preliminary results

From now on, we denote by φ the flow of equation (1.1), and by φ0 and φ1 the flows associated with
the respective partial problems (1.2a) and (1.2b). We write as Φ± the maps defined by Φ+(h)= φ1(h) ◦
φ0(h), Φ−(h)= φ0(h) ◦ φ1(h) and Φ±

m (h)=Φ±(h) ◦Φ±
m−1(h) with Φ±

1 =Φ±. Finally, we will use the
letter Φ for the numerical integrators given by (1.7a) and (1.7b).

In the next subsections we will give some preliminary results which will be used in Section 3.
Section 2.1 provides combinatorial results necessary to prove the consistency in Section 3.1. In order to
prove Theorems 3.1 and 3.2 we establish the concept of compatible flows given in Section 2.2.

2.1 Combinatorial results

For a multiindex β = (β1, . . . ,βr) ∈ N
r, we define β! = β1! · · ·βr! and Ir,k = {β ∈ N

r : β1 + · · · +
βr = k} which satisfy N

r =⋃∞
k=1 Ir,k .

Remark 2.1 It holds that Ir,k = ∅ if r> k, Ik,k = {(1, . . . , 1)} and for r + s � k, Ir+s,k =⋃k−r
j=s Ir,k−j × Is,j.

We will need the following lemmas. We will give an outline of the proof of the first lemma and skip
the proof of the second one.

Lemma 2.2 Let q ∈ N; if γ = (γ1, . . . , γs) satisfies conditions (1.8), then for 1 � k � q, it holds that

s∑
m=r

(
m

r

)
m−kγm = 0, r = 1, . . . , k − 1,

s∑
m=k

(
m

k

)
m−kγm = 1

k!
.

Proof. We consider the falling factorial (x)k = x(x − 1) · · · (x − k + 1), which is a monic polynomial of
degree k such that (x)k =∑k

j=0 S(k, j)xj. Then, for any natural number m satisfying 0 � m � k − 1, we

have (m)k = 0 and therefore
∑k

j=0 S(k, j)mj = 0. For the second equality we use that for 1 � r � k − 1,

s∑
m=r

(
m

r

)
m−kγm = 1

r!

s∑
m=r

(m)rm
−kγm = − 1

r!

r−1∑
m=1

r∑
j=0

S(r, j)mj γm

mk
= 0,
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6 of 25 M. DE LEO ET AL.

where we have used the hypothesis on the second equality. Analogously for the first equality we have

k!
s∑

m=k

(
m

k

)
m−kγm =

s∑
m=k

(m)km−kγm = 1 −
k−1∑
m=1

(∑k
j=0 S(k, j)mj

mk

)
γm = 1,

where we have used the hypothesis on the second equality. �

Lemma 2.3 Let n ∈ N; if γ = (γ1, . . . , γs) satisfies conditions (1.8b), then for 1 � k � q = 2n, it holds
that

s∑
m=1

[(
m

r

)
+ (−1)k+r

(
m + r − 1

m − 1

)]
m−kγm = 0, r = 1, . . . , k − 1,

s∑
m=1

[(
m

k

)
+
(

m + k − 1

m − 1

)]
m−kγm = 1

k!
.

Proof. The proof is similar to the previous lemma. �

2.2 Compatible flows

We denote by Ln(X, Y) the Banach space consisting of the set of continuous multilinear operators from
Xn =∏n

i=1 X to Y and by Dnf the n Fréchet derivative of f .
Let X , Y be Banach spaces, I ⊂ R

n an n-cube and 0 � k1, . . . , kn, q. We define Ck1,...,kn,q
st (I × X , Y) to

be the linear subspace of functions C(I × X , Y) verifying

(1) for any t ∈ I, ϕ(t, ·) ∈ Cq(X , Y) in the sense of Fréchet;

(2) for 0 � m � q and u, v1, . . . , vm ∈ X , the map t 
→ Dmϕ(t, u)(v1, . . . , vm) belongs to Ck1,...,kn(I, Y);

(3) for 0 � ji � ki, the map given by (t, u, v1, . . . , vm) 
→ (∂
j1
t1 · · · ∂ jn

tn Dmϕ)(t, u)(v1, . . . , vm) is contin-
uous, i.e., ∂ j1

t1 · · · ∂ jn
tn Dmϕ is strong continuous.

Remark 2.4 Let X0, X1, X2 be Banach spaces, I1, I2 ⊂ R intervals. For ϕ ∈ Ck1,q−k1
st (I1 × X1, X0) and

ψ ∈ Ck2,q−k2
st (I2 × X2, X1) with 0 � k1 + k2 � q, it is easy to see that θ ∈ C(I1 × I2 × X2, X0) defined by

θ(t1, t2, u)= ϕ(t1,ψ(t2, u)) satisfies θ ∈ Ck1,k2,q−k1−k2
st (I1 × I2 × X2, X0).

Let {Xk}0�k�q be a sequence of nested Banach spaces, i.e., Xk+1 ↪→ Xk and I ⊂ R an interval. Given
ϕ ∈ C(I × X0, X0), we say that ϕ is compatible with {Xk}0�k�q if and only if for 0 � k � j � q, it holds

that ϕ ∈ Ck,q−k
st (I × Xj, Xj−k).

Example 2.5 Let A0 : D(A0)→ X be an infinitesimal generator of a strongly continuous semigroup φ0,
X0 = X and Xk = D(Ak

0) with the graph norm ‖u‖Xk =∑k
j=0 ‖Aj

0u‖X. We can see that φ0 is compati-
ble with the sequence of nested Banach spaces {Xk}0�k�q for any q � 0, since ∂k

t φ0(t, u)= φ0(t)Ak
0u,

∂k
t Dφ0(t, u)v = φ0(t)Ak

0v, ∂k
t Dmφ0(t, u)(v1, . . . , vm)= 0, for m � 2. Note that the map t 
→ φ0(t)Ak

0 from
[0, ∞) on L1(Xj, Xj−k) is not continuous in the uniform topology for A0 unbounded, but it is strongly
continuous.

Proposition 2.6 If ϕ and ψ are compatible with {Xk}0�k�q, then (ϕ ◦ ψ)(t, u)= ϕ(t,ψ(t, u)) is also
compatible with {Xk}0�k�q.

 by guest on D
ecem

ber 4, 2015
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


HIGH-ORDER METHODS FOR IRREVERSIBLE EQUATIONS 7 of 25

Proof. Let θ(t1, t2, u)= ϕ(t1,ψ(t2, u)); from Remark 2.4 we can see that θ ∈ Ci,k−i,q−k
st (I × I × Xl, Xl−k)

for 0 � i � k � l � q. Using that

∂
j
t D

m(ϕ ◦ ψ)(t, u)(v1, . . . , vm)=
j∑

i=0

(
j

i

)
∂ i

t1∂
j−i
t2 Dmθ(t1, t2, u)(v1, . . . , vm)

∣∣∣
t1=t2=t

for 0 � j � k and 0 � m � q − k, the result follows. �

Now, we discuss the compatibility of the nonlinear flow φ associated with equation (1.1). Note
that for u0 ∈ Xq the time of existence T∗ of the solution in Xk could depend on u0 and k. Taking
T < T∗

q (u0)= min0�k�q{T∗
k (u0)}, the nonlinear flow φ is defined in [0, T] for any initial data close to u0.

