
Magnetic susceptibility of the QCD vacuum in a nonlocal SU(3)
Polyakov–Nambu–Jona-Lasinio model

V. P. Pagura,1 D. Gómez Dumm,2,3 S. Noguera,1 and N. N. Scoccola3,4,5
1Departamento de Física Teórica and Instituto de Física Corpuscular,

Centro Mixto Universidad de Valencia-CSIC, E-46100 Burjassot (Valencia), Spain
2Instituto de Física La Plata, CONICET- Departamento de Física, Facultad de Ciencias Exactas,

Universidad Nacional de La Plata, C.C. 67, 1900 La Plata, Argentina
3CONICET, Rivadavia 1917, 1033 Buenos Aires, Argentina

4Departamento de Física Teórica, Comisión Nacional de Energía Atómica,
Avenida del Libertador 8250, 1429 Buenos Aires, Argentina

5Universidad Favaloro, Solís 453, 1078 Buenos Aires, Argentina
(Received 23 May 2016; published 27 September 2016)

The magnetic susceptibility of the QCD vacuum is analyzed in the framework of a nonlocal SU(3)
Polyakov–Nambu–Jona-Lasinio model. Considering two different model parametrizations, we estimate the
values of the u- and s-quark tensor coefficients and magnetic susceptibilities and then we extend the
analysis to finite temperature systems. Our numerical results are compared to those obtained in other
theoretical approaches and in lattice QCD calculations.
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I. INTRODUCTION

One of the most interesting features of quantum chromo-
dynamics (QCD) is the nontrivial structure of its vacuum.
This is clearly reflected on the vacuum expectation values
of scalar quark condensates hψ̄fψfi, which do not vanish at
zero temperature and density. Light quark condensates are
usually taken as order parameters related to the sponta-
neous breakdown of chiral symmetry, which can be
regarded as one of the most important aspects of low-
energy strong interaction physics. Now, in order to get a
more profound knowledge of the QCD vacuum it is
interesting to study hadronic systems in the presence of
external sources. In particular, it is seen that a constant
external electromagnetic field induces the existence of
other nonvanishing condensates, which describe the
response of the vacuum to the source. We will concentrate
here on the vacuum expectation value (VEV) of the tensor
polarization operator hψ̄σμνψi, where σμν ¼ i½γμ; γν�=2 is
the relativistic spin operator. In general, to leading order in
the external field, for each quark flavor f one has

hψ̄fσμνψfiA ¼ qfFμντf; ð1Þ
where Fμν is the field strength tensor, qf is the quark
electric charge and τf is the so-called tensor coefficient.
The subindex A indicates that the VEV is taken in the
presence of an external electromagnetic field Aμ. It is also
usual to introduce the parameters χf, defined by

τf ¼ χfhψ̄fψfi: ð2Þ
In the literature χf is frequently referred to as the magnetic
susceptibility of the quark condensate, for a quark of flavor

f. However, notice that it only constitutes the spin con-
tribution to the total magnetic susceptibility. The quantity
χf was first introduced in the context of QCD sum rules [1].
Later it was noted that it is also relevant for the analysis of
the muon anomalous magnetic moment [2] and for the
description of several processes involving real photons,
such as dijet production [3] and radiative decays [4–7].
Previous calculations of τf and/or χf for light and strange

quark flavors have been carried out using QCD sum rules
[8–10], in the holographic approach [11,12], using the
operator product expansion in the instanton liquid model
and chiral effective models [13–15], using zero modes of
the Dirac operator [16], and in low-energy models of QCD
such as the quark-meson model and the Nambu–Jona-
Lasinio (NJL) model [17]. In addition, results from three-
flavor lattice QCD (LQCD) simulations have become
available recently [18]. These include not only estimates
at zero temperature but also at temperatures in the region of
the chiral crossover transition. This has motivated the
corresponding analysis carried out in Ref. [19] within an
effective SU(2) chiral model. The aim of the present work is
to extend these studies further by considering the so-called
nonlocal Polyakov–Nambu–Jona-Lasinio (nlPNJL) models
[20–24], in which quarks move in a background color field
and interact among themselves through covariant nonlocal
chirally symmetric four-point couplings. These approaches,
which can be considered as improvements over the (local)
PNJL model [25–31], offer a common framework to study
both the chiral restoration and deconfinement transitions. In
fact, the nonlocal character of the interactions arises
naturally in the context of several successful approaches
to low-energy quark dynamics [32,33]. Moreover, the
presence of nonlocal form factors leads to a momentum
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dependence in light quark propagators that, under an
appropriate choice of parameters [34,35], is shown to be
consistent with the corresponding LQCD results [36–38].
The article is organized as follows. The theoretical

framework is presented in Sec. II: in Sec. II A we describe
the model and quote the analytical expression for the tensor
coefficients τf, and this is extended to finite temperature in
Sec. II B, where Polyakov-loop potentials are introduced;
then in Sec. II C we discuss the model parametrizations to
be considered. Section III is devoted to presenting our
numerical results, which are compared with those obtained
in other theoretical schemes and in LQCD calculations. Our
conclusions are sketched in Sec. IV. We also include three
appendixes. In Appendix Awe provide some details about
the calculation of mean field values in our model, while in
Appendix B we describe our regularization prescription for
the tensor coefficients. Finally, in Appendix C possible
alternative calculations of the tensor coefficients in the NJL
model are discussed.

