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Expanding the horizons of G protein-coupled
receptor structure-based ligand discovery and
optimization using homology models

Claudio N. Cavasotto* and Damián Palomba

With 4800 members in humans, the G protein-coupled receptor (GPCR) super-family is the target for

more than 30% of the marketed drugs. The recent boom in GPCR crystallography has enabled the

solution of B30 different GPCR structures, which boosted the identification and optimization of novel

modulators and new chemical entities through structure-based strategies. However, the number of

available structures represents a small part of the human GPCR druggable target space, and its complete

coverage in the near future seems unlikely. Homology modelling represents a reliable tool to fill this gap,

and hence to vastly expand the horizons of structure-based drug discovery and design. In this Feature

Article, we show from a wealth of retrospective and prospective studies that in spite of the pitfalls of and

standing challenges in homology modelling, structural models have been critical for the blossoming and

success of GPCR structure-based lead discovery and optimization endeavours; in addition, they have also

been instrumental in characterizing receptor–ligand interaction, guiding the design of site-directed

mutagenesis and SAR studies, and assessing off-target effects. Considering though their current

limitations, we also discuss the most pressing issues to develop more accurate homology modelling

strategies, with a special focus on the integration of computational tools with biochemical, biophysical and

QSAR data, highlighting methodological aspects and recent progress. The teachings of the three GPCR

Dock community-wide assessments and the fresh developments in GPCR classes B, C and F are

commented. This is a fast growing and highly promising field of research, and in the coming years, the

use of high-quality models should enable the discovery of a growing number of potent, selective and

efficient GPCR drug leads with high therapeutic potential through receptor structure-based strategies.

1. Introduction: the world of GPCRs
1.1 Description and function

G protein-coupled receptors (GPCRs) are integral membrane
proteins, which recognize numerous messengers such as photons,
odorants, neurotransmitters, fatty acids, ions, and peptides,
and translate these stimuli into intracellular responses.1 The
GPCR signalling process is linked to several physiological and
pathophysiological responses affecting immune, cardiovascular
and endocrine systems, among others.2–4 Neurodegenerative,
immune, metabolic, cardiovascular, psychiatric, and oncologic
diseases have been tackled by a great number of drugs targeting
GPCRs,5 an attractive target which currently accounts for more
than 30% of the marketed drugs.6 Considering recent efforts
aimed at determining human GPCR structure and function,7 it is

reasonable to expect that the number of drugs targeted towards
GPCRs will further increase.

With over 800 members in humans,8,9 the GPCR super-
family is usually classified into five main families:10 class A
or family 1 (rhodopsin family), which is by far the most
numerous group with approximately 300 members; class B or
family 2 (secretin and adhesion families); class C or family 3
(glutamate family); and the frizzled/taste2 family. GPCRs are
composed of a polypeptide chain of seven a-helices crossing the
cell membrane, also known as transmembrane domains (TMs),
with the N-terminus and the C-terminus located at the extra-
cellular and intracellular side, respectively. The C-terminus
possesses an a-helix (helix 8) parallel to the plasma membrane.
TMs are connected by three intracellular (ILs) and three extra-
cellular (ELs) loops (Fig. 1).

The extracellular domains (the ELs and N-terminus) and the
section of the helical-bundle facing the extracellular milieu are
responsible for the binding of modulators, while the intracellular
regions (the ILs and C-terminus) and the portion of TM domains
open toward the intracellular milieu are linked to the binding of
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intracellular partners and the regulation of their activity.11

Ligands can induce or stabilize different conformational states
of TMs which trigger intracellular signalling cascades con-
trolled by heterotrimeric guanine nucleotide-binding proteins
(G proteins), and whose function is related to the ability of the

Ga subunit to toggle between an inactive GDP-bound confor-
mation and an active GTP-bound conformation that regulates
the activity of downstream effector proteins.12

In the absence of an activating ligand, GPCRs usually display
basal activity that is enhanced upon binding of an agonist (full

Fig. 1 Architecture of G protein-coupled receptors. Transmembrane helical regions (TM1–TM7) are shown in grey, and extracellular (EC) and
intracellular (IL) loops are shown in orange. Disulfide bonds involving the EL2 are displayed in stick representation. The orthosteric binding site within
TM3, 5, 6 and 7 is also displayed. Figures were prepared using ICM software (Molsoft LLC; www.molsoft.com).
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or partial), reduced by inverse agonists and unaltered by neutral
antagonists,11 which block the action of both agonists and
inverse agonists.13 GPCRs can also be modulated by allosteric
ligands, which bind to a site different from the orthosteric one
(i.e. the natural ligand-binding site), and bitopic ligands, which
have the ability to bind to both orthosteric and allosteric sites.7

1.2 The structural age: unveiling details of GPCR–ligand
interaction and triggering structure-based drug design

The determination of GPCR 3D structures opened a wealth of
new opportunities for structure-based virtual screening (SBVS)
campaigns characterized by high hit rates and affinities, where
novel ligands and new chemical entities (NCEs) were discovered.14,15

The advent of new structures also served as a starting point for hit-to-
lead optimization,6,14,16,17 and has been instrumental to characterize
receptor–ligand interaction, rationalize structure–activity relation-
ships (SAR),18 design site-directed mutagenesis (SDM) experiments,
shed light on the GPCR function,19 and assess off-target effects.20,21

The first 2D model of rhodopsin, a class A GPCR, was
proposed in 1983 by Hargrave and coworkers.22 Ten years later,
a 2D projection map was calculated from two-dimensional
crystals of bovine rhodopsin (bRho) by using electron cryo-
microscopy,23 and based on this map, a molecular model of the
receptor was built.24 The breakthrough came in 2000 with the
release of the first X-ray crystal structure of a GPCR, bRho in its
inactive (dark-adapted) state covalently bound to retinal.25 For
years, bRho has remained the only GPCR structure experimen-
tally solved. It was not until 2007 that crystal structures were
determined for the b2 adrenergic receptor (b2AR) bound to
carazolol,26–29 the first druggable GPCR to be crystallized. This
situation was facilitated by different crystallization strategies,16

such as the formation of fusion proteins by incorporating soluble
proteins [T4 lysozyme (T4L) or apo cytochrome b562RIL (BRIL)30]
into IL3 or the N-terminus, the introduction of antibody frag-
ments,31 and the insertion of mutations (thermo-stabilised
receptors or StaRs32). These approaches were intended to
decrease the flexibility of IL3, maximize the polar surface
available for crystallization, mimic a part of the a subunit,
and increase the conformational thermostability of GPCRs. In
2011, the experimental determination of the b2AR bound to
both an agonist and a nanobody showed the first crystal
structure of a fully-activated GPCR.31 This success was followed
by a new breakthrough: the b2AR complexed with both an
agonist and the G protein, revealing for the first time the
molecular details of the interaction between the latter and
the intracellular surface of the receptor.33 Thanks to these
crystallization developments, several 3D structures have been
solved, e.g., the turkey b1 adrenergic receptor (b1AR),34 the
human adenosine A2A (A2AR),35 histamine H1 (H1R),36 dopamine
D3 (D3R),37 muscarinic M2 (M2R)38 and M3 (M3R),39 serotonin 1B
(5HT1B)40 and 2B (5HT2B)41 receptors, the sphingosine 1-phosphate
receptor 1 (S1PR1),42 the chemokine receptors 4 (CXCR4)43 and the
C–C chemokine receptor 5 (CCR5),44 the d (OPRD),45 m (OPRM),46

k (OPRK),47 and nociceptin (OPRX)48 opioid receptors, the
neurotensin receptor 1 (NTSR1),49 the proteinase-activated
receptor 1 (PAR1),50 the P2Y12 (P2Y12R)51 and P2Y1 (P2Y1R)52

receptors, the GPR40 receptor (GPR40)53 [also known as the free
fatty acid receptor 1 (FFAR1)], the orexin receptor 2 (OXR2),54

and the angiotensin II type-1 receptor (AT2R1).55 Nowadays,
there are 118 class A GPCR X-ray structures, besides two class
B [the corticotropin-releasing factor receptor 1 (CRF1)56 and the
glucagon receptor (GCGR)57], two class C [the metabotropic
glutamate receptor 1 (mGluR1)58 and the metabotropic glutamate
receptor 5 (mGluR5)59], and four class F [the smoothened receptor
(SMO)60,61].