Since consistency is a local problem, this is sufficient for our purposes. Moreover, in many applications
T does not depend on k and it could be taken the same for any u0 ∈ Xq with ‖u0‖X0 � R.

Lemma 2.7 Let X be a Banach space, φ0 a continuous semigroup on X and A1 ∈ Cq(X, X) such that for
0 � m � q, DmA1 : X →Lm(X, X) is a locally Lipschitz continuous map. If φ ∈ C([0, T] × X, X) is the
flow associated with (1.1), i.e.,

φ(t, u0)= φ0(t)u0 +
∫ t

0
φ0(t − t′)A1(φ(t

′, u0)) dt′,

then φ ∈ C0,q
st ([0, T] × X, X).

Proof. The proof is by induction on q; the statement is true for q = 0. Let X = X × X, φ0 the semigroup
given by φ0(t)(u, v)= (φ0(t)u,φ0(t)v), and A1 the map defined by A1(u, v)= (A1(u), DA1(u)v). Since
A1 verifies the hypothesis on X for 0 � m � q − 1, applying the inductive hypothesis to φ, the flow
associated with the integral equation

(u(t), v(t))= φ0(t)(u0, v0)+
∫ t

0
φ0(t − t′)A1(u(t

′), v(t′)) dt′,

we have φ ∈ C0,q−1
st ([0, T] × X, X). We can see that (u(t), v(t))= φ(t, (u0, v0))= (φ(t, u0), Dφ(t, u0)v0),

and a straightforward computation shows that

Dmφ(t, (u0, v0))((v1, 0), . . . , (vm, 0))= (Dmφ(t, u)(v1, . . . , vm), Dm+1φ(t, u)(v0, v1, . . . , vm))

for 0 � m � q − 1, and the result follows. �

Proposition 2.8 Let A0 : D(A0)→ X be an infinitesimal generator of a strongly continuous semigroup
φ0 and Xk = D(Ak

0) with the graph norm ‖u‖Xk =∑k
j=0 ‖Aj

0u‖X and let A1 ∈ Cq(Xk , Xk) for 0 � k � q
such that DmA1 : Xk →Lm(Xk , Xk) is a locally Lipschitz continuous map for 0 � m � q. If φ,φ0,φ1 are
the flows associated with (1.1), (1.2a), (1.2b), respectively, then φ,φ0,φ1 are compatible with {Xk}0�k�q.

Proof. For the compatibility of φ0 see Example 2.5. From Lemma 2.7, it holds that φ ∈ C0,q
st

(I × Xk , Xk). Since A0 ∈ C∞(Xk , Xk−1) and A1 ∈ Cq(Xk , Xk), we can prove that A0φ ∈ C0,q
st

(I × Xk , Xk−1) and A1(φ) ∈ C0,q
st (I × Xk , Xk). Therefore ∂tφ = A0φ + A1(φ) ∈ C0,q

st (I × Xk , Xk−1) and
then φ ∈ C1,q−1

st (I × Xk , Xk−1). A recursive argument shows that φ ∈ Cl,q−l
st (I × Xk , Xk−l). Taking

A0 = 0, we obtain that φ1, the partial flow associated with (1.2b), is also compatible. �
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Remark 2.9 Let μ ∈Lm(Xk , Xk) and define the map A1(u)=μ(u, . . . , u). Since A1(u)=μs(u, . . . , u),
where

μs(v1, . . . , vm)= 1

m!

∑
σ∈Sm

μ(vσ1 , . . . , vσm),

without loss of generality we can assume that μ is symmetric. Then it holds that A1 ∈ C∞(Xk , Xk) and
DnA1 is a locally Lipschitz continuous map from Xk on Ln(Xk , Xk). To see this, observe that

DnA1(u)(v1, . . . , vn)= m!

(m − n)!
μs(u, . . . , u, v1, . . . , vn), 1 � n � m,

and DnA1 = 0 if n>m. Let u, ũ ∈ Xk with ‖u‖Xk , ‖ũ‖Xk � R and n � m, it follows that

‖DnA1(u)− DnA1(ũ)‖Ln(Xk ,Xk) �
m!(m − n)

(m − n)!
‖μ‖Lm(Xk ,Xk)R

m−n−1‖u − ũ‖Xk .

As an example, consider X0 = Hs(Rd) with s> d/2 as a real vectorial space and A0 = iΔ− (−Δ)β
with 0<β < 1, then Xk = Hs+2k(Rd). Since Xk is a real Banach algebra with the pointwise product,
the multilinear map μ ∈L3(Xk , Xk) given by μ(u, v, w)= λuvw∗ defines A1(u)=μ(u, u, u)= λ|u|2u,
which satisfies the hypothesis of Proposition 2.8. On the other hand, let g ∈ L1(Rd); the map given by
Gu = g ∗ u is a bounded linear operator in Xk . Consider μ ∈L3(Xk , Xk) defined by

μ(u, v, w)= (g ∗ (uv∗))w;

we obtain A1(u)= (g ∗ |u|2)u which satisfies the hypothesis of Proposition 2.8.

In Section 3 we will need to compute the successive derivatives of the method proposed (see
Theorem 3.1 and Theorem 3.2). Observe that these derivatives are linear combinations of the derivatives
of the composition of the partial flows, that is

∂k
t Φ(0, u)=

s∑
m=1

γm∂
k
t Φ

±
m (0, u)=

s∑
m=1

γm∂
k
t (· · · ◦ φ0(t/m) ◦ φ1(t/m) ◦ φ0(t/m) ◦ · · · )(0, u).

In order to do this, we consider mixed Lie derivatives with respect to the flows φ0 and φ1. For 0 � k � q,
define the linear spaces

Dq,k = {f ∈ Cq−k(Xk , X0) : f |Xj ∈ Cq−k(Xj, Xj−k), k � j � q}.

We can see that if f ∈Dq,k and g ∈Dq,l with k + l � q, then f ◦ g ∈Dq,k+l. If ϕ is compatible with

{Xk}0�k�q, then ∂k
t ϕ(t, ·) ∈Dq,k and, for f ∈Dq,l, it holds that f ◦ ϕ ∈ Ck,q−k−l

st ([0, T] × Xj, Xj−k−l), with
k + l � j � q. We define the linear operator Lk[ϕ] : Dq,l →Dq,k+l as

(Lk[ϕ]f )(u)= ∂k
t f (ϕ(t, u))|t=0.
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HIGH-ORDER METHODS FOR IRREVERSIBLE EQUATIONS 9 of 25

Note that if f ∈L1(Xj, Xj−l) for l � j � q, then f ∈Dq,l and (Lk[ϕ]f )(u)= f (∂k
t ϕ(0, u)). In particular,

for f = id, we obtain that Lk[ϕ] id = ∂k
t ϕ(0, ·) and for a linear combination ϕ =∑s

m=1 γmϕm, we have
Lk[ϕ] id =∑s

m=1 γmLk[ϕm] id.