II. FORMALISM

A. Magnetic susceptibility in a SUð3Þf nonlocal
chiral quark model

As stated, we consider here a three-flavor nonlocal
Nambu–Jona-Lasinio (nlNJL) model [39,40]. We will work
in Euclidean space, where the corresponding action is
given by

SE ¼
Z

d4x

�
ψ̄ðxÞð−i∂ þ m̂ÞψðxÞ

−
G
2
½jSaðxÞjSaðxÞ þ jPa ðxÞjPa ðxÞ þ jrðxÞjrðxÞ�

−
H
4
Aabc½jSaðxÞjSbðxÞjScðxÞ − 3jSaðxÞjPb ðxÞjPc ðxÞ�

�
:

ð3Þ

Here ψðxÞ is the Nf ¼ 3 fermion triplet ψ ¼ ð u d s ÞT ,
and m̂ ¼ diagðmu;md;msÞ is the current quark mass
matrix. We consider the isospin symmetry limit, assuming
mu ¼ md. The model includes flavor mixing through the ’t
Hooft-like term driven by the coupling constant H, in
which the SU(3) symmetric constants Aabc are defined by

Aabc ¼
1

3!
ϵijkϵmnlðλaÞimðλbÞjnðλcÞkl; ð4Þ

where λa, a ¼ 0;…; 8, are the standard eight Gell-Mann
matrices plus λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
13×3. The fermion currents in

Eq. (3) are given by

jSaðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
λaψ

�
x −

z
2

�
;

jPa ðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
iλaγ5ψ

�
x −

z
2

�
;

jrðxÞ ¼
Z

d4zF ðzÞψ̄
�
xþ z

2

�
i∂↔
2κ

ψ

�
x −

z
2

�
; ð5Þ

where GðzÞ and F ðzÞ are covariant form factors responsible
for the nonlocal character of the interactions. Notice that
the relative weight of the interaction term that includes the
currents jrðxÞ is controlled by the parameter κ. This
coupling leads to quark wave function renormalization
(WFR).
In what follows we will work within the mean field

approximation (MFA). In momentum space, the effective
quark propagators can be expressed as

SfðpÞ ¼
ZðpÞ

−pþMfðpÞ
; ð6Þ

where f ¼ u, d, s is the corresponding quark flavor, and
MfðpÞ and ZðpÞ stand for the (momentum dependent)
effective mass and WFR, respectively. These are given by

MfðpÞ ¼ ZðpÞ½mf þ σ̄fgðpÞ�;

ZðpÞ ¼
�
1 −

ζ̄

κ
fðpÞ

�
−1
; ð7Þ

where the functions gðpÞ and fðpÞ are the Fourier trans-
forms of GðzÞ and F ðzÞ, while σ̄f and ζ̄ are mean field
values of scalar fields associated with the currents in
Eq. (5), in a flavor basis. Details of the procedure followed
in order to obtain these quantities are given in Appendix A.
Let us consider in this framework the calculation of the

tensor coefficient τf. This requires us to obtain the quark
propagator in the presence of an external magnetic field.
Since the quantity we are interested in is extracted from the
VEVof the tensor polarization operator at leading order in
the external field, for our purposes it is enough to consider
such a propagator in the weak field approximation. Thus, at
the leading order in the electromagnetic field Aμ we have

SðAÞf ðp; p0Þ≃ ð2πÞ4δð4Þðp − p0ÞSfðpÞ
þ SfðpÞqfAαðp − p0ÞΓfαðp; p0ÞSfðp0Þ; ð8Þ

where Γfαðp; p0Þ stands for the effective quark-photon
vertex to be given below. Now, using that in terms of the

Fourier transform of SðAÞf ðp; p0Þ one has

hψ̄fðxÞσμνψfðxÞiA ¼ −Tr½σμνSðAÞf ðx; xÞ�; ð9Þ
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and we obtain that, at the leading order in Aμ, the VEV of
the tensor polarization operator is given by

hψ̄fðxÞσμνψfðxÞiA ¼ −qf
Z

d4p
ð2πÞ4

d4p0

ð2πÞ4
× eiðp0−pÞ·xAαðp − p0Þ
× Tr½σμνSfðpÞΓfαðp; p0ÞSfðp0Þ�;

ð10Þ

where the trace is taken over Dirac and color indices. If the
external magnetic field is spatially uniform, the electro-
magnetic field can be written as AμðxÞ ¼ ð−1=2ÞFμνxν;
therefore in momentum space one has

Aαðp − p0Þ ¼ −
i
2
Fαβ ∂

∂p0
β

½ð2πÞ4δð4Þðp − p0Þ�: ð11Þ

In order to determine the couplings of dressed quarks to
the electromagnetic field, one has to take into account that
within the present nlNJL model the inclusion of gauge
interactions implies not only a change in the kinetic terms
in the Lagrangian (through the usual covariant derivative)
but also a parallel transport of the fermion fields entering
the nonlocal currents in Eq. (5). As discussed in Ref. [35],
the effective quark-photon vertex can be written as

Γα
fðp; p0Þ ¼ 1

2

�
1

ZðpÞ þ
1

Zðp0Þ
�
γα

þ 1

2

�
1

ZðpÞ −
1

Zðp0Þ
� ðpþ p0Þα
p2 − p02 ðpþ p 0Þ

−
�
MfðpÞ
ZðpÞ −

Mfðp0Þ
Zðp0Þ

� ðpþ p0Þα
p2 − p02

þ νð1Þf ðp; p0ÞTα
1 þ νð2Þðp; p0ÞTα

2; ð12Þ

where

νð1Þf ðp; p0Þ ¼ −
1

p02 − p2

Z
1

−1
dλλ

�
d

dp2

MfðpÞ
ZðpÞ

�
p¼p̄−λk=2

;

νð2Þðp; p0Þ ¼ 1

p02 − p2

Z
1

−1
dλλ

�
d

dp2

1

ZðpÞ
�
p¼p̄−λk=2

;

Tα
1ðp; p0Þ ¼ pαðp0 · kÞ − p0αðp · kÞ;

Tα
2ðp; p0Þ ¼ Tα

1ðp; p0Þpþ p 0

2
; ð13Þ

with p̄¼ ðpþp0Þ=2, k ¼ p0 − p. The functions νð1Þf ðp; p0Þ
and νð2Þðp; p0Þ arise from the parallel transport of fermion
fields, which involves an integral over an arbitrary path
[41]. The result in Eqs. (12)–(13) corresponds to the choice
of a straight line path.