Most GPCR structures possess a co-crystallized ligand
bound, and thus three different receptor conformations can
be characterized:11 (i) an ‘‘inactive state’’, wherein the receptor
is crystallized in complex with an antagonist or an inverse
agonist, (ii) an ‘‘agonist-bound state’’, which lacks the G
protein or a substitute for it, and (iii) a ‘‘fully-active state’’,
which consists of a trimeric complex formed by the receptor, an
agonist, and the G protein (or a G protein mimetic). There are
also intermediate conformations among these three states
enabling different structural features, which stemming from
differences in the chemical structure of the bound ligand, could
be linked to partial agonism activity.62 It has been suggested
that the presence of a ligand plays an important role in GPCR
stabilization. Moreover, it was even found that ligand-induced
receptor conformational stabililization could help in GPCR
expression.63 Since it is believed that the inactive state to be
more rigid and thus more feasible for crystallization, fewer
GPCRs have been crystallized in their active state.17

Although in most of the structures co-crystallized ligands
bind to the orthosteric ‘‘major’’ binding site delimited by TM
helices 3, 4, 5, 6, and 7 (Fig. 2), isoithiourea IT1t binds to a
‘‘minor’’ binding site in CXCR4 delimited by TM helices 1, 2, 3,
and 743 (Fig. 2), while peptide ligand CVX15 binds to the major
binding site in the same receptor. A M2R structure has also
been co-crystallized with both an orthosteric (iperoxo) and a
positive allosteric (LY2119620) ligand64 (Fig. 3).

Different co-crystallized ligands with either the same receptor
(e.g. A2AR) or the same receptor subtypes (e.g. b1AR and b2AR)
have provided valuable insight into ligand binding modes65 and
druggability.66 In spite of their differences, specific GPCR–ligand
interactions are necessary both for full/partial agonists and
antagonists/inverse agonists.67

The GPCR activation mechanism is a complex process
in which, thanks to the structural progress over the past few
years, significant improvement in its understanding has been
achieved.68 Based on analyses of crystal structures of inactive
and active receptors, including b2AR, bRho, M2R, and A2AR,
activation starts through distinct residues at the top of different
receptors, while the main processes of activation are common
to all family A members.11 The activation mechanism would
affect TM3 and TM6 to generate concerted movements:
the inward movement of TM5, the slight rotation and upward
movement of TM3, the rotation of TM6, and the inward
movements of TM7 and TM1.11 These movements are facili-
tated by both the breaking of the ionic lock11 and mainly the
rearrangement of specific hydrophobic residues between TM3
and TM6.
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1.3 Do we really need GPCR in silico models to expand ligand
discovery and lead optimization?

As it has been said above, the knowledge of GPCR 3D structures
is a key component in structure-based drug design. To date,
only B30 different GPCR structures are available, a small
fraction of the 4800 GPCRs present in the human genome.8

In spite of the recent crystallization breakthrough, a complete
structural coverage of the GPCR space seems unlikely in the
near future. In this scenario, accurate in silico modelling arises
as a powerful tool approach to fill the gap. It has been shown
that carefully built GPCR models accurately capture binding

site structural features, and are suitable for SBDD even as X-ray
structures69–72 (see also Sections 3 and 4). Thus, modelling
appears essential for SBDD on GPCRs at a genome-wide scale.

For protein modelling, two main strategies can be followed:
(i) homology (or comparative) modelling, where structural
models of a given protein (target) are built based on the
experimentally solved structure of a homologous protein (template)
and (ii) de novo modelling, whose algorithms do not rely on
homologous templates and predict structures directly from
sequence. In the latter category, GPCR modelling tools such as
PREDICT73 and Membstruck74 have been developed and success-
fully used in SBVS.75–79 Hybrid approaches, such as the recently
developed GPCR-I-Tasser,80 should also be mentioned.

Of these approaches, homology modelling is by far the most
widely used tool for GPCRs, as can be seen from the wealth of
successful SBVS campaigns (see Section 3.1), lead optimization
endeavours (3.2), several other applications in the context of
structure-based drug (3.3), and the GPCR-Dock competitions
(4), and thus will be the topic of this Feature Article. However, it
will also be evident from this review that in spite of truly
impressive achievements, GPCR homology modelling still has
limitations, and there is an actual and urgent need to address
the challenges of developing more accurate modelling methods
that are able to integrate in silico design with experimental
knowledge,81 and benchmark these methodologies in retro-
spective and prospective structure-based drug discovery and
optimization campaigns.

2. GPCR structural homology
modelling

Homology modelling aims at predicting an unknown protein
structure (target or query receptor) from a related homologous

Fig. 2 Major and minor orthosteric binding sites in GPCRs. Left panel: Small-molecule antagonist eticlopride bound to the major site in the dopamine D3

receptor (PDB 3PBL), delimited by TM3, 5, 6, and 7 (in some receptors, TM4 is also involved in binding); right panel: small-molecule antagonist
isoithiourea IT1t bound to the minor site of the chemokine CXCR4 (PDB 3ODU), delimited by TM1, 2, 3, and 7. Figures were prepared using ICM software
(Molsoft LLC; www.molsoft.com).

Fig. 3 Human M2 muscarinic acetylcholine receptor bound to the small-
molecule agonist iperoxo and allosteric modulator LY2119620 (PDB
4MQT). The orthosteric site is delimited by TM3, 5, 6, and 7. The figure
was prepared using ICM software (Molsoft LLC; www.molsoft.com).
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protein whose 3D structure (template) has been experimentally
solved,82 and consists of the following steps: (i) selection of one
(or more) template(s) from a homologous protein(s); (ii) target–
template sequence alignment; (iii) preliminary target model
(crude model) based on the template (the correspondence
between amino acids in the target and template is directly
taken from the alignment); (iv) refinement of the crude model
(preferably in complex with a ligand), incorporating experi-
mental data whenever available; and (v) model validation.

Although model quality usually depends on the extent of
target/template sequence similarity,83 in GPCR modelling,
where low sequence similarity is the rule, overall structural
similarity, and the presence of key conserved residues in each
helix across the whole family84 facilitate the task. A plethora of
recent studies (see Section 2.2) and the community-wide GPCR
Dock assessments70–72 (see Section 4) have demonstrated that crude
model refinement incorporating biochemical and biophysical data
yields reliable models for SBDD. Refinement is necessary especially
to obtain an accurate binding site representation due to their
structural differences stemming from low sequence identity,
chemical diversity of GPCR ligands, and structural flexibility
associated with ligand efficiency (LE).76,85–87

An in-depth characterization of every step of the homology
modelling process is beyond the scope of this work (the reader
may refer to ref. 88–92 for a comprehensive description of this
methodology). Instead, in this section, we will focus on four
challenging and pressing issues of GPCR modelling, highlighting
methodological aspects and recent advances: template selection
and crude model building, loop modelling, refinement strategies,
and model validation. This is followed by an up-to-date reference to
available web-servers related to GPCR modelling.

2.1 Template selection and crude model building

Throughout the text we use the Ballesteros–Weinstein scheme,93

whereby residues are numbered as X�YY, wherein X represents the
number of helix in which the residue of interest is located, and YY
its relative position to the most conserved amino acid in that helix,
designated as number 50 (Asn in TM1, Asp in TM2, Arg in TM3,
Trp in TM4, Pro in TM5, Pro in TM6, and Pro in TM7). For residues
located in loops or terminal segments sequential numbering
is used.

Besides target/template TM sequence similarity, and the
functional state of the receptor (active or inactive),94 the common
features in binding sites that match ligand privileged structures95

can be also used to select the appropriate template(s) for a given
target. The recognition of specific features in the target sequence,
such as amino acids responsible for helical kinks (Gly and Pro), and/
or Cys residues that participate in the formation of disulfide bonds
should be also accounted for in template selection.96 In spite of
the fact that the common assumption that homology model
accuracy correlates with sequence similarity has been reflected
in docking experiments97,98 and in VS studies,99–106 this has
been recently challenged,107,108 where optimal models built
based on the closest related templates did not improve the VS
outcome in terms of AUROC (Area Under the Receiver-Operating

Characteristic curve) score,107 BEDROC (Boltzmann-Enhanced
Discrimination of ROC) and an enrichment factor (EF).108

GPCR homology models can be built by means of either a
single- or multiple-template approach,92 where the target is
divided into several segments, and different templates are used
to model each segment. Regardless of the template approach, it is
always advisable to build multiple sequence alignments across
several GPCRs, from where the pairwise target/template(s)
alignment(s) is/are to be extracted. Although the common practice
is to avoid gaps in the alignment of TMs,92 the observed backbone
irregularities in the TM helices of recent structures109 should be
taken into consideration at the alignment level, especially the wide
p and tight 3.10 helical turns in TM2 and TM5.110 Even though
building an initial crude model is a straightforward process,88,111 it
is advisable to account for potential structural differences such as
kinks induced by Pro and/or Gly, rigid TM rotations, shifts, and tilts
at this stage, since they could be critical to correctly predict GPCR–
ligand interaction, and it may be difficult so solve these issues at
the refinement stage.72 The difficulty at modelling the kink induced
in the CXCR4 by the T2.56XP2.58 motif43 observed during the GPCR
DOCK 2010 competition71 clearly illustrates this point.