Lemma 2.10 If ϕ,ψ are compatible with {Xk}0�k�q, then

Lk[ϕ ◦ ψ] =
k∑

j=0

(
k

j

)
Lk−j[ψ]Lj[ϕ].

Proof. From Proposition 2.6, ϕ ◦ ψ is compatible and from Remark 2.4, θ(t1, t2, u)= ϕ(t1,ψ(t2, u))
verifies θ ∈ Cj,k−j,q−k

st ([0, T] × [0, T] × Xl+k , Xl). Given f ∈Dq,l, for any u ∈ Xl+k ,

(Lk[ϕ ◦ ψ]f )(u)=
k∑

j=0

(
k

j

)
∂

j
t1∂

k−j
t2 f (θ(t1, t2, u))|(t1,t2)=(0,0)

=
k∑

j=0

(
k

j

)
∂

k−j
t2 (Lj[ϕ]f )(ψ(t2, u))|t2=0 =

k∑
j=0

(
k

j

)
(Lk−j[ψ]Lj[ϕ]f )(u)

is satisfied. Since f and u are arbitrary, the proposition follows. �

Proposition 2.11 Let ϕ be a compatible map with {Xk}0�k�q. Let ϕ1 = ϕ and ϕm+1 = ϕ ◦ ϕm; then

Lk[ϕm] =
k∑

r=1

(
m

r

)∑
β∈Ir,k

k!

β!
Lβ1 [ϕ] · · · Lβr [ϕ].

Proof. Using Lemma 2.10, we get

Lk[ϕm+1] = Lk[ϕm] + Lk[ϕ] +
k−1∑
j=1

(
k

j

)
Lk−j[ϕm]Lj[ϕ];

applying induction and using Remark 2.1, we obtain the result. �

Lemma 2.12 If ϕ is a flow, compatible with {Xk}0�k�q, then Lk[ϕ] = (L1[ϕ])k .

Proof. The proof is by induction: suppose the result holds for 1 � j � k − 1; using the lemma above
we obtain

Lk[ϕ ◦ ϕ] = 2Lk[ϕ] +
k−1∑
j=1

(
k

j

)
Lk−j[ϕ]Lj[ϕ]

= 2Lk[ϕ] +
k−1∑
j=1

(
k

j

)
(L1[ϕ])k−j(L1[ϕ])j = 2Lk[ϕ] + (2k − 2)(L1[ϕ])k .
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Since ϕ is a flow, ϕ(t) ◦ ϕ(t)= ϕ(2t) and therefore Lk[ϕ ◦ ϕ] = 2kLk[ϕ], which implies the result for
j = k. �

3. Convergence

3.1 Consistency

The next two theorems ensures consistency results for the schemes given by (1.7a) and (1.7b), when the
coefficients of the affine combination that defines the methods Φ satisfy the algebraic conditions (1.8a)
and (1.8b), respectively.

In the present section, we take on the assumptions on the operators A0 and A1 made precise in
Proposition 2.8 which implies that the flows φ0, φ1 and φ are compatible with {Xk}0�k�q. We have the
following consistency results.

Theorem 3.1 (Asymmetric case) For any q ∈ N, γ = (γ1, . . . , γs) satisfying (1.8a) and u ∈ Xq, the
method Φ given by (1.7a) satisfies

∂k
t Φ(0, u)= ∂k

t φ(0, u), for k = 0, . . . , q.

Theorem 3.2 (Symmetric case) For any n ∈ N, γ = (γ1, . . . , γs) satisfying (1.8b) and u ∈ Xq with
q = 2n, the method Φ given by (1.7b) satisfies

∂k
t Φ(0, u)= ∂k

t φ(0, u), for k = 0, . . . , q.

3.1.1 Asymmetric case We prove the consistency of method (1.7a) using Lemmas 2.10 and 2.2.

Proposition 3.3 For any q ∈ N and γ = (γ1, . . . , γs) satisfying (1.8a), the method Φ given by (1.7a)
satisfies Lk[Φ] id = (L1[Φ±])k id, for k = 1, . . . , q.

Proof. Since Lk[Φ] id =∑s
m=1 m−kγmLk[Φ±

m ] id, using Proposition 2.11 we can see that

Lk[Φ] id =
k∑

r=1

(
s∑

m=1

(
m

r

)
m−kγm

)∑
β∈Ir,k

k!

β!
Lβ1 [Φ±] · · · Lβr [Φ

±] id;

from Lemma 2.2, we get Lk[Φ] id =∑β∈Ik,k
(1/β!)Lβ1 [Φ±] · · · Lβk [Φ±] id = (L1[Φ±])k id. �

Proof of Theorem 3.1. Since Φ+ = φ1 ◦ φ0, from Lemma 2.10, L1[Φ+] = L1[φ0] + L1[φ1] = L1[φ].
In the same way it follows that L1[Φ−] = L1[φ]. Using Proposition 3.3 we obtain

∂k
t Φ(0, u)= ((L1[Φ±])k id)(u)= ((L1[φ])k id)(u)

and the theorem follows from Lemma 2.12. �

3.1.2 Symmetric case If φ0,φ1 were reversible flows, then it would hold that Φ−(t) ◦Φ+(−t)= I
and using Lemma 2.10 we would obtain that Mk , defined below by (3.1), is identically zero. We get the
same result for irreversible flows.
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Lemma 3.4 Let Mk : Dq,0 →Dq,k be the operator given by

Mk =
k∑

j=0

(−1)j
(

k

j

)
Lj[Φ

+]Lk−j[Φ
−]; (3.1)

then Mk = 0.

Proof. Using Lemma 2.10 for Φ± and Lemma 2.12,

Mk =
k∑

j=0

j∑
i=0

k−j∑
l=0

(−1)j
(

k

j

)(
j

i

)(
k − j

l

)
L1[φ0]j−iL1[φ1]k+i−j−lL1[φ0]l.

Interchanging the order of summation, considering n = j − i and using the identity(
k

n + i

)(
n + i

i

)(
k − n − i

l

)
=
(

k − n − l

i

)
k!

n!l!(k − n − l)!
,

we can write Mk as

Mk =
k∑

n=0

(−1)n
k−n−1∑

l=0

(
k−n−l∑

i=0

(−1)i
(

k − n − l

i

))
k!

n!l!(k − n − l)!

× L1[φ0]nL1[φ1]k−n−lL1[φ0]l +
k∑

n=0

(−1)n
(

k

k − n

)
L1[φ0]k .

Since
∑k−n−l

i=0 (−1)i
(k−n−l

i

)= 0, we have the result. �

Proposition 3.5 For m � 1 it holds that

Lk[Φ−
m ] = (−1)k

k∑
r=1

Cm,r

∑
β∈Ir,k

k!

β!
Lβ1 [Φ+] · · · Lβr [Φ

+],

where Cm,r = (−1)r
(m+r−1

r

)
.