Then, taking into account the definition in Eq. (1), and
using Eqs. (10)–(13), a somewhat long but straightforward
calculation shows that within the present model the tensor
coefficient is given by

τf ¼ 4Nc

Z
d4p
ð2πÞ4 ZðpÞ

MfðpÞ − p2M0
fðpÞ

½p2 þMfðpÞ2�2
; ð14Þ

where M0
f ≡ dMf=dp2. Notice that this result does not

depend on the functions νð1Þf ðp; p0Þ and νð2Þðp; p0Þ, i.e. on
the arbitrary path chosen for the gauge transformation
carried out on fermion fields. It is also worth noticing that
for finite current quark masses the integral in Eq. (14) is
ultraviolet divergent; thus it has to be regularized. This can
be accomplished by subtracting the corresponding value
in the absence of interactions (see the discussion in
Appendix B).

B. Extension to finite temperature

We will extend the analysis of the SUð3Þf nlNJL model
introduced in the previous section to a system at finite
temperature by using the standard Matsubara formalism. In
addition, in order to account for confinement effects, we
will include the coupling of fermions to the Polyakov loop
(PL), assuming that quarks move on a constant color
background field ϕ ¼ igδμ0G

μ
aλa=2, where Gμ

a are the
SU(3) color gauge fields. We will work in the so-called
Polyakov gauge, in which the matrix ϕ is given a diagonal
representation ϕ ¼ ϕ3λ3 þ ϕ8λ8, taking the traced
Polyakov loop Φ ¼ 1

3
Tr expðiϕ=TÞ as an order parameter

of the confinement/deconfinement transition. Since—
owing to the charge conjugation properties of the QCD
Lagrangian [42]—the mean field traced Polyakov
loop is expected to be a real quantity, and ϕ3 and ϕ8 are
assumed to be real valued [29], one has ϕ8 ¼ 0, Φ ¼
½1þ 2 cosðϕ3=TÞ�=3. In addition, we include effective
gauge field self-interactions through a Polyakov-loop
potential U½Φ�. The resulting scheme is usually denoted
as a nonlocal Polyakov–Nambu–Jona-Lasinio (nlPNJL)
model [20–24].
Concerning the PL potential, its functional form is

usually based on properties of pure gauge QCD. In this
work we consider three alternative forms that have been
proposed in the literature. One possible ansatz is that based
on the logarithmic expression of the Haar measure asso-
ciated with the SU(3) color group integration. The corre-
sponding potential is given by [29]

U logðΦ; TÞ
T4

¼ −
1

2
aðTÞΦ2 þ bðTÞ

× logð1 − 6Φ2 þ 8Φ3 − 3Φ4Þ; ð15Þ

where
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aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

;

bðTÞ ¼ b3

�
T0

T

�
3

: ð16Þ

The parameters in these equations can be fitted to pure
gauge lattice QCD calculations so as to properly reproduce
the corresponding equation of state and Polyakov-loop
behavior. This leads to [29]

a0 ¼ 3.51; a1 ¼ −2.47;

a2 ¼ 15.2; b3 ¼ −1.75: ð17Þ

The values of ai and bi are constrained by the condition of
reaching the Stefan-Boltzmann limit at T → ∞ and by
imposing the presence of a first-order phase transition at T0,
which is a further parameter of the model. In the absence of
dynamical quarks, from lattice calculations one expects a
deconfinement temperature T0 ¼ 270 MeV. However, it
has been argued that in the presence of light dynamical
quarks this temperature scale should be adequately reduced
to about 210 and 190 MeV for the case of two and
three flavors, respectively, with an uncertainty of about
30 MeV [43].
Besides the logarithmic form in Eq. (15), a widely used

potential is that given by a polynomial function based on a
Ginzburg-Landau ansatz [28,44]:

UpolyðΦ; TÞ
T4

¼ −
b2ðTÞ
2

Φ2 −
b3
3
Φ3 þ b4

4
Φ4; ð18Þ

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ð19Þ

Here the reference temperature T0 plays the same role as in
the logarithmic potential in Eq. (15). Once again, the
parameters can be fitted to pure gauge lattice QCD results
so as to reproduce the corresponding equation of state and
Polyakov-loop behavior. Numerical values can be found
in Ref. [28].
Finally, we consider the so-called “improved” Polyakov-

loop potentials recently proposed in Ref. [45], in which the
full QCD potential Uglue is related to a Yang-Mills potential
UYM:

UglueðΦ; tglueÞ
T4

¼ UYM½Φ; tYMðtglueÞ�
T4
YM

; ð20Þ

where

tYMðtglueÞ ¼ 0.57tglue ¼ 0.57

�
T − Tglue

c

Tglue
c

�
: ð21Þ

The dependence of the Yang-Mills potential on the
Polyakov loop Φ and the temperature TYM is taken from
an ansatz such as those in Eq. (15) or (18), while for Tglue

c a
preferred value of 210 MeV is obtained [45].
Once the form of the effective action is established, the

vacuum expectation value of the tensor polarization oper-
ator at finite temperature can be obtained by following a
similar procedure as the one described in the previous
subsection. One gets

τfðTÞ ¼ 4T
X∞
n¼−∞

X
c¼r;g;b

Z
d3p
ð2πÞ3 ZðpncÞ

×
MfðpncÞ − 4p⃗2Mf

0ðpncÞ=3
½p2

nc þMðpncÞ2�2
; ð22Þ

where p2
nc ¼ ½ð2nþ 1ÞπT þ ϕc�2 þ ~p2, and ϕc is given by

the relation ϕ ¼ diagðϕr;ϕg;ϕbÞ ¼ diagðϕ3;−ϕ3; 0Þ. In
general, as in case of the T ¼ 0 expression in Eq. (14),
it is seen that the integral in Eq. (22) is ultraviolet divergent.
We regularize it by subtracting the T ¼ 0 divergent piece,
which is equivalent to subtracting a “free” contribution
obtained from Eq. (22) in the limit σ̄u;s ¼ ζ̄ ¼ 0, and
adding this contribution written in a regularized form.
Details are given in Appendix B.

