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Abstract We study the properties of the classical electro-
magnetic radiation produced by two physically different yet
closely related systems, which may be regarded as classical
analogues of the dynamical Casimir effect. They correspond
to two flat, infinite, parallel planes, one of them static and
imposing perfect-conductor boundary conditions, while the
other performs a rigid oscillatory motion. The systems differ
just in the electrical properties of the oscillating plane: one of
them is just a planar dipole layer (representing, for instance,
a small-width electret). The other, instead, has a dipole layer
on the side which faces the static plane, but behaves as a
conductor on the other side: this can be used as a represen-
tation of a conductor endowed with patch potentials (on the
side which faces the conducting plane). We evaluate, in both
cases, the dissipative flux of energy between the system and
its environment, showing that, at least for small mechani-
cal oscillation amplitudes, it can be written in terms of the
dipole layer autocorrelation function. We show that there are
resonances as a function of the frequency of the mechanical
oscillation.

1 Introduction

The dynamical Casimir effect (DCE) (for recent reviews see:
[1–3]; for the radiation spectrum and angular distribution
of the DCE radiation, see, for example, [4–7]), provides an
example of the role that quantum fluctuations can play in the
coupling between the mechanical motion of a (neutral) mirror
and the quantum degrees of freedom of the electromagnetic
(EM) field. That coupling may result, under appropriate cir-
cumstances, in the resonant production of photons out of the
vacuum. A weaker, non-resonant effect may exist, in princi-
ple, even for the case of a single accelerated mirror, where
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it may be understood as a consequence of the conformal
anomaly [8].

A closer look at the role of the quantum fluctuations of
the vacuum EM field shows that they induce non-trivial cor-
relation functions between charge and current fluctuations in
the media that compose the mirrors. Indeed, the charge and
current distributions have to rearrange themselves following
a fluctuation, in such a way that perfect-conductor boundary
conditions hold true. The back-reaction of this rearrangement
means that the charge and current distributions, albeit having
zero expectation value, acquire non-trivial correlation func-
tions. These are objects with a purely quantum origin, and
therefore vanish when h̄ → 0.

Note that some systems exhibit classical charge or cur-
rent density autocorrelations. It is, therefore, important to
evaluate the possible existence, as a consequence of them,
of (classical) motion-induced radiation. Besides its intrinsic
interest, this phenomenon could be relevant from the exper-
imental point of view, since the effect may be superposed
to the DCE. In a previous work [9], an example of such a
situation has been considered: a classical system consisting
of an oscillating plane endowed with a dipole layer distribu-
tion may produce classical radiation when the dipole layer
is autocorrelated. The classical autocorrelation considered
there was that of patch potentials [10–14] on the moving
surface, although it could also correspond, for instance, to a
plane with a permanent polarization, like an electret.

One can also see this phenomenon from a different point
of view: it may be applied to obtain a classical, or rather semi-
classical realization of the DCE. Indeed, as shown in [9], the
quantum DCE is recovered when using a specific autocorre-
lation function for the dipole layer distribution.

The work we present here may be regarded as an exten-
sion of that study to configurations where there is an extra,
conducting plane. This leads, as we shall see, to a classical
radiation that can exhibit resonances.
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We consider the classical radiation produced by two
closely related systems: the first and simplest one, dealt with
in Sect. 2, consists of an oscillating dipole layer [15–19]
which faces a static, perfectly conducting plane. The oscillat-
ing plane can correspond, for instance, to a thin electret plane.
After introducing the physical description in Sects. 2.1 and
2.2 we calculate the spectral density of radiation, understand-
ing the latter as the (spatially) averaged energy flux through
a surface far from the oscillating dipole layer. The calcu-
lation is performed in an approximate scheme, keeping the
lowest non-trivial contribution in an expansion in powers of
the amplitude of the oscillatory motion (assumed to be much
smaller than the average distance between the planes). Then,
in Sect. 2.3, we study and interpret different limits and par-
ticular cases of the general result.

In [9], the result for the radiation due to a single dipole
layer has been used, with minor changes, to obtain the radi-
ated power due to patch potentials [10,20–25]. Here, the pres-
ence of the extra plane renders the treatment of the patch
potential case more complex. Therefore, in Sect. 3, we deal
with that case, namely, also an oscillating plane, facing a
static perfectly conducting plane, such that the former in
endowed with a dipole layer but only on the side facing the
static plane, while the opposite side is instead a perfect con-
ductor. Contrary to what happened in the case of a single
moving plane, the last condition requires the introduction of
an infinite number of extra image charges (and therefore cur-
rents). The physical description of the model is introduced
in Sect. 3.1. Because of the perfect-conductor condition on
the ‘external’ face of the moving plane, there is no radiation:
the EM energy must be contained in between the two planes.
Thus we consider, in Sect. 3.2, a different observable: the
time derivative of the energy contained between the planes
as a function of time (also using an expansion in the ampli-
tude of oscillation). We evaluate that in terms of the power
that has to be applied to the moving plate.

In Sect. 4, we present our conclusions.