Proof. We proceed by induction in m and in k: for m = 1, eliminating Lk[Φ−] from (3.1) we have

Lk[Φ−] = −
k∑

j=1

(−1)j
(

k

j

)
Lj[Φ

+]Lk−j[Φ
−];

by inductive hypothesis for k − j< k and using Remark 2.1 we obtain the case m = 1. Applying
Lemma 2.10 to Φ−

m+1 =Φ− ◦Φ−
m and using Cm+1,r =∑r

s=0 Cm,sC1,r−s, we have the result. �

Proposition 3.6 If γ satisfies conditions (1.8b), then the method Φ defined by (1.7b) satisfies for
k = 0, . . . , 2n, Lk[Φ] id = (L1[Φ+])k id.

Proof. Applying Proposition 2.11 to Φ+, using Proposition 3.5 and Lemma 2.3 the result may be
concluded. �

 by guest on D
ecem

ber 4, 2015
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


12 of 25 M. DE LEO ET AL.

Proof of Theorem 3.2. From Proposition 3.6 we have

∂k
t Φ(0, u)= ((L1[Φ+])k id)(u)= ((L1[φ])k id)(u),

and the theorem follows from Lemma 2.12. �

3.2 Stability

If φ0 is the semigroup associated with A0, we can assume that φ0 is quasi-contractive with respect to
some appropriate equivalent norm on X0, i.e., ‖φ0(t)‖L1(X0,X0) � eκt. Since Ak

0φ0(t)= φ0(t)Ak
0, it holds

that ‖φ0(t)u‖Xk � eκt‖u‖Xk .
To prove stability, we proceed as in Borgna et al. (2015). We define the 1-periodic function α

given by

α(t)=
{

1 if 0 � t< 1/2,

−1 if 1/2 � t< 1,

αh(t)= α(t/h), α±
h (t)= 1 ± αh(t) and η±

h (t1, t0)=
∫ t1

t0
α±

h (t) dt. Observe that αh is h-periodic with mean
zero. We can see that, for any h> 0 and 0 � t0 � t1 and n ∈ N, it is verified that

• 0 � η±
h (t1, t0)� 2(t1 − t0);

• |(t1 − t0)− η±
h (t1, t0)| � h/2;

• η±
h (t1 + nh, t0 + nh)= η±

h (t1, t0);

• η±
h/m(t0 + nh, t0)= nh.

If φ±
0,h(t, t′)= φ0(η

±
h (t, t′)), it holds that ‖φ±

0,h(t, t′)‖L1(Xk ,Xk) � e2κ(t−t′) and the solution of the integral
equation

u±
h,m(t)= φ±

0,h/m(t, 0)u0 +
∫ t

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
t, t′
)

A1
(
u±

h,m(t
′)
)

dt′ (3.2)

verifies u±
h,m(h)=Φ±

m (h/m, u0) (see Borgna et al., 2015).

Proposition 3.7 Given R> 0 and 0 � k � q, there exists h∗ > 0 such that for any h � h∗ and u0 ∈ Xk

with ‖u0‖Xk � R, the solution u±
h,m of (3.2) is defined on [0, h] for any m ∈ N. Moreover, if u0, ũ0 ∈ Xk

and ‖u0‖Xk , ‖ũ0‖Xk � R, then

max
0�t�h

‖u±
h,m(t)− ũ±

h,m(t)‖Xk � C‖u0 − ũ0‖Xk ,

where u±
h,m, ũ±

h,m are the solutions of (3.2) with initial data u0, ũ0 ∈ Xk , respectively, C = e(2κ+2Λ e2κh∗
)h∗

and Λ is a Lipschitz constant of A1 in B2R(0)⊂ Xk .

Proof. The existence of the solutions can be proved by applying a fixed point argument, that is,
for any u0 ∈ BR(0) the solution u±

h,m of (3.2) is defined on [0, h] and ‖u±
h,m(t)‖Xk � 2R for 0 � t � h.
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Let u0, ũ0 ∈ BR(0); we have

u±
h,m (t)− ũ±

h,m (t)= φ±
0,h/m (t, 0) (u0 − ũ0)+

∫ t

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
t, t′
) (

A1
(
u±

h,m

(
t′
))− A1

(
ũ±

h,m

(
t′
)))

dt′.

Then, we can estimate

∥∥u±
h,m(t)− ũ±

h,m(t)
∥∥

Xk
� e2κh ‖u0 − ũ0‖Xk

+ 2Λ e2κh
∫ t

0

∥∥u±
h,m

(
t′
)− ũ±

h,m

(
t′
)∥∥

Xk
dt′.

From Gronwall’s lemma, we obtain ‖u±
h,m(t)− ũ±

h,m(t)‖Xk � C‖u0 − ũ0‖Xk . �

The next theorem is the stability result. Observe that the stability constant depends strongly on the
Lipschitz constant of A1.

Theorem 3.8 Given R> 0 and 0 � k � q, there exists h∗ > 0 such that for any h � h∗, the method
Φ(h, ·) given by (1.7) (both cases (1.7a) and (1.7b)) is defined on BR(0) and is Lipschitz continuous
with constant eKh, where K = K(κ ,Λ,

∑s
m=1 |γm|, h∗).

Proof. We give the proof only for the asymmetric case (1.7a); the symmetric case is completely similar.
From the proposition above, Φ±

m is defined on [0, h] and then Φ is also defined. We can write

Φ (h, u0)−Φ (h, ũ0)=
s∑

m=1

γm
(
Φ±

m (h/m, u0)−Φ±
m (h/m, ũ0)

)=
s∑

m=1

γm
(
u±

h,m (h)− ũ±
h,m (h)

)

=
s∑

m=1

γm

(
φ±

0,h/m (h, 0) (u0 − ũ0)

+
∫ h

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
h, t′
) (

A1
(
u±

h,m

(
t′
))− A1

(
ũ±

h,m

(
t′
)))

dt′
)

.

Since φ±
0,h/m(h, 0)= φ0(h) and

∑s
m=1 γm = 1 we deduce that

Φ (h, u0)−Φ (h, ũ0)= φ0 (h) (u0 − ũ0)

+
s∑

m=1

γm

(∫ h

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
h, t′
) (

A1
(
u±

h,m

(
t′
))− A1

(
ũ±

h,m

(
t′
)))

dt′
)

.

Therefore

‖Φ (h, u0)−Φ (h, ũ0) ‖Xk

� eκh‖u0 − ũ0‖Xk + 2e2κh
s∑

m=1

|γm|
∫ h

0

∥∥A1
(
u±

h,m

(
t′
))− A1

(
ũ±

h,m

(
t′
))∥∥

Xk
dt′

�
(

eκh + 2e2κhΛC
s∑

m=1

|γm|h
)

‖u0 − ũ0‖Xk � eKh‖u0 − ũ0‖Xk ,

where K = 2κ + 2ΛC
∑s

m=1 |γm|. Then, we have the result. �
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3.3 Convergence results

To prove the convergence result in X0 with order q (see Theorem 3.11) we begin by proving the follow-
ing convergence result in each Xk for any 0 � k � q.