It should be mentioned that although the multiple-template
approach often outperforms the single-template strategy in
terms of structural accuracy, provided that the templates are
properly selected and their sequences are correctly aligned,94 it
has been shown that binding site refinement using a full
flexible docking approach and few geometrical constraints
extracted from SDM can generate models that perform significantly
better than crude models in terms of binding pose prediction,
SBVS performance, and selectivity101 (several other examples are
presented in Section 2.2).

2.2 Refinement strategies: impact on retrospective docking
poses and SBVS

Information inferred from SDM and SAR studies in terms of
residues and ligand moieties involved in receptor–ligand inter-
action, respectively, and interaction patterns extracted from
related GPCR–ligand crystal structures may be used to incorpo-
rate pharmacophore/geometrical constraints during the mod-
elling process between the receptor and the ligand, or among
the ligand and receptor themselves. Although it is advisable to
use this information as early as possible, it has been shown to
be especially valuable at the model refinement stage.

It is worth noting that the analysis of SDM data has shown
that it might be ligand-dependent, both in terms of ligand type
(agonist or antagonist) and of different chemotypes.112 Thus,
one should be cautious when using SDM data from a given
chemotype to infer interaction patterns for others.113

Conserved interaction sites observed in the growing number
of bioaminergic receptor structures, such as Asp,3.32 aromatic
residues at positions 4.52, 4.56, 6.52 and 6.55, and polar amino acids
at positions 5.42 and 5.46, have been successfully used to derive
distance restraints to model GPCR–ligand interaction.70–72,101 In the
A2AR, although ligand interaction with Asn6.55 was correctly pre-
dicted in many studies,72,101 the lack of experimental information
regarding other hydrogen-bond interactions precluded an accurate
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modelling of them, considering also the unpredictable fact that
many of those interactions were mediated by non-conserved water
molecules, thus not included in the modelling.72

The use of distance constraints to optimize crude models
represented a critical step toward high-quality homology modelling.
Klebe and co-workers introduced protein–ligand restraints
obtained from manual or rigid-receptor docking in the model-
ling procedure using MODELLER,114 and neurokinin-1 receptor
(NK1R) models thus generated were successfully used in the
discovery of antagonists.115

In the ligand-steered homology modelling (LSHM) method,
the binding site is co-optimized with the ligand through a
flexible ligand–flexible receptor docking procedure by means
of Monte Carlo sampling of the side-chain dihedral angles, and
the six rigid coordinates and dihedral angles of the ligand,
supplemented by receptor–ligand distance restraints whenever
available from SDM or SAR data.116,117 The use of geometrical
constraints is convenient, since it helps to decrease the number of
degrees of freedom during optimization, though not mandatory.
Homology models of the melanin-concentrating hormone receptor 1
(MCH-R1) generated using the LSHM were used in a prospective
SBVS campaign, where six novel low-micromolar antagonists were
discovered.117 The LSHM was further validated through cross-
modelling of experimentally solved GPCR structures, observing that
refined models outperformed crude models in terms of ligand pose
prediction, VS performance and selectivity101 (see also Section 4);
refined models of the cannabinoid 2 receptor (CB2) using the LSHM
were also used for SAR data rationalization.118–120

It should be noted that binding site optimization with non-
native ligands, following the successful approach developed for
protein kinases121–123 and other receptors,124,125 was used in
crystal and modelled structures of the b2AR for receptor
ensemble docking,103 where it was observed that ensemble
docking outperformed the single-structure strategy.

In a method proposed by Moro and co-workers, an ensemble
of ligand poses within a crude model binding site is generated
using rigid receptor soft-docking followed by local energy
minimization of the side chains and ligand, thus generating
homology models with diverse side chain orientations.126 The
ligand is then re-docked to the best energy model. Costanzi
utilized an approach wherein experimental knowledge of ligand
binding is combined with in silico modelling of induced-fit
effects127 in order to develop b2AR models.128

Following this strategy, GPCR models of dopamine (D2, D3, and
D4), serotonin (5-HT1B, 5-HT2A, 5-HT2B, and 5-HT2C), histamine
(H1), and muscarinic (M1) receptors, based on the structure of the
b2AR, were created using an induced-fit docking (IFD) approach, to
assess their performance in VS.129 On models of 5-HT2A, 5-HT1B,
D2, 5-HT2C, D3, and M1 the authors were able to identify active
compounds from decoys, while the remaining models (5-HT2B, D4,
and H1) yielded poorer outcomes, probably owing to difficulties in
modelling the EL2; the same strategy was used to probe whether
the availability of a novel structure of the closely related D3 receptor
would allow the construction of reliable models of D2R and D1R;108

the authors stressed that the ligand employed in the IFD procedure
is a determinant factor, much more important for the performance

of homology models in VS studies than the choice of template or
the model preparation method. The IFD method was also used to
develop optimized binding sites of the acetylcholine muscarinic
receptors, where it was concluded that the optimization stage
including functional knowledge has a stronger impact on model
quality than target–template sequence similarity.130

In a study of VS on a set of MT2 melatonin receptor
models,131 ligands were placed within the MT2 modelled binding
sites according to SDM data and pharmacophore modelling, and
the complexes were refined using IFD. It was shown that most of
the ligand-adapted MT2 receptor models displayed important
improvements in VS enrichments compared to the unrefined
homology models.131

Chin et al. developed human M1R homology models based
on the crystal structure of the rat M3R, and then modified them
by using the agonist-bound crystal structure of a b2AR.132 The
binding sites were then refined by IFD with acetylcholine; it was
observed that the models developed could be successfully used
to detect agonists.

In the community-wide assessment of GPCR structure mod-
elling and ligand docking 2008 (GPCR Dock 2008),72 a b2AR-
based homology model combined with the ligand-guided back-
bone ensemble receptor optimization (LiBERO) technique was
used to predict the structure of the human A2AR complexed
with antagonist ZM241385.133 Multiple conformations of the
protein backbone were generated using heavy-atom Elastic
Network Normal Mode Analysis (EN-NMA), which was followed
by docking ligands into the models with flexible side chains.
The models thus generated were clustered and validated
through small-scale retrospective VS; the modelling of the
non-conserved part of the EL2 (residues G142 to A,165 which
was the unaligned portion that was not included in the initial
A2AR model) was performed using the ICM134 loop modelling
algorithm based on global minimization of the conformational
energy imposing disulfide bond restraints. Finally, the optimized
binding site and the EL2 conformational ensemble were ranked
according to their conformational energy. The LiBERO approach
was also utilized in the same assessment, although using the
turkey b1AR as a template.72

Molecular dynamics (MD) is also a useful strategy to optimize
receptor–ligand interactions.135–138 Using dynamic homology
modelling,135 the activated state of b2AR was modelled based
on the ‘‘active’’ opsin structure, without adding any experimental
information. Free MD simulations in an explicit membrane/
solvent environment were conducted and representative binding
modes were extracted by the hierarchical clustering of inter-
action fingerprints (IFPs).139 These binding modes were assessed
in VS studies in which they outperformed the X-ray structure of
the inactive b2AR in prioritizing agonists over antagonists/
inverse agonists.140

MD simulations of four GPCR–ligand bound complexes
(CXCR4 and D3R X-ray structures, and H4R and 5-HT6 homology
models) were undertaken in lipid bilayers in order to develop
discrete protein conformations, and thus to characterise binding
site flexibility.141 Representative structures from a RMSD-based
clustering were compared to crystal structures and models, and
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it was observed that MD snapshots outperformed X-ray structures
and homology models in terms of VS enrichment, what according
to the authors, was probably because protein conformations from
MD are less biased toward a specific chemotype.

2.3 Modelling the loops

Modelling extracellular and intracellular loops in GPCRs is still
a highly difficult task due to their high sequence and structural
variability, as observed in the available crystal structures.142,143

Moreover, the substantial length of some loops, e.g. IL3, hinders
any attempt to successfully model them, thus being suitable to
directly omit them.92

The EL2 links TM4 and TM5 and, in many class A GPCRs,
features a highly conserved Cys residue that makes a disulfide
bond with Cys3.25 (Fig. 1). A great structural variability of EL2 as
well as a diverse array of disulfide bonds involving Cys residues
of this loop have been observed among the several experimentally
solved GPCR structures.144 In an early study on bRho, Cavasotto et al.
showed that omitting the EL2 had no impact in redocking the
co-crystallized ligand retinal, while it had a minor impact in retro-
spective VS.145 On the same line, Nikiforovich and co-workers
showed that docking to loop-less crystal structures of b1AR, b2AR,
and A2AR was as good as or better than with modelled loops, in
terms of binding mode prediction.146 A study by de Graaf et al. on
D2R, A3AR, and thromboxane A2 receptor (TA2R) models revealed
that loop-less models of D2R and TA2R were able to discriminate
ligands from decoys in retrospective VS, while EL2 modelling was
only important for A3AR.147 This suggests that EL2 modelling should
be conducted using experimental restraints whenever available,
while the impact of adding ELs should be evaluated by retrospective
SBVS.65

Recently, however, several de novo strategies have been
introduced as alternatives for loop modelling.