C. Model parameters and form factors

In order to fully specify the model under consideration
we need to fix the value of the five parameters it includes,
namely the current quark masses mu;s and the coupling
constants G, H, and κ. In addition, one has to specify the
form factors F ðzÞ and GðzÞ entering the nonlocal fermion
currents [or, equivalently, the corresponding Fourier trans-
forms fðpÞ and gðpÞ]. Given the form factor functions, one
can fix the model parameters so as to reproduce the
observed meson phenomenology. Here, following
Ref. [40], we will consider two parametrizations, corre-
sponding to two different functional forms for fðpÞ and
gðpÞ. The first one corresponds to the often used expo-
nential behaviors

gðpÞ ¼ exp ð−p2=Λ2
0Þ; fðpÞ ¼ exp ð−p2=Λ2

1Þ; ð23Þ

which guarantee a fast ultraviolet convergence of the loop
integrals. Note that the range of the nonlocality in each
channel is determined by the parameters Λ0 and Λ1, which
can be viewed as effective momentum cutoffs. In order to
fix the parameters we have required the model to reproduce
the phenomenological values of five physical quantities,
namely the masses of the pseudoscalar mesons π, K and η0;
the pion weak decay constant fπ; and the light quark
condensate hψ̄uψui. In addition, on the basis of lattice QCD
estimations [37], we have fixed the value of the quark WFR
at zero momentum to be Zð0Þ ¼ 0.7.
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The second parametrization considered here is based on
the analysis in Ref. [36], in which the effective massMuðpÞ
is written as

MuðpÞ ¼ mu þ αmfmðpÞ; ð24Þ

where

fmðpÞ ¼
1

1þ ðp2=Λ2
0Þ3=2

: ð25Þ

From Eqs. (7) one has αm ¼ ðmuζ̄=κ þ σ̄uÞ=ð1 − ζ̄=κÞ.
For the wave function renormalization we use the para-
metrization [34,35]

ZðpÞ ¼ 1 − αzfzðpÞ; ð26Þ

where

fzðpÞ ¼
1

ð1þ p2=Λ2
1Þ5=2

: ð27Þ

Here the new parameter αz is given by αz ¼ −ζ̄=ðκ − ζ̄Þ.
The functions fðpÞ and gðpÞ can now be easily obtained
from Eqs. (7), (24) and (26). As shown in Refs. [34,40], for
an adequate choice of parameters these functional forms

can reproduce very well the momentum dependence of the
quark mass and WFR obtained in lattice calculations. We
complete the model parameter fixing by taking as phe-
nomenological inputs the values of the pion, kaon and η0
masses and the pion weak decay constant.
In Table I we quote the numerical values for the model

parameters that we have obtained for the above-described
form factor functions. In what follows, the parametrizations
corresponding to Eqs. (23) and (24)–(27) will be referred to
as parametrizations PI and PII, respectively.

III. NUMERICAL RESULTS

Given the model parametrization we can solve the set of
equations (A3) and (A4), which allow us to obtain the mean
field values σ̄u;s and ζ̄ at zero temperature, as described in
Appendix A. Once these values are obtained it is straight-
forward to compute the quark condensates and the tensor
coefficients for light and strange quark flavors, according to
Eqs. (A6) and (14). Our numerical results for parametriza-
tions I and II are summarized in Table II, where we also
quote for comparison the corresponding estimates obtained
within other models. Firstly we observe that our model, in
accordance with other theoretical results, predicts a dia-
magnetic behavior for the QCD vacuum. In addition, for
both parametrizations the values obtained for the u-tensor
coefficient are found to be in very good agreement with the
LQCD estimate. In the case of the light quark magnetic
susceptibility we find some discrepancy between the results
for PI and PII, which turn out to be above and below the
LQCD estimate, respectively. The discrepancy can be
explained by noting that the values for the light quark
condensates for both parametrizations are also significantly
different. In fact, this difference arises basically from the
fact that for PI we have taken as input the phenomeno-
logical value −hψ̄uψui1=3 ¼ 240 MeV, which corresponds
to a renormalization scale of about 1 GeV, while PII has
been obtained through a fit to lattice data in Ref. [37] for the
effective quark propagator, which correspond to a higher

TABLE I. Model parameters for the form factors in Eqs. (23)
(PI) and (24)–(27) (PII).

PI PII

mu (MeV) 5.7 2.6
ms (MeV) 136 64.9
GΛ2

0
23.64 16.65

−HΛ5
0

526 202.8
κ (GeV) 4.36 8.218
Λ0 (GeV) 0.814 0.795
Λ1 (GeV) 1.032 1.510

TABLE II. Condensates and magnetic susceptibilities obtained in the present nlNJL model in comparison with other existing
theoretical estimates: NJL corresponds to the NJL model calculation in Ref. [17], NJL� corresponds to a NJL model calculation based on
what we call the WFPE approach (see Appendix C), ILM to the instanton liquid model calculation in Ref. [13], DS to the Dyson-
Schwinger calculation in Ref. [46] and LQCD to the lattice estimate in Ref. [18].

nlNJL NJL NJL� ILM DS LQCD
PI PII

μ (GeV) 0.814 3.0 0.627 0.631 0.85 0.4–0.7 2.0
mu (MeV) 5.7 2.6 5 5.5 5 0 3.5
−hψ̄uψui1=3 (MeV) 240 316 253 247 260 251 269
−hψ̄ sψsi1=3 (MeV) 198 341 ... 267 ... ... 250
τu (MeV) 38.2 44.6 69 25.8 40–45 28–33 40
τs (MeV) 9.7 30 ... 19.8 6–10 ... 53
−χu (GeV−2) 2.77 1.42 4.3 1.72 2.5 1.7–2.1 2.05 (0.09)
−χs (GeV−2) 1.25 0.76 ... 1.03 ... ... 3.40 (1.40)
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momentum scale of 3 GeV. Regarding the s-tensor coef-
ficient, we find that its value is more dependent on the
chosen parametrization than in the case of τu. When
comparing with the quoted results of other models, it is
seen that the prediction obtained from PII is the closest one
to LQCD. In any case, it is important to point out that in
general the various theoretical scenarios leading to the
results presented in Table II consider different renormal-
ization scales; therefore the comparison of numerical values
should be taken with some care. Moreover, in the case of
the predictions obtained within the local NJL model it is
seen that the results are rather dependent on the calculation
scheme. This is discussed in Appendix C, where we
compare the values for τu arising from different regulari-
zation approaches. For comparison we include in Table II
the results given by the calculation in Ref. [17] and those
arising from an alternative approach that we refer to as
“weak field propagator expansion” (WFPE), in which we
have used the SUð3Þf NJL parametrization given in
Ref. [47].
Let us now study the temperature dependence of the