Theorem 3.9 Let u ∈ C([0, T∗), Xk) be the solution of (1.1) (0 � k � q), T < T∗(u0), ε > 0 and
Φ(h, ·) the method given by (1.7) (both cases (1.7a) and (1.7b)). There exist δ > 0 and h∗ > 0
such that if ‖u0 − U0‖Xk < δ, h ∈ (0, h∗], then the sequence Un =Φ(h, Un−1) is defined and verifies
‖un − Un‖Xk < ε for n � [T/h], where un = u(nh).

In order to do this we will first prove the following results.

Lemma 3.10 Let ΩT = {(t1, t0) ∈ R
2 : 0 � t0 � t1 � T}, f ∈ C([0, T], Xk) and

I1 (h, t1, t0)=
(
φ0 (t1 − t0)− φ±

0,h (t1, t0)
)

f (t0) .

Given δ > 0, there exists h∗ > 0 such that if 0< h � h∗, then sup(t1,t0)∈ΩT
‖I1(h, t1, t0)‖Xk < δ.

Proof. Let g ∈ C([0, T], Xk+1) such that ‖f (t)− g(t)‖Xk < e−2κTδ/4, for 0 � t � T ; then

sup
(t1,t0)∈ΩT

∥∥(φ0 (t1 − t0)− φ±
0,h (t1, t0)

)
(f (t0)− g (t0))

∥∥
Xk
< δ/2.

Using that ∂tφ0(t)g(t0)= φ0(t)A0g(t0), we get

(
φ0 (t1 − t0)− φ±

0,h (t1, t0)
)

g (t0)=
∫ t1−t0

0
φ0 (t)A0g (t0) dt −

∫ η±
h (t1,t0)

0
φ0 (t)A0g (t0) dt

and then ∥∥(φ0(t1 − t0)− φ±
0,h(t1, t0)

)
g(t0)

∥∥
Xk

� eκT |(t1 − t0)− η±
h (t1, t0)|‖A0g(t0)‖Xk

� eκT max
0�t�T

‖g(t)‖Xk+1

h

2
.

Taking h∗ small enough, we have

sup
(t1,t0)∈ΩT

∥∥(φ0(t1 − t0)− φ±
0,h(t1, t0)

)
g(t0)

∥∥
Xk
< δ/2

and the result follows. �

Corollary 3.11 Let f ∈ C([0, T], Xk) and

I2(h, t1, t0)=
∫ t1

t0

α∓
h (t)

(
φ0(t1 − t)− φ±

0,h(t1, t)
)

f (t) dt.

Given δ > 0, there exists h∗ > 0 such that if 0< h � h∗, then it is verified that ‖I2(h, t1, t0)‖Xk <

δ(t1 − t0).
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Lemma 3.12 Let F ∈ C(ΩT , Xk) and

I3(h, t1, t0)=
∫ t1

t0

αh(t)F(t1, t) dt.

Given δ > 0, there exists h∗ > 0 such that if 0< h � h∗, h � t1 � T and m ∈ N, then

‖I3(h/m, t1, t1 − h)‖Xk � δh.

Proof. Since F is uniformly continuous, for δ > 0, there exists h∗ > 0 such that if 0 � t1 − t � h∗, then
‖F(t1, t)− F(t1, t1)‖Xk < δ. Using that αh/m is h-periodic with mean zero, we have

‖I3(h/m, t1, t1 − h)‖Xk �
∥∥∥∥
∫ t1

t1−h
αh/m(t)(F(t1, t)− F(t1, t1)) dt

∥∥∥∥
Xk

< δh. �

Proof of Theorem 3.9. We give the proof only for the asymmetric case (1.7a); the symmetric case
is similar. Let R = max0�t�T ‖u(t)‖Xk + ε and Λ the Lipschitz constant of A1 in BR(0)⊂ Xk . From
Proposition 3.7, there exists h∗ > 0 such that Φ±

m (h/m, u) is defined for 0< h � h∗, u ∈ BR(0). Let
v(t)= u(t + nh − h)= φ(t, un−1) and v±

h,m be the solution of (3.2) with v±
h,m(0)= Un−1. First, we prove

that given δ > 0, there exist C, h∗ > 0 such that max0�t�h ‖v(t)− v±
h,m(t)‖Xk � C(‖un−1 − Un−1‖Xk + δ)

for 0< h � h∗ and m ∈ N. We can write

v (t)− v±
h,m (t)= φ±

0,h/m (t, 0) (un−1 − Un−1)+ I1 (t)+ I2 (t)± I3 (t)

+
∫ t

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
t, t′
) (

A1
(
v
(
t′
))− A1

(
v±

h,m

(
t′
)))

dt′,

where

I1 (t)=
(
φ0 (t)− φ±

0,h/m (t, 0)
)

un−1,

I2 (t)=
∫ t

0
α∓

h/m

(
t′
) (
φ0
(
t − t′

)− φ±
0,h/m

(
t, t′
))

A1
(
v
(
t′
))

dt′,

I3 (t)=
∫ t

0
αh/m

(
t′
)
φ0
(
t − t′

)
A1
(
v
(
t′
))

dt′.

Note that I1(t) corresponds to I1(h/m, t + nh − h, nh − h) with f = u from Lemma 3.10; then we get
‖I1(t)‖Xk < δ/2 for 0 � t � h � h∗

1 and 1 � n � [T/h]. Taking h∗
2 small enough, we obtain

‖I2(t)‖Xk + ‖I3(t)‖Xk � 5e2κh max
0�t�T

‖A1(u(t))‖Xk h< δ/2,
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for 0< h � h∗
2. Therefore, for 0< h � h∗ = min{h∗

1, h∗
2}, we have∥∥v (t)− v±

h,m (t)
∥∥

Xk
�
∥∥φ±

0,h/m (t, 0) (un−1 − Un−1)
∥∥

Xk
+ ‖I1 (t)‖Xk

+ ‖I2 (t)‖Xk
+ ‖I3 (t)‖Xk

+
∫ t

0

∥∥α∓
h/m

(
t′
)
φ±

0,h/m

(
t, t′
) (

A1
(
v
(
t′
))− A1

(
v±

h,m

(
t′
)))∥∥

Xk
dt′

� e2κh ‖un−1 − Un−1‖Xk
+ δ + 2Λe2κh

∫ t

0

∥∥v
(
t′
)− v±

h,m

(
t′
)∥∥

Xk
dt′,

and using Gronwall’s lemma, ‖v(t)− v±
h,m(t)‖Xk � C(‖un−1 − Un−1‖Xk + δ) with C = e(2κ+2Λ e2κh∗

)h∗
.

If we define Un−1(t)=
∑s

m=1 γmv±
h,m(t), we can see that Un−1(h)= Un and then

Un =
s∑

m=1

γmφ
±
0,h/m (h, 0)Un−1 +

s∑
m=1

γm

∫ h

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
h, t′
)

A1
(
v±

h,m

(
t′
))

dt′

= φ0 (h)Un−1 +
s∑

m=1

γm

∫ h

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
h, t′
)

A1
(
v±

h,m

(
t′
))

dt′;

writing un = φ0(h)un−1 +∑s
m=1 γm

∫ h
0 φ0(h − t′)A1(v(t′)) dt′ we obtain

un − Un = φ0 (h) (un−1 − Un−1)+
s∑

m=1

γm (I2 (h)± I3 (h))

+
s∑

m=1

γm

∫ h

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
t, t′
) (

A1
(
v
(
t′
))− A1

(
v±

h,m

(
t′
)))

dt′.