By means of the Protein Local Optimization Program
(PLOP), which employs a refined sampling grid, an all-atom
energy function with implicit solvent, and an accurate side-
chain packing algorithm, Goldfeld et al.148 were able to restore
the conformation of ILs and ELs of bRho, A2AR, b1AR, and b2AR
in their native environment. In addition, in order to deal with
cases wherein loops and membranes have important inter-
actions, they performed explicit membrane simulations where
the lowest energy conformers for both short and long loops
matched the corresponding crystal structures. Later, PLOP was used
to predict the same ILs and ELs, both with TM domains fixed in
their crystallographic positions, as well as with a homology model of
b2AR.149 According to the authors, this was the first successful study
of an RMSD validated, physics-based loop prediction within the
framework of GPCR modelling.

The EL2 structure was predicted in 13 GPCRs by means of the
CABS (C-Alpha, Beta, and Side chain) protein modelling tool,150

which is based on a coarse-grained structure representation and a
Monte Carlo (MC) dynamics sampling scheme.151,152 The modelling
approach used experimental constraints on disulfide bonds, yielding
ensembles of low-energy conformers with modest computational
resources. A Metropolis Monte Carlo (MMC) method has been used
to model the three ELs of the transmembrane domains of the

thyroid-stimulating hormone receptor (TSHR) by employing a
local torsion move and a grid-based force-field method.153

It should be mentioned that beyond de novo methods, there
are also computer programs and web servers which are intended
to predict the loop structure. Examples include ModLoop,154

which predicts the loop conformations by satisfaction of spatial
restraints, without depending on a database of known protein
structures; Rosetta,155 a combined approach of fragment-based
and de novo prediction for loop modelling; and SuperLooper,156

a knowledge-based method which predicts loop conformation
from a database of known loop structures.

2.4 Structural model validation

In order to assess the actual usefulness of a homology model,
validation is an essential step, regardless of the target protein
under study. As a basic premise, the intended application of the
model should determine its desired quality.157 Medium-quality
models may be adequate for conducting mutagenesis experi-
ments, while high-quality models are required for SBVS studies
as well as mechanistic analysis. Typically, an ‘‘internal’’ evalua-
tion is undertaken so as to guarantee that the model stereo-
chemistry (e.g. bond lengths and angles, dihedral angles, and
non-bonded contacts) is within acceptable limits. This can be
assessed by employing computer programs such as PROCHECK,158

WHATCHECK,159 and MolProbity.160 Despite the fact that structural
properties outside the normal range could hint serious errors in the
model, a successful internal consistency check in no way guarantees
that the model is indeed a correct representation of the actual
structure of the target.

In the context of GPCRs, retrospective docking has appeared
as an efficient approach to validate homology models,117 in
which a dataset of known ligands is merged with a decoy
library, preferably an un-biased one,161 and docked to the
models. Binding pose prediction, and/or the ability to prioritize
ligands over decoys (assessed by EFs and/or area under the ROC
curve), may be taken as a measure of the quality of the
model102,103,108,117,130,131,141,162 (see Section 2.2). Experimental
knowledge inferred from SDM and/or quantitative SAR (QSAR)
can not only be used to construct binding hypotheses to guide
modelling (see Section 2.2), but also to further examine and
validate modelled GPCR–ligand complexes.163–165 The successful
application of modelled binding sites in prospective docking and
lead optimization (Sections 3.1 and 3.2, respectively) is a further
step toward model validation.

For a correct interpretation of the results, it should be taken into
account that the performance of homology models in VS experi-
ments may depend on other factors not related to the modelling
process itself, such as the availability of template structures, the
docking program of choice, the ligand and decoy dataset,161,166

small-molecule preparation, the specific target,167 the presence/
absence of water molecules,161,162 and whether receptor flexibility
is accounted or not in the docking process.103,121,168,169

2.5 Useful web-servers in GPCR modelling

Today, many resources and tools aiding homology modelling of
GPCRs are available, e.g. repositories of models, servers to
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perform homology modelling, and ligand databases, among
others. Assessment meetings of protein structure prediction
methods, particularly CASP170 and GPCR-Dock,70–72 paved the
way for the improvement of these services and have rendered
the prediction of the protein structure an attainable work.

GPCRM171 is an online platform for predicting GPCR structures,
which combines several strategies for template detection, alignment
generation, model building, loop refinement and model filtering
based on the Z-coordinate, with the option of human intervention.
Homology models are created by utilizing multiple template
structures and profile–profile comparison. GPCRM provides
the 10 top-score models according to the Modeller DOPE score177

and the Rosetta total score.178 The URL corresponding to the
GPCRM server and the homology modelling web tools described
in this section are listed in Table 1.

The GPCR-Sequence-Structure-Feature-Extractor (GPCR-SSFE)172

is a server that offers template predictions, sequence alignments,
structure motifs and homology models of the transmembrane

helices of 5025 class A GPCRs. The pipeline is based on a fragment
approach that takes advantage of available family A crystal struc-
tures. Users are able to access the models stored either by browsing
the GPCR dataset in accordance with their pharmacological classi-
fication or searching for the results using a UniProt identifier.

The GPCR Online Modeling and Docking server (GOMoDo)173

carries out automatic homology modeling, and either a blind or an
information-driven ligand docking of GPCRs by combining different
bioinformatic tools. It utilizes the HHsearch179 for performing
sequence alignment, MODELLER180 for building a 3D model of a
given sequence, the VADAR server181 for verifying the obtained 3D
model, AutoDock VINA182 for docking small-molecules uploaded by
users, HADDOCK183 for information driven docking, Fpocket184 for
binding site prediction, and LovoAlign185 for conducting structural
alignment of models needed for VINA docking.

GPCR-ModSim174,175 is a web-based service for homology
modeling and all-atom MD equilibration of GPCRs. This server
is intended to obtain the most accurate structural and dynamic

Table 1 On-line tools for GPCR homology modelling

Resource name URL Ref.

GPCRM gpcrm.biomodellab.eu/ 171
GPCR-SSFE www.ssfa-7tmr.de/ssfe/ 172
GOMoDo molsim.sci.univr.it/cgi-bin/cona/begin.php 173
GPCR-ModSim gpcr-modsim.org/ 174 and 175
GPCRautomodel genome.jouy.inra.fr/GPCRautomdl/cgi-bin/welcome.pl 176
GPCR-I-TASSER zhanglab.ccmb.med.umich.edu/GPCR-I-TASSER/ 80

Table 2 On-line tools useful in the GPCR homology modelling process

Resource name Application URL Ref.

GPCRpred Server for prediction of GPCR families and subfamilies www.imtech.res.in/raghava/gpcrpred/ 203
GPCRHMM Server for putative GPCR detection from sequence and TM

segment localization prediction
gpcrhmm.sbc.su.se/ 204

GPCR-HGmod Database that contains 3D structural models of GPCRs in
the human genome

zhanglab.ccmb.med.umich.edu/GPCR-HGmod/ —

GLASS Repository for experimentally-validated GPCR–ligand
interactions

zhanglab.ccmb.med.umich.edu/GLASS/ 205

GPCR-exp Database of experimentally-solved GPCR structures zhanglab.ccmb.med.umich.edu/GPCR-EXP —
Adenosiland Integrated bioinformatics and chemoinformatics

web-resource dedicated to adenosine receptors
mms.dsfarm.unipd.it/Adenosiland/ 206 and

207
GPCRserver Server for GPCR identification and TM region prediction genomics.fzu.edu.cn/GPCR/index.html 208
GPCR structure
and VS library

GPCR modelling and virtual screening database cssb.biology.gatech.edu/skolnick/webservice/gpcr/
index.html

209

GPCRdb Contains data, diagrams and web tools for GPCRs gpcrdb.org/ 210
GLL/GDD Ligand libraries (GLL) and docking decoy databases (GDD)

for 147 GPCRs
cavasotto-lab.net/Databases/GDD/ 161

PDBTM Protein data bank of transmembrane proteins pdbtm.enzim.hu/ 211
TinyGRAP GPCR mutant database www.cmbi.ru.nl/tinygrap/credits/ 212
MPSTRUC Database of membrane protein of the known structure blanco.biomol.uci.edu/mpstruc/ —
MPtopo Database of membrane proteins with

experimentally-validated TM segments
blanco.biomol.uci.edu/mptopo/ 213

GPCR network Portal of the PSI:Biology GPCR network gpcr.scripps.edu/ —
GPCR-OKB Information management system for GPCR

oligomerization
filizolalab01.mssm.edu:8080/gpcr-okb/ 214

GPCR NaVa Database that describes sequence variants within the
GPCR family

nava.liacs.nl/ 215

IUPHAR GPCR
database

Expert-driven knowledgebase of GPCR drug targets and
their ligands

www.guidetopharmacology.org/GRAC/
ReceptorFamiliesForward?type=GPCR

216

GLIDA GPCR–ligand database pharminfo.pharm.kyoto-u.ac.jp/services/glida/ 217
GPCR-RD Database for experimental restraints of GPCRs zhanglab.ccmb.med.umich.edu/GPCR-RD/ 218
GPCR SARfari Integrated chemogenomics workbench focussed on

GPCRs
www.ebi.ac.uk/chembl/sarfari/gpcrsarfari —
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information for a given GPCR, and it provides a stand-alone
protocol for all modelling steps.