tensor coefficient in the various possible scenarios available
for the parametrizations and Polyakov-loop potentials
discussed in the previous section. Our results for τu as a
function of the temperature, using the regularization pre-
scription discussed in Appendix B, are presented in Fig. 1.
If the temperature is increased starting from T ¼ 0, for all
cases under consideration it is seen that the tensor coef-
ficient remains approximately constant up to some critical
temperature, and then one finds a sudden drop, which is a
signature of the restoration of the SU(2) chiral symmetry.
Therefore, τu may be regarded as an approximate order
parameter for the chiral restoration transition. In the upper
panel of Fig. 1 we show the curves obtained within the
present nlPNJL model for both parametrizations PI and PII
(dashed and solid lines, respectively), considering the
improved polynomial potential for the Polyakov loop.
For comparison we also show the results from Ref. [13],
obtained in the context of the instanton liquid model (ILM),
as well as LQCD estimates from Ref. [18] (dotted line and
grey dashed band, respectively). Firstly we notice that ILM
results predict that for low temperatures the tensor con-
densate becomes increased with respect to τuð0Þ, while in
our model it remains approximately constant up to the
chiral transition region. In order to characterize the tran-
sition, we define the critical temperature Tc as the temper-
ature at which the function τuðTÞ has an inflection point.
Following this definition we find for the case of the
improved polynomial potential a critical temperature Tc ¼
158 (160) MeV for PI (PII), while lattice results lead to
TLQCD
c ∼ 162 MeV [18]. Moreover, we observe that at

temperatures above the transition region the shape of the
curves obtained within our model is in reasonable agree-
ment with lattice calculations. On the other hand, the onset
of the transition within nlPNJL models is found to be rather

steep; thus the curve arising from the ILM seems to be more
compatible with lattice results right below the critical
temperature. In fact, this discrepancy between nlPNJL
and LQCD estimates may be cured once the mesonic
fluctuations are included in the Euclidean action
[20,22,24,48]. This can be understood by noting that when
the temperature is increased the light mesons should be
excited before the quarks, and this would soften the
behavior of the tensor coefficient at the onset of the
transition. It is important to mention that the incorporation
of mesonic corrections should not modify the critical
temperatures.
Next, in the lower panel of Fig. 1 we show the curves for

the tensor coefficient as a function of the temperature for
the nlPNJL model, considering various functional forms
for the Polyakov-loop potential. All results correspond to
the lattice QCD-inspired parametrization PII. For compari-
son we include once again LQCD and ILM results, as well
as a curve corresponding to the tensor coefficient in the
nlNJL model without the coupling between the quarks and
the Polyakov loop. In this last case (short-dashed line) it is

FIG. 1. Normalized u-quark tensor coefficient vs temperature
for nonlocal PNJL models. Upper panel: Results corresponding
to the improved polynomial PL potential, for parametrizations PI
and PII. Lower panel: Results corresponding to parametrization
PII, for various PL potentials. For comparison, values obtained
within the ILM [19] (dotted lines) and results from LQCD [18]
(dashed grey bands) are also shown in both graphs.
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observed that the transition temperature turns out to be too
low in comparison with LQCD estimates, as it is indeed
expected from previous calculations [21]. The graph shows
that whereas different PL potentials give rise to different
shapes for τuðTÞ at temperatures below the chiral transition,
once the transition is surpassed the functions converge to a
single curve that is in agreement with lattice estimates. In
general it is seen that for the polynomial potentials the
transition is smoother than in the case of the logarithmic
ones, for which the transition is found to be of first order.
Furthermore, for the improved potentials the curves tend to
be smoother and the agreement with lattice results starts to
occur already at the transition temperature. These general
features on the comparison between the results of nlPNJL
models and LQCD have also been observed within the
study of chiral restoration, taking (as it is usually done)
the quark condensates as order parameters of the transi-
tion [40].
Finally, let us briefly discuss our results for the s-quark

tensor coefficient and for other possible regularization
prescriptions for τuðTÞ and τsðTÞ. As stated, the results
in Fig. 1 correspond to the prescription introduced in
Appendix B, which is consistent with the usual regulari-
zation carried out at zero temperature. However, it may be
argued that there are other possible regularization proce-
dures. One possible option is to define tensor coefficients

τðintÞf by taking the expression in Eq. (B2) without the

addition of the free regularized terms, i.e. τðintÞf ðTÞ≡
τðregÞf ðTÞ − τð0;regÞf ðTÞ. This means to keep just the contri-
bution of strong interaction dynamics to the tensor coef-
ficients; hence in the limit of large temperatures one gets

τðintÞf ðTÞ → 0 instead of the asymptotic free quark system
behavior given by Eq. (B5). Furthermore, another way to
get rid of the free quark contribution at high temperatures is
to define a “subtracted tensor coefficient” τsub as

τsubðTÞ¼ τðregÞu ðTÞ−mu

ms
τðregÞs ðTÞþmuNc

2π2
log

�
ms

mu

�
; ð28Þ

which by construction also vanishes at large T [see
Eq. (B5)].
The curves corresponding to τðregÞu ðTÞ, τðintÞu ðTÞ and