Using that I2(h) corresponds to I2(h/m, nh, nh − h) with f = A1(u) from Corollary 3.11 and I3(h) cor-
responds to I3(h/m, nh, nh − h) with F(t, t′)= φ0(t − t′)A1(u(t′)) from Lemma 3.12, we can see that
‖I2(h)‖Xk + ‖I3(h)‖Xk < δh, for h � h∗. Then, we have

‖un − Un‖Xk � eκh‖un−1 − Un−1‖Xk +
s∑

m=1

|γm|δh

+ 2ΛC e2κh
s∑

m=1

|γm|h(‖un−1 − Un−1‖Xk + δ)� eKh‖un−1 − Un−1‖Xk + C′δh,

where K = 2κ + 2ΛC
∑s

m=1 |γm| and C′ = (1 + 2ΛC e2κh∗
)
∑s

m=1 |γm|. Then, we obtain

‖un − Un‖Xk � eKnh‖u0 − U0‖Xk + C′

K

(
eKnh − 1

)
δ � (1 + C′/K) eKTδ < ε,

for δ small enough, which proves the theorem. �

The next result shows that for initial data in Xq+1, the method converges in X0 with order q. The
proof of convergence falls naturally from consistency and stability in the usual way (see Hairer et al.,
1993).
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Theorem 3.13 Let A0 : D(A0)→ X be an infinitesimal generator of a strongly continuous semigroup
φ0 and Xk = D(Ak

0) with the graph norm ‖u‖Xk =∑k
j=0 ‖Aj

0u‖X and let A1 ∈ Cq+1(Xk , Xk) for 0 � k �
q + 1 such that DmA1 : Xk →Lm(Xk , Xk) is a locally Lipschitz continuous map for 0 � m � q + 1. Let
φ,φ0,φ1 be the flows associated with (1.1), (1.2a) and (1.2b), respectively, and let Φ be the method
defined by (1.7a) or (1.7b) with γ = (γ1, . . . , γs) satisfying (1.8a) or (1.8b), respectively. Then, given
u0 ∈ Xq+1 and u(t)= φ(t, u0) the maximal solution of (1.1) defined on [0, T∗), for any T ∈ (0, T∗)
there exist h∗, δ, K, C such that if U0 ∈ Xq+1 satisfies ‖u0 − U0‖< δ and 0< h � h∗, then the sequence
Un =Φ(h, Un−1) is defined for n � [T/h] and satisfies

‖φ(nh, u0)− Un‖X � eKnh‖u0 − U0‖X + C
eKnh − 1

K
hq.

Proof. From Theorem 3.9, there exist δ, h∗ > 0 such that for any h ∈ [0, h∗] and ‖u0 − U0‖Xq+1 < δ,
the sequence Un =Φ(h, Un−1) is defined for n � [T/h] and ‖un − Un‖Xq+1 = o(1), when h → 0. From
Propositions 2.8 and 2.6, we can see that φ and Φ are compatible with {Xk}0�k�q+1; therefore φ,
Φ ∈ Cq+1,0

st ([0, h∗] × Xq+1, X0). Using the Taylor formula, we have

φ(h, un−1)=
q∑

k=0

1

k!
∂k

t φ(0, un−1)h
k + 1

q!

∫ h

0
(h − t)q∂q+1

t φ(t, un−1) dt,

Φ(h, un−1)=
q∑

k=0

1

k!
∂k

t Φ(0, un−1)h
k + 1

q!

∫ h

0
(h − t)q∂q+1

t Φ(t, un−1) dt;

from Theorem 3.1 (or Theorem 3.2) we obtain the local error estimation ‖φ(h, un−1)−Φ(h, un−1)‖X0 �
M (u)hq+1, where

M (u)= 1

(q + 1)!
max

0�t0�T
0�t�h∗

(∥∥∥∂q+1
t φ(t, u(t0))

∥∥∥
X0

+
∥∥∥∂q+1

t Φ(t, u(t0))
∥∥∥

X0

)

and using Theorem 3.8 the result follows. �

4. Full discretization

In actual problems the computation of Φ requires the partial problems to be solved exactly. Apart from
some simple cases of ODEs, this is not possible. In what follows we will show how the method defined
by (1.7) can be used to define integration methods of order q using suitable approximations of the partial
flows φ0 and φ1. In order to gain some insight we briefly discuss the simplest case given by the spectral
projections for linear flows.

Let X be a Hilbert space, and let {uν}ν∈N be an orthonormal basis of eigenfunctions of A0, i.e.,
A0uν = λνuν . Assume that Re(λν)� κ , define φ0(t)u =∑ν∈N

eλν t〈uν , u〉uν and the spaces

Xk =
{

u ∈ X :
∑
ν∈N

|λν |2k|〈uν , u〉|2 <∞
}

;

then a straightforward computation shows that φ0 is compatible with {Xk}k�0 and satisfies ‖φ0(t)u‖Xk �
eκt‖u‖Xk . In addition, the related orthogonal projection Pσ (onto the subspace spanned by {u1, . . . , uσ })
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given by

Pσu =
∑

1�ν�σ
〈uν , u〉uν ,

satisfies the estimate ‖u − Pσu‖Xl � (infν>σ |λν |)l−k‖u‖Xk .
Following these ideas we consider a family of operators {Pσ }σ∈N ⊂L1(Xk , Xk) verifying

• PσPσ = Pσ ;

• ‖Pσ‖L1(Xk ,Xk) � C;

• Pσφ0(t)Pσ = φ0(t)Pσ for t � 0 and σ ∈ N;

• limσ→∞ ‖u − Pσu‖Xk = 0 for u ∈ Xk;

• limσ→∞ ‖ id − Pσ‖L(Xk ,Xl) = 0 for 0 � l< k.

Note that the members of the family need not be orthogonal projections as suggested in the example.
Actually, nonorthogonal projectors are considered in many applications due to their lower computational
cost (see Remark 4.2 and the examples in Sections 5.2 and 5.3).

Accordingly, we set Xσk = PσXk as a workspace, the linear flow φσ0 (t)= φ0(t)Pσ , and φσ1 the flow
associated with Aσ1 = PσA1, and define the methodΦσ by (1.7) with φσ0 and φσ1 . Under the same hypoth-
esis as Theorem 3.13, we have the following result.

Theorem 4.1 Given u and T as in Theorem 3.13 and ε > 0, there exist δ > 0, σ ∗ ∈ N and h∗ > 0 such
that if σ � σ ∗, U0 ∈ Xσq+1 with ‖u0 − U0‖Xq+1 < δ and 0< h � h∗, then ‖un − Uσ

n ‖Xq+1 < ε for n � [T/h],
where Uσ

0 = U0 and Uσ
n =Φσ(h, Uσ

n−1). Furthermore, there exists C, K > 0 such that for any 0< h � h∗

and σ � σ ∗,

∥∥un − Uσ
n

∥∥
X0

� eKnh‖u0 − U0‖X0 + C
eKnh − 1

K

(
‖id − Pσ‖L(Xq+1,X0)

+ hq
)

.