The GPCRautomodel176 site is aimed at conducting auto-
matic homology modeling of GPCR structures. In a first step, it
uses a threading-based method to obtain a 3D model. In a
second stage, it performs docking of selected small-molecules
with the modelled receptor by utilizing VINA.182

The GPCR-I-TASSER method has been already mentioned in
Section 1.3.

These web-servers have been used in several cases. By way of
illustration, to study the protein–protein interaction of the
human a2CR with the human Filamin-2 protein,186 to rationalize
SAR of A2AR ligands,187 and even in the GPCR Dock 2013 assess-
ment in the sequence alignment and template selection for the
successful prediction of the 5-HT1B and 5-HT2B receptors in
complex with ergotamine.188

Other web tools, which may aid in the homology modelling
process, such as model and motif databases, chemical libraries,
docking portals, among others, are listed in Table 2.

3. Structure-based drug design using
GPCR homology models
3.1. Discovery of new ligands through virtual screening

Using GPCR crystal structures, ligands have been discovered for
various receptors with both high hit rates (actives/tested) and
structural novelty.15 New antagonists for b2AR,189–191 A2AR,162,192

D3R,99 and H1R193 with hit rates between 20% and 73%, and at
least 2 new scaffolds per receptor, were discovered (for a review
of recent SBDD approaches using GPCR crystal structures cf.
ref. 16, 194 and 195). Furthermore, in GPCR docking campaigns,
hit rates and affinities in GPCRs were two to three log-orders
better than those against soluble proteins.15 It has been suggested
that two main elements may contribute to this: (i) supposedly
unbiased chemical libraries actually possess a large quantity of
molecules with structural features in common with GPCR ligands
and (ii) the well-buried GPCR orthosteric binding sites favour the
identification of small molecules with high LE.15

The use of homology GPCR models has also been instrumental
for the discovery of new ligands even since bRho was the only
available template. Early successfully prospective SBVS campaigns
included bioaminergic receptors (a1AR,196 D3R,137 H4R197), chemo-
kine receptors (CCR4,198 CCR5199), peptide receptors [NK1R115,
formylpeptide receptor (FPR1R),200 MCH1R116,117], cannabinoid
receptors (CB2201), and purine receptors [free fatty acid receptor
1 (FFAR1)164,202]. The cascade of new GPCR structures triggered by
the release of the b2AR in 2007 not only dramatically enhanced
SBVS on crystal structures,16,194,195 but also provided structurally
diverse templates for further improving GPCR models, and thus
greatly expanding its use in drug design.

Inspired by the challenge of the GPCR Dock 2010 assess-
ment,71 in which the modelling community aimed to predict
the structure of the D3R–eticlopride complex, Carlsson et al.
developed a homology model of D3R and docked more than
3.3 million molecules against it, repeating this experiment on

the crystal structure of the D3R–eticlopride complex once it had
been released.99 Concerning the model, six compounds were
discovered with binding affinities in the range of 0.2–3.1 mM,
and one of them was subsequently optimized to 81 nM. With
respect to the crystal structure, five compounds were found in
the 0.3–3.0 mM range. Moreover, the hit rate for the screening
on the homology model was 23% and on the crystal structure it
was 20%. Thus, the hit rates using the model and the crystal
structure were basically equivalent. Each VS returned two novel
scaffolds, different from known ligands, and among themselves.
Furthermore, the active molecules found in the screening from
the homology model displayed no measurable affinity for the
template used in the modelling (b2AR).

In the same context as the previous work, Mysinger et al.
docked over 3 million molecules against a homology model of
the CXCR4 and the crystal structure.100 A single antagonist was
found in docking against the model, which was similar to
known ligands and possessed a modest specificity. The hit rate
using the model was 4%, while the screening on the crystal
structure yielded not only a higher hit rate (17%), but also four
antagonists that were different from known scaffolds, substantially
smaller than most known ligands, and specific for CXCR4. One of
them had an IC50 value of 0.31 mM and a LE of 0.36 (placing it in
the lead-like range of compounds for oral drugs), and all ligands
inhibited CXCR4-mediated chemotaxis in cell culture. When com-
paring these two targets (D3R and CXCR4) and these four virtual
screening campaigns, the authors drew two conclusions: first, an
important factor was the ligand bias in the used database (ZINC219)
toward biogenic amine mimetics, rather than to CXCR4-like
ligands; unlike D3R ligands, there are relatively few molecules
sharing the same size and charge properties as known CXCR4
ligands. Second, the relatively poorer result of screening against
CXCR4 homology models might be related to the sequence identity
with the structural templates. They suggested that accurate models
may be developed for GPCRs that share B40% or higher sequence
identity, and with enough mutagenesis information (as for D3R).
On the contrary, for targets with significantly lower sequence
identities, ranging from 18 to 25% (as for CXCR4), homology
models suitable for drug discovery might be ‘‘out of reach’’.

On a homology model of A2AR built from the rb1AR, an array
of agonists with diverse ligand efficiencies was discovered
through SBVS, with a hit rate of 9%.220 Hits were furthered
optimized for affinity and selectivity (cf. Section 3.2).

Ligand- and protein-based molecular fingerprints were
applied in a virtual screening of fragment-like molecules on
the H3R.221 The FLAP (Fingerprint of Ligands And Proteins)222–224

method was used in a H3R model based on the H1R crystal
structure, and refined by means of molecular docking and MD
simulations with H3R actives. The best structures for each complex
were chosen on the basis of the ability to distinguish between
known fragment-like H3R actives and inactive ones in retrospective
VS studies. Using a collection of 156 090 molecules filtered from
the ZINC database, a prospective VS on FLAP models resulted in
18 experimentally confirmed hits, with affinities in the range of
0.5–10 mM. Moreover, these confirmed H3R hits did not show
affinity for H4R.
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Multiple homology models were developed for the A1R,
using the crystal structure of A2AR as a template, and approxi-
mately 2.2 million lead-like compounds were docked into the
models.225 With the aim of examining the intrinsic selectivity of
the models, all high-ranking molecules were tested in binding
assays not only on the A1R but also on A2AR and A3AR. The
screening exhibited a hit rate of 21% and the most potent
compound had a Ki of 400 nM, although it yielded few selective
compounds. The authors drew three conclusions from this
study: (i) even when screening is performed with the same
library, distinct models of the same receptor return distinct sets
of ligands; in this sense, model performance varied widely in
terms of both the absolute number of actual ligands and their
selectivity; (ii) homology models seem to work well in GPCR
docking, as evidenced by the outcomes; and (iii) by means of
applying docking to solely one receptor subtype, obtaining
selective compounds is a difficult task for targets with high
degrees of similarity, e.g. the adenosine receptors.

A homology model of the D2R in the active conformation
based on the active b2AR crystal structure was built, and a
prospective VS of 2.7 million ‘‘lead-like’’ and 400 K ‘‘fragment-
like’’ molecules from the ZINC database was conducted against
it.226 Out of three actives found in functional assays, two were
agonists and one was an inverse-agonist. However, these three
hits had low affinity, the agonism was weak, and they were
similar to known dopamine receptor ligands, indicating that
the active b2AR structure might not be a suitable template for
the active D2R. These outcomes suggested that although the
b2AR structure possesses a high sequence identity and it was
the right template for the inactive conformation,99 structural
information obtained from the active b2AR was not transferable
to the active D2R structure. The authors argued that this fact
might be either a singular case, or related to their modelling
approach. Thus, the agonist state might be specific for any
given GPCR–ligand pair.

A VS on CXCR7 homology models was undertaken using
a dataset of commercially available compounds and a new
modelling method based on multiple GPCR crystal structures.227

The CXCR4 structure and the structures of bRho, b2AR, b1AR, and
A2AR were used as the ‘‘principal template’’ and ‘‘supplementary
templates’’, respectively. Twenty-one novel hits with IC50 values
ranging from 1.29 to 11.4 mM and a variety of scaffolds were
determined. Furthermore, salt bridges between Asp4.61 and
Asp6.58 and protonated nitrogen atoms of the ligands, as well
as p–p stacking interactions between Trp2.61 and ligands, were
found relevant for CXCR7 ligand binding.