τsubðTÞ, together with ILM results, are shown in the upper
panel of Fig. 2. In all cases the results are normalized to the
values at T ¼ 0, and correspond to parametrization PII and
the improved PL potential discussed in Sec. II B. For

temperatures below the transition, it is found that τðregÞu ðTÞ
and τsubðTÞ keep constant, while τðintÞu (dashed line) shows
some increase. This growth, barely noticeable in the figure,
is in any case negligible in comparison with that found in
the case of the ILM. Then, at the transition region the shape
of all three curves look very much alike; therefore it can be
said that the transition features do not depend on the

regularization prescription. At larger temperatures, as

expected, the curves for τðintÞu ðTÞ and τsubðTÞ are similar
(in both cases the contribution of free quarks has been

somehow excluded), while τðregÞf is governed by the
logarithmic behavior given by Eq. (B5). The curves

corresponding to the s-quark tensor coefficients τðregÞs ðTÞ
and τðintÞs ðTÞ are shown in the lower panel of Fig. 2. As in

the case of the u quark, it is seen that τðregÞs remains
approximately constant for low T, starting to decrease at
about the chiral transition critical temperature. However,
we find that the slope is not so pronounced as in the case of
τu. At large temperatures the curve approaches the asymp-
totic logarithmic behavior, shown by the short-dashed line

in the figure. On the other hand, the behavior of τðintÞs ðTÞ is
quite different, showing a significant increase at temper-
atures below the transition and then a relatively slow

FIG. 2. Normalized tensor coefficients vs temperature for
nlPNJL models. Results correspond to parametrization PII,
improved polynomial PL potential and different regularization
prescriptions. Upper panel: Results corresponding to the u-quark

tensor coefficients τðregÞu and τðintÞu and the subtracted tensor
coefficient τsub. For comparison values obtained within the
ILM [19] are also shown. Lower panel: Results corresponding

to the s-quark tensor coefficients τðregÞs and τðintÞs . The short dashed

line shows the asymptotic behavior of τðregÞs ðTÞ=τðregÞs ð0Þ at large
temperatures.
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descent. Thus, it is seen that even if the behavior of the
s-quark tensor coefficient reflects the chiral restoration, it
cannot be taken as a suitable order parameter in order to
determine the critical transition temperature.

IV. SUMMARY AND CONCLUSIONS

In this work we have investigated the magnetic suscep-
tibility of the QCD vacuum in the framework of a nonlocal
SU(3) Polyakov–Nambu–Jona-Lasinio model.
Firstly we have considered the situation at vanishing

temperature. We have found that the values for the u-quark
tensor coefficient τu obtained within our model for para-
metrizations I and II are similar to each other, the results
being in good agreement with estimates from lattice QCD
and instanton liquid model calculations. On the other hand,
these values are somewhat above the result obtainedwithin a
Dyson-Schwinger approach and clearly below the value
arising from the NJL model calculation of Ref. [17]. It
should be taken into account, however, that—as discussed in
Appendix C—NJLmodel results are quite dependent on the
way in which the calculation is performed. For the corre-
sponding u-quark magnetic susceptibilities we find some
discrepancy between the results arising from our para-
metrizations I and II. This can be understood by noting
that the values for the respective chiral condensates are also
different from each other, which, in turn, is related to the fact
that the parametrizations correspond to different momentum
scales. In the case of the s-quark quantities our predictions
turn out to be in general more dependent on the chosen
parametrization. It should be noticed that lattice QCD
estimates are also subject to larger uncertainties in this case.
Concerning the results at finite temperature we find that

the tensor coefficient τu remains approximately constant up
to a critical temperature, at which there is a sudden drop
that can be clearly identified with the restoration of the
SU(2) chiral symmetry. The curves are found to be similar
for different regularization prescriptions. The stability
observed at low temperatures differs from the behavior
predicted in the context of the instanton liquid model,
which shows a noticeable bump in that region. As occurs
for other quantities (e.g. the scalar quark condensates) in
the framework of nlPNJL models at the mean field level,
we notice that at the onset of the chiral transition the
behavior of the tensor coefficient is rather steep in
comparison with lattice QCD estimates. This discrepancy
is expected to be cured once meson fluctuations are
included in the calculation. In any case, these corrections
should not modify the behavior of the tensor coefficient
above the transition, which is found to be in good agree-
ment with lattice QCD results.
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APPENDIX A: MEAN FIELD APPROXIMATION
AND GAP EQUATIONS AT T = 0

Details on how to deal with the action in Eq. (3) at
the mean field level can be found e.g. in Ref. [40]. For the
reader’s convenience, in this appendix we sketch just the
main details. We start by performing a standard bosoniza-
tion of the fermionic theory, introducing scalar fields σaðxÞ,
ζðxÞ and pseudoscalar fields πaðxÞ, together with auxiliary
fields SaðxÞ, RðxÞ and PaðxÞ, with a ¼ 0;…; 8. Now we
follow the stationary phase approximation, replacing the
path integral over the auxiliary fields by the corresponding
argument evaluated at the minimizing values ~Sa, ~R and ~Pa.
Next, we consider the MFA, in which the scalar and
pseudoscalar fields are expanded around their vacuum
expectation values:

σaðxÞ ¼ σ̄a þ δσaðxÞ; ζðxÞ ¼ ζ̄ þ δζðxÞ;
πaðxÞ ¼ δπaðxÞ: ðA1Þ

We have assumed that pseudoscalar mean field values
vanish, owing to parity conservation. Moreover, for the
scalar fields only σ̄0;8 and ζ̄ can be different from zero due
to charge and isospin symmetries. For the neutral fields
(a ¼ 0, 3, 8) it is convenient to change to a flavor basis,
σa; πa → σf; πf, where f ¼ u, d, s, or equivalently f ¼ 1,
2, 3. Then, the mean field action reads

SMFA
E

Vð4Þ ¼ 2Nc

X
f

Z
d3p
ð2πÞ3 log

�
ZðpÞ2

p2 þMfðpÞ2
�

−
�
ζ̄ R̄þG

2
R̄2 þH

4
S̄uS̄dS̄s

�

−
1

2

X
f

�
σ̄fS̄f þ

G
2
S̄2
f

�
; ðA2Þ

where Nc is the number of colors, and S̄f and R̄ stand for

the values of ~Sf and ~R within the MFA, respectively. The
functions MfðpÞ and ZðpÞ, given by Eqs. (7), correspond
to the momentum-dependent effective masses and WFR of
quark propagators SfðpÞ in Eq. (6).
By minimizing the mean field action in Eq. (A2) one gets

the set of coupled gap equations
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σ̄u þ GS̄u þ
H
2
S̄dS̄s ¼ 0;