Sketch of the proof. We prove the asymmetric case (1.7a); the symmetric case is completely similar.
The proof very closely follows the one given for Theorem 3.9. Let v(t)= u(t − nh + h) and vσ±

h,m the
solution of integral equation

vσ±
h,m (t)= φ±

0,h/m (t, 0)Uσ
n−1 +

∫ t

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
t, t′
)

PσA1
(
vσ±

h,m

(
t′
))

dt′;

we can write

v (t)− vσ±
h,m (t)= φ±

0,h/m (t, 0)
(
un−1 − Uσ

n−1

)+ I1 (t)+ I2 (t)± I3 (t)+ I4 (t)

+
∫ t

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
t, t′
)

Pσ
(
A1
(
v
(
t′
))− A1

(
vσ±

h,m

(
t′
)))

dt′,

where I1, I2, I3 are the same as in the proof of Theorem 3.9 and

I4 (t)=
∫ t

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
t, t′
)
(id − Pσ )A1

(
v
(
t′
))

dt′.

 by guest on D
ecem

ber 4, 2015
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


HIGH-ORDER METHODS FOR IRREVERSIBLE EQUATIONS 19 of 25

Since u ∈ C([0, T], Xq+1), it holds that A1(u) is uniformly continuous and then

lim
σ→∞ max

0�t�T
‖ (id − Pσ )A1 (u (t)) ‖Xq+1 = 0.

The first part of the result follows as in Theorem 3.9.
For the second part, we can see that

v±
h,m (t)− vσ±

h,m (t)= φ±
0,h/m (t, 0)

(
Un−1 − Uσ

n−1

)+
∫ t

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
t, t′
)
(id − Pσ )A1

(
v±

h,m

(
t′
))

dt′

−
∫ t

0
α∓

h/m

(
t′
)
φ±

0,h/m

(
t, t′
)

Pσ
(
A1
(
v±

h,m

(
t′
))− A1

(
vσ±

h,m

(
t′
)))

dt′,

from where we obtain the estimate∥∥v±
h,m (t)− vσ±

h,m (t)
∥∥

X0
� C

(
‖Un−1 − Uσ

n−1‖X0 + ‖id − Pσ‖L1(Xq+1,X0)

)
.

Writing Un−1(t)=
∑s

m=1 γmv±
h,m(t) and Uσ

n−1(t)=
∑s

m=1 γmvσ±
h,m(t), in the same manner as in

Theorem 3.9, we can show that

‖Un − Uσ
n ‖X0 � eKh‖Un−1 − Uσ

n−1‖X0 + Ch‖id − Pσ‖L1(Xq+1,X0)

and using that Uσ
0 = U0, we get ‖Un − Uσ

n ‖X0 � CK−1(eKnh − 1)‖id − Pσ‖L1(Xq+1,X0). Finally, from
Theorem 3.13 and the triangle inequality the proof is completed. �

Remark 4.2 If {u1, . . . , uσ } is a basis of Xσk and μ1, . . . ,μσ ∈ X∗
k are Hahn–Banach extensions of the

dual basis, then Pσ , defined by Pσu =∑σ
ν=1〈μν , u〉uν , is a projection onto Xσk and the flow φσ1 is given

by φσ1 (t, u)=∑σ
ν=1 Ûν(t)uν , where (Û1, . . . , Ûσ ) is the solution of the ODE system

⎧⎪⎪⎨
⎪⎪⎩

dÛν/dt =
〈
μν , A1

⎛
⎝ σ∑

j=1

Ûj(t)uj

⎞
⎠〉 ,

Ûν(0)= 〈μν , u〉.

See the examples in Sections 5.2 and 5.3.

5. Numerical examples

We present several examples which illustrate the performance of the proposed methods.

5.1 Ordinary differential system

We begin by considering an elementary example which is simple for the proposed methods, but would
be more expensive to solve with symplectic methods. The bidimensional system{

u̇1 = 4u2 − tan(u1),

u̇2 = −4u1 − tan(u2)
(5.1)
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Fig. 1. Flows φ0,φ1 and solution of (5.1) obtained with Φ of fourth order.

can be split into a linear system and a decoupled system. The linear flow is a clockwise rotation; orbits
are showed in Fig. 1 for concentric circles. Lines that go through the origin are the orbits of the system
u̇j = − tan(uj), whose solution is uj(t)= arcsin(e−t sin(uj,0)). Note that solutions are not defined for
t< ln | sin(uj,0)| � 0, which implies that h should be small for symplectic methods (with negative steps).
For initial data (1, 3/2), the solution computed with Runge–Kutta with very small h is shown in Fig. 1;
the points are the solution obtained with the symmetric methodΦ of fourth order with s = 2, γ1 = −1/6,
γ2 = 2/3 and h = 0.2. It can be seen numerically that for this step, h = 0.2, the symplectic method
proposed in Neri (1987) cannot be used.

5.2 Oscillatory reaction–diffusion system

In this example, we consider a reaction–diffusion system, as the ones analyzed in Kopell & Howard
(1973). We study the performance of the methods for this system. Since this system is an irreversible
problem, symplectic methods with negative steps cannot be used. We consider the system

∂tv =Δv + (1 − r2
)

v − (ω0 − ω1r2
)

w,

∂tw =Δw + (ω0 − ω1r2
)

v + (1 − r2
)

w,
(5.2)

where r2 = v2 + w2. If u = v + iw, equation (5.2) reads as follows:

∂tu =Δu + (1 − |u|2) u + i
(
ω0 − ω1|u|2) u.

The right-hand term can be written as A0u + A1 (u), where A0u =Δu and

A1 (u)=
(
1 − |u|2) u + i

(
ω0 − ω1|u|2) u.
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The flow φ1 is given by

φ1 (h, u)= ueh
(
1 + (e2h − 1

) |u|2)−1/2
ei(ω0h−ω1/2 ln(1+(e2h−1)|u|2)).

We will restrict our discussion to L-periodic solutions; flow φ0 can be computed approximately by using
the discrete Fourier transform (DFT). Let σ be an odd integer, σ = 2l + 1 with l ∈ N; consider

(Pσu) (x)=
l∑

ν=−l

Ûν eiaνx,

where a = 2π/L and Ûν is the DFT coefficient given by

Ûν = 1

σ

σ−1∑
r=0

Ur e−i2πrν/σ = 1

σ

σ−1∑
r=0

u (Lr/σ) e−i2πrν/σ .