Schmidt et al. docked over 2 million compounds from the
ZINC database to CXCR3 homology models and to the CXCR4
crystal structure, respectively, in order to find both dual modulators
and selective compounds for each target.228 They identified selective
and non-selective ligands, which were confirmed by in vitro assays
for both receptors. Eleven novel ligands for both targets were found,
with high hit rates of 57% (CXCR3-selective), 50% (CXCR4-selective),
and 50% (dual binders). Most of these hits exhibited binding
constants in the low-nanomolar range, and very good LE indices.
It is worth noting that high hit rates were achieved in each category,

even the hit rate for the CXCR3 model was higher than the one
for the CXCR4 crystal structure. Moreover, the CXCR3 model
did not seem to suffer template bias according to the number of
potential dual modulators and the hit rate found in that
category. Furthermore, all but one binder detected in this study
possessed chemistry features different from known ligands of
both targets from the ChEMBL database.229

A combined ligand- and structure-based strategy for identi-
fying H4R antagonists was recently developed, where initially, a
ligand-based VS of the ZINC database was conducted to select
potential H4R antagonists (focused library), and several H4R
homology models were built using the H1R crystal structure as
a template and refined with MD in a fully atomistic lipid
membrane environment.230 Structural models were validated
by their ability for discriminating active from non-active H4R
antagonists in docking using a validation set extracted from the
ChEMBL database. Finally, the best model was used to screen
the focused library, and thus 11 drug candidates were obtained
and presented as novel lead compounds.

A hybrid strategy combining a structure- and ligand-based
method was developed and used to identify novel nociceptin
(NOP) ligands.231 Homology models of the binding site of the
active-state NOP receptor were built based on the opsin structure
using simulated annealing, and then ranked according to the EF
in retrospective docking. A structural refinement followed
employing a shape-based similarity strategy along with molecular
docking of known NOP agonists. Virtual screening of the CNS
Permeable subset of the ZINC database was undertaken utilizing a
ligand pharmacophore- and shape-based protocol, followed by a
structure-based step using the refined NOP active-state conforma-
tions obtained in the enrichment calculation. Molecules contain-
ing a piperazine ring were eliminated due to off-target effects.
Small-molecules were ranked according to a consensus score, and
20 compounds were purchased and tested in binding affinity
assays. From the better six compounds, four had binding affi-
nities less than 50 mM. Further, one had a Ki of 1.5 mM and
represented a NCE.

A structure-based virtual fragment screening was carried out
both on the D3R crystal structure and on a H4R homology
model (based on the H1R crystal structure).232 By means of all-
atom membrane-embedded MD simulations, representative
receptor conformations for both targets were generated, and a
library consisting of 12 905 fragments was docked on the
conformational ensemble of both structures. In vitro assays
showed hit rates in the range of 16–32%, and Ki values in the
range of 0.17–2.8 mM for D3R, and 8.4–75 mM for H4R. More-
over, the hits possessed high LE, with values in the 0.31–0.74
range, and an admissible lipophilic efficiency. The crystal
structure, homology model, and ensemble docking provided all
valuable hits with little overlap. Moreover, the single homology
model outperformed the single crystal structure in terms of hit
rate. However, in this particular case, the ensemble docking
strategy was not better than the single structure docking method,
both approaches thus being complementary. The authors thus
concluded that a combined approach should be followed to
maximize hit retrieval.
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A structure-based VS and a functional cell-based screening
were undertaken in order to identify adrenergic a2CAR receptor
agonists.233 A homology model of the activated a2CAR was built
based on the human active-state b2AR crystal structure, and the
best conformation for VS was chosen based on retrospective
docking. A library of 3071 fragments was experimentally
screened, and also docked to the model, exhibiting a hit rate
of 6.7% and an EF of 12. Moreover, 2 fragments out of the 16
detected hits were identified by VS at the top 1% of the screened
library, and showed themselves as specific ligands of a2CAR.

A structure-based virtual fragment screening along with an
IFP scoring method was performed against optimized homology
models of the H4R built using the b2AR and H1R crystal
structures as templates.234 On the basis of retrospective VS
analysis, two b2AR-based H4R models and their corresponding
IFP references were employed in the VS using molecules
extracted from ZINC. Six compounds were confirmed as H4R
ligands, with pKi values ranging from 5.2 to 6.8. None of the hits
possessed detectable binding affinity for b2AR, proving that the
method did not suffer from template bias. Afterwards, the VS
was conducted against the H1R-based H4R models and three hits
were found. Altogether, nine compounds were confirmed as hits
with binding affinities for H4R in the range of 0.14–6.9 mM,
representing five distinct scaffolds.

3.2. Getting it better: hit-to-lead optimization

Although several hits discovered through SBVS have been
optimized for affinity,117,164,235 there are not too many actual
structure-based guided optimization studies (cf. ref. 14 and 236
for a review of early uses of GPCR models in lead optimization).

As described in Section 3.1, Carlsson et al. performed a
structure-based guided optimization of a D3R SBVS hit, reaching an
affinity of 81 nM.99 Hit molecules discovered through SBVS against
an A2AR model based on the b1AR were optimized to selective and
potent lead molecules using a structure-based design, and synthe-
tized.220 Substitution of the propenyl-thiophene ring,237 and replace-
ment of the chromone ring220 resulted in molecules with improved
affinity and selectivity toward A2AR, and selectivity toward A2AR,
respectively.

With the aim of identifying H1–H3 dual antagonists suitable
for intranasal administration from phthalazinone analogues, a
H1R homology model based on the crystal structure of bRho
was built and complexed with the second-generation of anti-
histamine azelastine, what furnished evidence that the incor-
poration of certain fragments related to H3R antagonism
should bring about dual H1–H3 antagonism.238 A series of
H1–H3 dual antagonists were synthesized and two compounds
showed a slightly lower potency toward H1R, but a much higher
potency toward H3R than azelastine, the clinical gold-standard.
Moreover, one of them exhibited improved in vivo pharmaco-
kinetic properties compared to azelastine.

Novel selective CysLTR2 antagonists were discovered using a
homology model of CysLTR2 built from the crystal structure of
bRho as a template, and refined by MD simulations.239 Based
on the proposed binding mode of the selective lead antagonist
HAMI3379, a series of dicarboxylated chalcones was docked

within the binding site, and six promising hits were synthe-
sized and tested for CysLTR2 antagonism, two out of which
showed potent and selective CysLTR2 antagonism with IC50

values of 7.5 and 0.25 mM.
Using a homology model of the CB2 constructed using the

crystal structure of b2AR as a template, and refined by MD
simulations, 3D-QSAR models were generated from compara-
tive molecular field analysis (CoMFA240) using 2-quinolone and
2-pyridone coumarin CB2 leads.241 In accordance with phar-
macophoric features derived from the 3D-QSAR model, a series
of coumarin derivatives was subsequently designed, and SAR
studies were carried out. Several compounds showed high
selectivity for CB2 against CB1, among them one CB2 agonist
[EC50 = 0.103 mM, selectivity index (SI) 4 97], and one CB2
antagonist (IC50 = 0.019 mM, SI 4 500).

Homology models of the human (h) and mouse (m) A3ARs
based on a hybrid template (crystal structures of agonist-bound
hA2AAR, and active hb2AR) were designed in order to develop
sulfonated nucleoside ligands for A3AR with affinity independent of
the species.242 Molecular docking studies of (N)-methanocarba
derivatives were undertaken to model key interactions between
these nucleoside series and the h- and m-A3ARs, and thus guide
substitutions at the C2 and N6 positions for chemical synthesis.
Based on this interaction analysis, the sulfonate groups on
C2-phenylethynyl substituents would produce high affinity at
both h- and m-A3ARs, whereas an N6-p-sulfophenylethyl sub-
stituent would exhibit higher hA3AR than mA3AR affinity.
Insights gained from modelling were confirmed by pharmaco-
logical studies, wherein one agonist analogue is bound selec-
tively to h/m A3ARs [Ki (hA3AR) = 1.9 nM] and the corresponding
p-sulfo isomer showed mixed A1/A3AR agonism. Subsequently,
using the same A3AR hybrid model, the Jacobson group243

conducted molecular docking studies of (N)-methanocarba
adenosine 50-uronamide derivatives with the aim of identifying
highly selective agonists of the A3AR, but lacking the arylethynyl
group, linked to potential liver toxicity. A planar C2-triazole
linker in place of an ethynyl group showed to be the best
substituent, which favours selective binding to the A3AR. Several
analogues with N6 and C2 substitutions were synthesized, and
pharmacologically and in vivo characterized. All of the derivatives
exhibited Ki values ranging from 0.3 to 12 nM at the A3AR and
one of them achieved a highly prolonged and full efficacy in
controlling mechano-allodynia (490% protection up to 4 h).