σ̄d þ GS̄d þ
H
2
S̄sS̄u ¼ 0;

σ̄s þ GS̄s þ
H
2
S̄uS̄d ¼ 0; ðA3Þ

plus an extra equation arising from the jrðxÞ current-current
interaction,

ζ̄ þ GR̄ ¼ 0: ðA4Þ

The mean field values S̄f and R̄ in these equations are
given by

S̄f ¼ −8Nc

Z
d4p
ð2πÞ4 gðpÞ

ZðpÞMfðpÞ
p2 þMfðpÞ2

; f ¼ u; d; s;

R̄ ¼ 4Nc

κ

Z
d4p
ð2πÞ4 p

2fðpÞ
X3
f¼1

ZðpÞ
p2 þMfðpÞ2

: ðA5Þ

Thus, for a given set of model parameters and form factors,
from Eqs. (7) and (A3)–(A5) one can numerically obtain
the mean field values σ̄f and ζ̄.
The quark-antiquark condensates hψ̄fψfi can be now

easily calculated by taking the derivative of the Euclidean
mean field action with respect to the current quark masses.
One gets

hψ̄fψfi ¼ −4Nc

Z
d4p
ð2πÞ4

�
MfðpÞ

p2 þMfðpÞ2
−

mf

p2 þm2
f

�
;

ðA6Þ

where we have subtracted a “free quark condensate” in
order to regularize the otherwise divergent momentum
integral.

APPENDIX B: REGULARIZATION
OF THE TENSOR COEFFICIENT

As in the case of the quark condensate, the expression for
the tensor coefficient in Eq. (14) can be regularized by
subtracting a “free” T ¼ 0 contribution obtained in the limit
σ̄u;s ¼ ζ̄ ¼ 0 (see e.g. Ref. [13]):

τðregÞf ¼ 4Nc

Z
d4p
ð2πÞ4

�
ZðpÞMfðpÞ − p2M0

fðpÞ
½p2 þMfðpÞ2�2

−
mf

ðp2 þm2
fÞ2

�
: ðB1Þ

In the same way, for the case of a system at finite
temperature T we regularize the divergent integral in
Eq. (22) by subtracting a finite temperature contribution

in which σ̄u;s ¼ ζ̄ ¼ 0. Then, in order to recover the proper
finite T behavior at large T, we add this contribution after
subtracting the T ¼ 0 divergent piece as in Eq. (B1). Thus,
using the same definitions as in Eq. (22), we have

τðregÞf ðTÞ ¼ 4T
X∞
n¼−∞

X
c¼r;g;b

Z
d3p
ð2πÞ3

×
�
ZðpncÞ

MfðpncÞ − 4p⃗2Mf
0ðpncÞ=3

½p2
nc þMðpncÞ2�2

−
mf

ðp2
nc þm2

fÞ2
�
þ τð0;regÞf ðTÞ; ðB2Þ

where

τð0;regÞf ðTÞ ¼ 4T
X∞
n¼−∞

X
c¼r;g;b

Z
d3p
ð2πÞ3

mf

ðp2
nc þm2

fÞ2

− 4Nc

Z
d4p
ð2πÞ4

mf

ðp2 þm2
fÞ2

: ðB3Þ

The expression in Eq. (B3) can be worked out, leading to

τð0;regÞf ðTÞ ¼ −
mf

T3

Z
d3p
ð2πÞ3

�
1

x2f

�
1

1þ cosh xf

þ 8þ 4ð3Φ − 1Þ cosh xf
ð3Φ − 1þ 2 cosh xfÞ2

�

þ 6

x3f

Φð1þ 2e−xfÞ þ e−2xf

ð1þ e−xfÞð3Φ − 1þ 2 cosh xfÞ
�
; ðB4Þ

where we have defined xf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q
=T. In the limit of

large temperature the behavior of the tensor coefficient is
given by

τfðTÞjT→∞ ≃ −
mfNc

2π2
½0.568þ logðT=mfÞ�: ðB5Þ

APPENDIX C: TENSOR COEFFICIENT
IN THE NJL MODEL

In this appendix we discuss the calculation of the tensor
coefficient in the (local) NJL model. The value of τu that we
have quoted in Table II corresponds to the SU(2) NJL
model calculation carried out in Ref. [17]. There, the
authors use the Ritus formalism [49] to derive an analytical
expression for the VEVof the tensor polarization, and then
they introduce a smooth form factor in order to regularize
the divergent momentum integral. Our aim is to point out
that there are alternative procedures that can be followed to
calculate τu within the NJL model. In fact, it is seen that the
numerical results turn out to be quite dependent on the way
in which the calculation is performed.
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Let us briefly describe the procedure followed in
Ref. [17]. For consistency with this and other previous
calculations, throughout this appendix expressions are
given in Minkowski space. The VEV of the tensor polari-
zation operator is given by

hψ̄fσμνψfiA ¼ −iTr½σμνSðAÞf ðx; xÞ�; ðC1Þ

where SðAÞf ðx; x0Þ is the f-quark propagator (in coordinate
space) in the presence of an external electromagnetic field

Aμ. For the particular case of a constant magnetic field ~B
this propagator can be explicitly obtained. Within Ritus

formalism, choosing ~B to be along the z axis, one has

SðAÞf ðx; x0ÞRit ¼
X∞
k¼0

1

ð2πÞ4
Z

dp0dp2dp3EPðxÞΛk

×
1

γ · P −MfðBÞ
ĒPðx0Þ; ðC2Þ

where EPðxÞ stands for the eigenfunction of a charged
fermion of momentum Pμ in the magnetic field, and
ĒPðxÞ ¼ γ0EPðxÞ†γ0. The index k in the sum labels the
Landau levels (LL), while Λk is a projector in Dirac space
that takes into account the LL degeneracy. The four-
momentum Pμ is quantized according to