Since e−i2πrν/σ = e−i2πr(ν±σ)/σ , it holds that Ûν = Ûν±σ . From Tadmor (1986, Lemma 2.2.), for
u ∈ Hs(T) with s> 1/2 we have ‖u − Pσu‖Hr(T) � CL,s,rσ

r−s‖u‖Hs(T). Since φσ0 (t)= φ0(t)Pσ and using
that Ûν = Ûν±σ , we get

(
φσ0 (t)u

)
(Lr/σ)=

l∑
ν=−l

Ûν e−a2ν2tei2πrν/σ

=
σ−1∑
ν=l+1

Ûν e−a2(σ−ν)2t ei2πrν/σ +
l∑

ν=0

Ûνe
−a2ν2tei2πrν/σ

=
σ−1∑
ν=0

Ûν e−a2λν t ei2πrν/σ ,

where λν = σ 2g(ν/σ ) for 0 � ν � σ − 1 and g(ξ)= ξ 2 − 2(ξ − 1/2)+.
In Kopell & Howard (1973) the stability of the planar waves

v (x, t)= r∗ cos
(
θ0 ± ax + (ω0 − ω1r∗2

)
t
)

,

w (x, t)= r∗ sin
(
θ0 ± ax + (ω0 − ω1r∗2

)
t
)

is proved, if L> 2π(3 + 2ω2
1)

1/2, where r∗ = L−1(L2 − 4π2)1/2 and θ0 is an arbitrary constant (see also
Sherratt, 2003). Taking L = 4π , ω0 = 1, ω1 = 1/2 and u0 = r∗eiax, we compare methods given by (1.7b)
of order q = 4, 6, 8 with σ = 63. The fourth-order method used is the same as the previous example;
for the sixth-order method we take s = 3, γ1 = 1/48, γ2 = −8/15 and γ3 = 81/80; for the eighth-order
method we take s = 4, γ1 = −1/720, γ2 = 8/45, γ3 = −729/560 and γ4 = 512/315. In Fig. 2, global
errors for T = 10 are shown. We note that the slopes coincide with the expected order up to the point
where the rounding error dominates the total error.

In order to show the stability of the planar waves, we consider the initial data ũ0(x)= 0.8u0(x)+
0.1 + 2.5ei2ax − 0.8iei3ax. In Fig. 3, we can see the evolution of the fourth-order method Φσ(t, ũ0) for
t ∈ [0, 50], calculated with σ = 63 and h = 0.1 and φ(t, u0) is showed as a dashed line.
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Fig. 2. Global error of Φσ vs. h for q = 4, 6, 8.

Fig. 3. Re(Φσ (t, ũ0)) for t = 0 (left) and t = 50 (right).

5.3 Regularized Schrödinger–Poisson equation

In this example, we study the 2π -periodic solutions of the regularized Schrödinger–Poisson equation

{
∂tu = i∂2

x u − (−∂2
x

)β
u + i|u|2u + i

(
g ∗ |u|2) u,

u(0)= u0,
(5.3)

where 0<β < 1 and g is a real kernel. Similar equations are considered in Aloui (2008a,b) and Aloui
et al. (2013), on bounded domains of R

n as well as on compact manifolds. In order to apply the methods
given by (1.7b), we consider the flow φ0 generated by the linear operator L = i∂2

x − (−∂2
x )
β , and the flow

φ1(h, u)= exp(ih(|u|2 + g ∗ |u|2))u associated with ∂tu = i(|u|2 + g ∗ |u|2)u. If ρ = |u|2 and ρ(x, t)=∑
ν∈Z

ρ̂ν(t) eiνx, we have

(g ∗ |u|2)(x, t)=
∑
ν∈Z

ĝν ρ̂ν(t) eiνx.

Both φ0, φ1 can be numerically solved using DFT as in the example above. Using fast Fourier transform,
the computational cost of each evaluation is O(σ log σ), where σ is the number of points in the spatial
discretization.
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Fig. 4. Global error vs. h for q = 4, 6, . . . , 14, absolute error (left) and relative error (right).

In order to analyse the performance of the integrators proposed, we consider the exact solutions
u(x, t)= r(t) ei(ν0x+θ(t)), with r(t)= r0 e−|ν0|2β t and

θ(t)= −ν2
0 t + 1

2 (1 + ĝ0)r
2
0|ν0|−2β

(
1 − e−2|ν0|2β t

)
+ θ0.

Note that u(·, t) has only one oscillation mode, and taking ν0 as the momentum of the wave as usual, we
can say that u is a monokinetic wave. As an example, we consider the Poisson kernel given by

g(x)= sinh(λ)

cosh(λ)− cos(x)
;

then ĝν = e−λ|ν|. In Fig. 4, absolute global error and relative global error, defined by

Eabs = max
0�n�[T/h]

‖un − Un‖L2 , Erel = max
0�n�[T/h]

‖un − Un‖L2

‖un‖L2
,

are shown, with β = 1/4, T = 4, λ= 1, initial condition u0 = ei4x and methods varying from fourth to
fourteenth order. The number of points in the spatial discretization is σ = 31 and temporal steps h range
from 0.01 to 2. As in the example above, the slopes coincide with the expected order up to the point
where the rounding error dominates the total error.

For ν0 = 0, it holds that u(x, t)= r0 ei2|r0|2t+iθ0 , which are time-periodic solutions. Multiplying (5.3)
by ū and integrating by parts, we get

d

dt
‖u‖2

L2 = −2‖ (−∂2
x

)β/2
u‖2

L2 = −2
∑
ν∈Z
ν |= 0

|ν|2β |ûν |2 � −2‖Pu‖2
L2 ,

where Pu =∑ν |= 0 ûν eiνx and therefore the monokinetic solution with ν0 = 0 is the only time-periodic
solution.

It is easy to see that the flow φ of equation (5.3) preserves parity; then for any odd initial data
u0, u(t) is an odd function and u(t)= Pu(t) for t> 0. Therefore, it holds that d‖u‖2

L2/dt � −2‖u‖2
L2

and ‖u‖L2 � e−t‖u0‖L2 . We will test the numerical methods by verifying these properties. Consider the
odd initial data u0(x)= ecos(2x)+iπ/6 sin(5x); in Fig. 5 we show the numerical solution obtained with
the eighth symmetric integrator with σ = 255 and h = 0.1. Since the higher the frequencies are, the
stronger is the damping, u asymptotically behaves like a e−t−it sin(x). Figure 6a shows the evolution of
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Fig. 5. Re(Φσ (t, u0)) and Im(Φσ (t, u0)) for t = 0 (left), t = 2 (centre) and t = 10 (right).

(a) (b)

Fig. 6. Evolution of ‖u‖L2/‖u0‖L2 vs. time. (a) Odd solution and (b) even solution.

Fig. 7. Re(Φσ (t, u0)) and Im(Φσ (t, u0)) for t = 0 (left), t = 2 (centre) and t = 10 (right).

‖u(·, t)‖L2/‖u0‖L2 as a continuous line, the function e−t as a dotted line and the asymptotic behaviour as
a dashed line.

We also consider a numerical computation with u0(x)= ecos(2x)+iπ/6(1 − 1.75 cos2(5x)), which is
even initial data. Using the same integrator as in the odd case, we see that the solution converges
to the periodic solution u(x, t)∼ aei2|a|2t as seen in Fig. 7. In Fig. 6b, fast stabilization of the norm
can be observed. This suggests that the periodic solutions are limit cycles of the dynamic given by
equation (5.3).
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