Yaziji et al.244 synthesized two series of diaryl 2- or 4-amido-
pyrimidines and determined their affinities for the four human
adenosine receptors (A1R, A2AR, A2BR, and A3R). Based on the
results of the first series, the design of both the second set of
compounds and new derivatives exploring the alkyl substituent
of the exocyclic amide group was performed. This synthesis was
assisted by means of an approach that combined molecular
docking to a hA3R homology model (built using the crystal
structure of A2AR as a template) and 3D-QSAR analysis. As a
result, four compounds displayed both remarkable affinity
(Ki r 6 nM) and selectivity toward the A3R subtype. Subsequently,
the same research group examined the impact of methoxyaryl
substitution patterns on N-(2,6-diarylpyrimidin-4-yl)acetamides
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with the aim of modulating the A3R antagonistic profile.245 A
homology model of the hA3R was developed using as a template
the inactive structure of A2AR and molecular docking as well as
3D-QSAR studies were carried out. Guided by the modelling
results, a focused compound library was synthesized and its
pharmacological profile was studied for the four human adenosine
receptor subtypes. Novel A3R antagonists were reported, which
showed excellent potency (Ki o 20 nM), wherein two ligands are
highlighted with a Ki o 7 nM and highly selective profiles
among ARs. The most important features of the pipelines used
in the research projects aimed at targeting the A3Rs by Sotelo
and coworkers are explained in ref. 246.

3.3 Recent applications of GPCR homology models in other
structure-based drug design scenarios

Besides the use in ligand discovery through VS (Section 3.1)
and structure-based lead optimization (Section 3.2), GPCR

homology models are invaluable to study off-target effects using
docking, guide the design of small-molecule and peptide
ligands, rationalize SAR data, design SDM experiments, char-
acterize receptor–ligand interaction, and complemented with
MD to understand ligand binding mechanisms and protein
dynamics. In Table 3 we present recent applications of GPCR
models in several structure-based drug design scenarios.

4. Modelling and docking accuracy

Although homology models are usually used when experi-
mental structures are not available, retroprospective modelling
and comparison with crystal structures, and retroprospective
docking analysed in terms of ligand RMSD (if known) and
enrichment data, furnish valuable information in terms of
methodology, strategies, and further developments needed.

Table 3 Recent applications of GPCR homology models in the context of structure-based drug design

Target Template structure(s)a Aim Ref.

RXFP3 CXCR4 [3OE0] Recognize potential sites of interaction for binding of the native ligand human
relaxin-3

250

CCR4 CCR5 [4MBS] Identify the active site, and the residues involved in CCR4–naphtelene-sulphonamide
derivatives interaction using MD

251

GPR84 Active b2AR [3P0G] Investigate GPR84–ligand molecular recognition, and comparison with other lipid
receptors

252

CXCR7 CXCR4 [3ODU] Assess the binding mode within CXCR7 of the agonist cyclic peptide TC14012b, and
detect essential residues involved in the interaction with synthetic agonists using MD
and SDM

253

H4R H1R [3RZE] Study the binding pathway of histamine from the extracellular side to the orthosteric
binding site of the H4R using unconstrained MD

254

A3AR A2AR [2YDO] Understand the positive allosterism mediated by imidazoquinoline toward A3AR
using supervised MD

255

FPR2 mOR [4DKL], CXCR4 [3ODU] Study the binding mode of non-peptide and formyl peptide ligands 256
D1R b2AR [3P0G] Understand D1R–agonist interaction using SDM and MD of D1R-cathecol-amines 257
H4R b2AR [2RH1] Determine ligand binding modes to the H4R binding site using 3D-QSAR, SDM and

MD
258

b2AR b2AR [2RH1] and others Study differences at local and global conformational dynamic level of the N-terminal
variants of the b2AR using MD

259

D4R D3R [3PBL], M2R [3UON] Analyze conformational dynamics induced upon ligand binding
(dopamine and spiperone) using MD simulation in a lipid environment

260

FFA2 b2AR [2RH1] Determine residues involved in recognition and function of potent and selective
orthosteric agonists within FFA2

261

CB1, CB2 S1P1 [3V2Y], A2AAR [3QAK] SAR rationalization of tricyclic ring systems binding to CB receptors 120
A3AR A2AAR [3QAK] Structure-guided design of A3AR selective nucleosides 262
5-HT7 5-HT1B [4IAR], 5-HT2B [4IB4],

bRho [1F88]
Analyze the interactions involved in binding of long-chain arylpiperazine derivatives
to 5-HT7 and 5-HT1A

263

Apelin (APJ) CXCR4 Design of cyclic peptide analogues (biased agonists) for APJ 264
5-HT6 b2AR Correlate binding pose with 5-HT6 the affinity of designed ligands 265
5-HT2C Inactive b2AR [2RH1], active

b2AR [3SN6], 5-HT2B [4IB4]
Probe the binding mode selective phenylcyclopropylmethylamines 5-HT2C agonists 266

A1AR, A3AR Active A2AAR [3QAK], inactive
A2AAR [3UZC]

Understand molecular bases of the A1AR and A3AR recognition and the activation of
50-C-ethyl-tetrazolyl derivatives

267

TGR5 S1PR1 [3V2Y], b2AR [3SN6] Investigate potential binding sites for naturally occurring bile acid derivatives TGR5
agonists

268

A3AR A2AAR [3QAK], b2AR [3SN6] Investigate molecular interaction between A3AR and C2-arylethynyl nucleosides
agonists

269

OX1R, OX2R D3R [3PBL] Develop binding poses of orexin peptides in the hOX1R and hOX2R, with the aim of
explaining SDM data and the molecular basis of agonist binding

270

CB1, CB2 S1P1 [3V2Y] SAR rationalization of biphenylic carboxamides within CB receptors binding sites 271
A2BAR A2AAR [3EML] Assess structural similarities and differences in the molecular interactions and

dynamics of A2AAR and A2BAR using MD
272

a2BAR, a2CAR,
h5HT2C, h5HT7,
b3AR

Several templates Structural probing of off-target GPCR activities within a series of adenosine/adenine
congeners

21

a PDB codes are given within brackets. b RR-Nal-CT-Cit-K-Dcit-PTR-Cit-CR-NH2.
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Using the experimentally solved structures of bRho, b2AR,
and A2AAR, the LSHM method (Section 2.2) was validated
through cross-modeling, and the performance of the thus
generated models was investigated in docking experiments.101

This methodology was able to generate quality models of the
receptors complexed with their co-crystallized ligands (B1 Å for
b2AR modelled using bRho or A2AAR as templates; 2.8 Å for
A2AAR using b2AR as a template). It was also observed that:
(i) the LSHM performed better than templates, crude models,
and random ligand selection in small-scale high-throughput
retrospective docking and (ii) higher quality models typically
displayed better enrichment in docking. Interestingly, homology
models were found to be reliable for selectivity prediction.
Clearly, these results support the fact that the LSHM method
can successfully characterize GPCR binding sites through a fully
flexible ligand–receptor docking approach. It should be noted,
however, that models underperformed with respect to crystal
structures in terms of docking enrichment and selectivity pre-
diction, likely because of inaccuracies at the backbone level.

The community-wide GPCR modelling and docking (GPCR
Dock) assessment was established to monitor and stimulate the
advancement of GPCR structure prediction and ligand docking,
as well as emphasizing areas for methodological improvement.
The rationale and organization of GPCR Dock is analogous to
the way of CASP (Critical Assessment of methods of Protein
Structure)247 and CAPRI (Critical Assessment of PRediction of
Interactions).248,249 In the GPCR Dock blind prediction assess-
ment, the participants predict and submit models of a recep-
tor–ligand complex from the sequence of the receptor and a 2D
representation of the ligand prior to the public release of the 3D
coordinates of the complex.

The first round of GPCR Dock was carried out in October
2008 in conjunction with the public release of the crystal
structure of the human A2AAR bound to the high-affinity
antagonist ZM241385,35,72 where 29 groups participated. The
most successful models, which had an average heavy-atom
RMSD of 2.8 Å for the ligand, and 3.4 Å for the residues of
the binding site, were constructed by homology modelling
taking into account the b2AR structure as a template, which
shares B35% sequence identity with A2AAR, and using experi-
mental information derived from SDM. However, they could not
account for most of the receptor–ligand contacts (only B50%) and
rank models properly. In fact, most of the participants were far
from accurately predicting the native ligand pose and the correct
conformation of EL2, which has a lower degree of sequence
similarity and structural conservation. The EL2 was de novo mod-
elled in many predictions, although the best approach (S. Costanzi)
utilized a combination of homology modelling (in a short segment
around a conserved cysteine residue) along with de novo modelling
for the remainder residues of the loop. The crystal structure also
revealed four well conserved water molecules around the ligand,
but none was included in the submitted predictions. Even though
it can be shown that ZM241385 pose can be recovered upon
docking with no waters,72,161 waters may be necessary for a more
accurate binding pose prediction and for binding free energy
calculations.