Pμ ¼ ðp0; 0; signðqfÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kjqfjB

q
; p3Þ; ðC3Þ

where qf denotes the quark electric charge. Replacing the

expression for SðAÞf ðx; x0Þ in Eq. (C2) into Eq. (C1), a
straightforward calculation shows that for our choice of
magnetic field orientation the 12 component of the
tensor is the only one that has a nonvanishing VEV.
One has

hψ̄fσ12ψfiA;Rit ¼ Nc
qfB

2
MfðBÞ

×
Z

dp0dp3

ð2πÞ2
i

p2
0 − p2

3 −MfðBÞ2
; ðC4Þ

where the integral over p2 has been performed. It is worth
noticing that only the lowest LL (i.e. that corresponding to
k ¼ 0) contributes to this VEV. Now, this expression is
divergent and needs to be regularized. In Ref. [17] this has
been achieved by introducing at this stage a cutoff function
UΛðj~pjÞ that depends only on the spatial components of the
momentum, Λ being a (three-momentum) cutoff scale.
Following this procedure and performing the integral over
p0 one immediately obtains the expression in Eq. (17) of
Ref. [17]. Expanding up to leading order in B, and noting
that F12 ¼ −B, one gets within this method an explicit
expression for τf, namely

τf ¼
NcMf

2π2
IRitðMf=ΛÞ; ðC5Þ

where

IRitðxÞ ¼
Z

∞

0

dy
UΛðΛyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ x2

p : ðC6Þ

In Ref. [17] the particular form

ULor5
Λ ðpÞ ¼ 1

1þ ðp=ΛÞ2N ; N ¼ 5; ðC7Þ

was used for numerical calculations. Alternatively, one can
use a simple sharp cutoff function USC

Λ ðpÞ ¼ θðΛ − pÞ,
which leads to

ISCRitðxÞ ¼ log

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

x

�
: ðC8Þ

[We have included the upper index SC to stress that it
corresponds to the particular case in whichUΛðpÞ is a sharp
cutoff function.]
Let us consider now an alternative way to proceed based

on the so-called Schwinger proper-time representation of
the fermion propagator [50]. As expected, once again it is
seen that only the VEVof the 12 component of the tensor is
nonvanishing. In this case one gets for this VEV the
expression

hψ̄fσ12ψfiA;Sch ¼ −Nc
qfB

4π2
MfðBÞ

×
Z

∞

0

ds
s
exp ½−sM2

fðBÞ�; ðC9Þ

which as in the previous case needs to be regularized. As is
customary when one uses the proper-time approach, we
perform the regularization by replacing the lower limit of
the integral by 1=Λ2. Expanding up to leading order in Bwe
get in this way

τf ¼
NcMf

2π2
ISchðMf=ΛÞ; ðC10Þ

where

ISchðxÞ ¼
1

2
E1ðxÞ;

EnðxÞ≡
Z

∞

1

ds=sn expð−sxÞ: ðC11Þ

Finally, a yet alternative way to proceed is to follow the
steps discussed in Sec. II A, in which we consider from the
beginning the expansion of the tensor operator at first order
in powers of the magnetic field [see Eq. (10)], ending up
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with Eq. (14). We refer to this approach as “weak field
propagator expansion.” In the case of the NJL model one
has (in Minkowski space)

hψ̄fσμνψfiA;WFPE ¼ −i4NcqfFμν

Z
d4p
ð2πÞ4

Mf

ðp2 −M2
fÞ2

:

ðC12Þ

It is important to stress that this expression can also be
obtained by considering the weak field limit of the fermion
propagator in a constant magnetic field given e.g. in
Refs. [46,51]. As stated in Ref. [46], it is crucial to carry
out the infinite sum over Landau levels in order to obtain
the proper form of the propagator. Contrary to the case of
the nonlocal model discussed throughout Sec. II, the
integral in Eq. (C12) turns out to be divergent even in
the chiral limit. By using a 3D sharp cutoff regularization
one finds

τf ¼
NcMf

2π2
ISCWFPEðMf=ΛÞ; ðC13Þ

where

ISCWFPEðxÞ ¼ log

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p

x

�
−

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p : ðC14Þ

We can now compare the results for τu within the SU(2)
NJL model that arise from the above discussed approaches.
For this purpose, in all cases we fix the model parameters in
such a way that the predicted values of fπ and mπ agree
with the corresponding empirical values and the light
quark condensate hψ̄uψui1=3 has a phenomenologically
reasonable value of −250 MeV. Our numerical results
are given in Table III. It is seen that our result for
τujLor5Rit agrees with the value given in Ref. [17], which
has been quoted in Table II, and it is also coincident with
the result obtained within the Ritus approach for a sharp

cutoff regularization function. On the other hand, this value
is significantly different from those obtained following the
Schwinger and WFPE approaches. This shows that the
results for the tensor coefficient obtained within the local
NJL model are quite dependent on the chosen regulariza-
tion method, and have to be taken with care. In order to
understand the origin of this dependence, it is interesting to
compare with some detail the functions IðxÞ defined above.
Since the cutoff Λ is expected to be larger than other scales
in the problem, we can expand these functions for small
values of x. We get

ILorNRit ¼ − log xþ log 2þ π

4N
csc

�
π

N

�
x2 þOðx4Þ;

ISCRit ¼ − log xþ log 2þ 1

4
x2 þOðx4Þ;

ISch ¼ − log x −
γ

2
þ 1

2
x2 þOðx4Þ;

ISCWFPE ¼ − log xþ ðlog 2 − 1Þ þ 3

4
x2 þOðx4Þ; ðC15Þ

where γ is the Euler constant. As expected, all expressions
have the same leading logarithmic contribution in the limit
of small x; therefore the corresponding predictions for the
tensor coefficient will be similar for Mf=Λ ≪ 1. However,
for realistic values of this ratio, the constant terms and the
contributions carrying powers of x become relevant. The
differences between these terms shown in Eqs. (C15)
explain the differences between the numerical results in
Table III.
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