The second round, GPCR Dock 2010,71 was performed in
parallel with the solution of the crystal structures of the D3R37

and the CXCR443 so as to model three different classes of
complexes showing three levels of difficulty: (i) the small-
molecule antagonist eticlopride bound to hD3R, which has two
close structural templates; (ii) the small-molecule antagonist
isoithiourea IT1t bound within a large peptide binding site of
hCXCR4, which has more distant templates; and (iii) the CVX15
peptide [RR-Nal-CTQKdPPTR-Cit-CRGdP, where Nal represents
the non-natural amino acid L-3-(2-naphthyl)alanine, and Cit,
citrulline] bound to the hCXCR4, which constitutes the first
crystallized GPCR target complexed with a peptide-analogue. For
each of the three targets, participant groups were allowed to
submit up to 5 models. Thirty-five groups took part in the
assessment. It was found that achieving accurate homology
models requires at least a 35–40% target/template similarity
coupled with the use of biochemical and QSAR data. This fact
is useful to help prioritize the GPCRs to be crystallized in the
future. As with the previous GPCR Dock assessment, modelling
the EL2 represented the biggest challenge, though in both the
D3R–eticlopride and IT1t–CXCR4 complexes, where the binding
site is mainly defined by TM residues, ligand pose and contacts
may be correctly predicted using a loop-less model. On the
contrary, modelling the CXCR4–CVX15 system, where the pep-
tide makes extensive contacts with highly flexible loops and the
N-term, represented the most challenging case. The 2010 assess-
ment confirmed that the use of biochemical, biophysical, QSAR
and other experimental data is of the utmost importance in high
quality homology modelling, even considering the limitation in
the interpretation of SDM, where allosteric effects could be
mistakenly taken as direct receptor–ligand interaction.35,273

In 2013, the last round of GPCR Dock70 was conducted in
coordination with the elucidation of crystal structures of 5HT1B

40

and 5HT2B,41 both in complex with the agonist ergotamine and
the TM domain of the human SMO receptor (class F GPCR)
complexed with two different small-molecule antagonists,
LY-294068060 and SANT-1.61 Forty-four groups were involved in
the evaluation. Modellers faced several challenges such as the
prediction of activation states (agonism and biased agonism),
the allosteric ligand interaction in 5-HT1B and 5-HT2B, and
homology modelling using remote templates for SMO (less than
15% sequence identity with any of the available template struc-
tures). In spite of the high sequence similarity to templates, the
prediction of the serotonin–ergotamine complexes achieved a
modest accuracy since ergotamine makes extensive and distinct
interactions with the ELs. This relative success was in line with
the moderate precision in EL predictions. Instead, more accurate
predictions resulted for the ergoline core, which interacts mainly
with TM regions. The best predictions for the serotonin recep-
tors often used the MODELLER software180 and multiple tem-
plates of aminergic structures, while many of the top-ranking
complexes were refined by MD. Model selection by using
subfamily-specific receptor–ligand interaction patterns, ligand
SAR, and SMD, coupled with visual inspection proved to be a
valid strategy. Furthermore, while several submitted models
successfully detected the activation state of 5HT1B, this was not
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the case for the biased state of 5HT2B. This situation showed that
there is still a need to further expand the crystallization of
multiple functional states of GPCRs, and the improvement of
computational methods for their prediction. The case of SMO, a
class F GPCR with very low sequence similarity to existing
structures, illustrated that target–template sequence alignment
represents the main obstacle in distant homology modelling. In
this sense, composite strategies including threading, fragment
assembly, and energy-based refinement (e.g. I-TASSER274)
showed their benefits for finding the correct residue matching.
In addition, whereas alignment uncertainties may be addressed
with modern methods, the structural precision of the remote
homology models still require further developments.

5. The latest milestone: modelling
GPCR classes B and C

Even though attempts were made to model classes B and C GPCRs,
including GPRC6A,275 calcitonin gene-related peptide (CGRP)
receptor,276 and metabotropic glutamate receptor 8 (mGluR8),277

based on the crystal structures of class A GPCR, it has only recently
been possible to model them using templates of the same family,
that is to say, with classes B and C GPCR crystal structures. The
construction of the homology models for non-class A GPCR have
faced various challenges such as the lack of structural data for the
helical bundle and low TM sequence identity and 3D similarity for
ELs and termini regions (class F GPCR dealt with the same issues70)
with respect to class A templates.275–277

However, in 2015, several structural models built on the
basis of classes B and C X-ray structures were developed.
Homology models of the corticotropin releasing factors
receptor-2 (CRF2R) were constructed using the crystal structure
of CRF1R as a template, and both unbiased MD and well-
tempered metadynamics simulations were conducted in order
to probe the selectivity of an antagonist (CP-376395) towards
CRF2R and CRF1R.278 The authors observed that a hydrogen
bond between His3.40 and Tyr6.63 (using the Wootten et al.
universal numbering scheme for class B GPCRs279) in CRF1R,
which is not present in CRF2R, has a key role in explaining the
difference of the antagonist selectivity towards both receptors.

With the aim of modelling the glucagon-like peptide-1
(GLP1) bound to the GLP1 receptor (GLP1R), homology models
were built by utilizing the crystal structures of the CRF1R, the
glucagon receptor (GCGR), and the ligand-bound ECD of
GLP1R and the gastric inhibitory polypeptide receptor (GIPR)
as templates.280 The authors found that the residues Asp9 and
Gly4 in GLP-1 interacted with the conserved residues in EL3,
while the binding site of GLP1R is constituted by conserved
amino acids in the core domain.

Homology models of the TM region of the metabotropic
glutamate receptor 5 (mGluR5) were created based on the
crystal structure of mGluR1, and refined using an MD-based
methodology.281 Guided by modelling insights, a novel benzoyl-
2-benzimidazole scaffold was designed and SAR studies were
performed. A new positive allosteric modulator (PAM) for mGluR5

was discovered, which exhibited an IC50 value of 6.4 mM, i.e. about
20 fold more potent than DFB (a known mGluR5 PAM).

Homology modelling and MD simulations were undertaken
in six mGluRs (mGluR2, mGluR3, mGluR4, mGluR6, mGluR7,
and mGluR8) by using the crystal structure of mGluR5 as a
template, where the authors reported predicted allosteric binding
sites, and key residues for receptor selectivity.282 Interestingly, most
of the findings in mGluR5, for example the ‘‘ionic lock’’ and some
amino acid linked with receptor activation, were in accordance with
the findings in class A GPCR.

6. Conclusions and perspectives

With over 800 members in humans, receptors from the GPCR
super-family are the targets for B30% of the marketed drugs.
The first GPCR structure, bovine rhodopsin covalently bound to
retinal, was crystallized in 2000. However, recent novel crystallization
techniques allowed the solution of B30 different druggable GPCR
structures since 2007. This boosted the discovery of novel ligands
and new chemical entities through structure-based virtual screening
and lead optimization endeavours, using both crystal and modelled
structures. This breakthrough also brought in new templates for
homology modelling, and a wealth of information regarding GPCR–
ligand interaction patterns, clues about activation mechanisms,
evidence for sequence-induced structural changes at the backbone
level, and illustrated conformational loop diversity.

Still, the number of solved GPCR structures represents a very
small part of the human GPCRs, and in spite of the tremendous
effort and progress in crystallization, a complete coverage of the
druggable GPCR structural space in the near- and mid-term
does not seem likely. Thus, homology modelling appears as a
reliable and efficient tool to expand the GPCR structural map,
and thus the horizons of hit identification and lead optimiza-
tion in the coming years. Throughout this work, we have shown
beyond any doubt from retrospective and prospective studies
including the three GPCR Dock community-wide assessments
that in spite of current limitations of and standing challenges
in homology modelling, in silico GPCR models have been
invaluable for discovering and optimizing drug leads, charac-
terizing GPCR–ligand interaction, rationalizing existing SAR
data, aiding in the design of SDM experiments and SAR studies,
and assessing off-target effects.

In the years ahead, the development of more accurate
modelling techniques accounting for the wealth of biochemical,
biophysical and QSAR data available, coupled with the validation
of these methods in retrospective and prospective structure-
based drug lead identification and optimization projects, should
translate into a growing number of potent, selective and efficient
GPCR ligands with a high therapeutic value.
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