2 Oscillating dipole layer

2.1 The system

The configuration that we consider here consists of a static,
perfectly conducting plane, parallel to which a planar dipole
layer performs a rigid oscillatory motion along the direction
defined by the normal to both planes. The position of the
moving plane may be defined, by a suitable choice of coor-
dinates, in terms of a single ‘distance’ function ψ(t); namely,
x3 = ψ(t), while the static plane will be assumed to corre-
spond to x3 = 0. Here, x3 is one of the three spatial Cartesian
coordinates of each point x ≡ (x1, x2, x3). With the choice of
coordinates mentioned in the previous paragraph, the dipole

layer density D is a function of just two coordinates: x1, x2.
Namely, D = D(x‖), where we have introduced the notation
x‖ ≡ (x1, x2). The motion is assumed to be non-relativistic,
so that the charge and current densities due to the moving
dipole layer, ρD(x, t) and jD(x, t), respectively, are given by

ρD(x, t) = −D(x‖) δ′(x3 − ψ(t))

jD(x, t) = −D(x‖) δ′(x3 − ψ(t)) ψ̇(t) ê3, (1)

where ê3 is the unit vector along the direction of motion and
δ′ denotes the derivative of Dirac’s δ function with respect to
its argument.

Finally, we shall assume that the motion is oscillatory
around an average distance a, so that there is a length l such
that |ψ(t) − a| ≤ l, ∀t . We will obtain approximate expres-
sions under the assumption that l << a.

We are mostly, although not exclusively, interested in the
radiation due to a dipole layer with a density that can be
regarded as a random variable, so that the resulting radiation
flux may have a rather cumbersome spatial dependence on
the details of the layer. Because of this, one will be unable
to detect the fine spatial details of such radiation; rather,
one should calculate global, coarse grained quantities, where
those details are averaged out.

2.2 Evaluation of the radiated power

Urad(x3), the (average) radiated energy per unit area through
a constant-x3 plane becomes

Urad(x3) = lim
L→∞

[
1

L2

∫
dt

∫

|x1,2|<L/2
d2x‖ S3(x‖, x3, t)

]

(2)

where L2 is the area of the spatial plane (we take a L → ∞
limit at the end to find the spatial average) and S3 is the e3
component of the Poynting vector S = c

4π E×B (CGS Gaus-
sian units are used throughout). Note that, in order to have
a measure of the radiated energy, we will be interested in
x3 > max{ψ(t)}, discarding near-field, convective contribu-
tions, which decay with x3.

We see that the third component of S can be written as
follows:

S3 = c
4π

εi j Ei B j , (3)

where the indices i , j , as we shall henceforth assume, run
from 1 to 2, and c is the speed of light. To proceed, we need
to write the electric and magnetic fields above in terms of the
charge and current densities given in (1), in the presence of
the perfect-conductor boundary condition. For the geometry
we are considering, the boundary condition can be straight-
forwardly imposed by using images. Indeed, the boundary
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condition at x3 = 0 is automatically satisfied if we include
an image dipole layer, and solve for the fields (at any x3 > 0)
corresponding to the charge and current densities:

ρ(x, t) = −D(x‖)[δ′(x3 − ψ(t)) + δ′(x3 + ψ(t))]
j(x, t) = −D(x‖)[δ′(x3 − ψ(t)) − δ′(x3 + ψ(t))]ψ̇(t)ê3.

(4)

The fields Ei and Bi due to the sources above are more
straightforwardly found in terms of the scalar and vector
potentials, φ and A, respectively:

E = −∇φ − 1
c

∂

∂t
A

B = ∇ × A. (5)

Indeed, using the Lorenz gauge-fixing condition, the poten-
tials can be expressed as follows:

φ(x, t) =
∫

d3x′dt ′ G(x, t; x′, t ′) ρ(x′, t ′)

A(x, t) = 1
c

∫
d3x′dt ′G(x, t; x′, t ′)j(x′, t ′), (6)

where G denotes the retarded Green’s function for the wave
equation, which satisfies

(c−2∂2
t − ∇2

x )G(x, t; x′, t ′) = 4π δ(x − x′) δ(t − t ′). (7)

A more explicit expression may be obtained by introducing
the Fourier transform:

G(x, t; x′, t ′) =
∫

dω

2π

d3k
(2π)3 e−iω(t−t ′)+ik·(x−x′)

×G̃(k‖, k3,ω), (8)

with

G̃(k‖, k3,ω) = 4π

k2
‖ + k2

3 − (ω
c + iη)2

, (9)

and η denotes and infinitesimal positive constant.
Since A points to the ê3 direction, we see that the compo-

nents of the electric and magnetic field relevant to the calcu-
lation of (3) are given by

Ei = −∂iφ, Bi = εi j∂ j A3, (10)

so that

S3 = c
4π

∂ jφ ∂ j A3. (11)

Then we get for Urad(x3) the expression

Urad(x3) = lim
L→∞

{
1

4π L2

∫
dt

∫

|x1,2|<L/2
d2x‖

∫
dt ′

×
∫

d3x′
∫

dt ′′
∫

d3x′′
[

∂G
∂x j

(x, t; x′, t ′)

× ∂G
∂x j

(x, t; x′′, t ′′)D(x′
‖)D(x′′

‖)

×(δ′(x ′
3 − ψ(t ′)) + δ′(x ′

3 + ψ(t ′)))

× (δ′(x ′′
3 −ψ(t ′′))−δ′(x ′′

3 +ψ(t ′′)))ψ̇(t ′′)
] }

.

(12)

We then perform the integrals over t , x‖, x′
‖ and x′′

‖ , obtain-
ing a result that may be conveniently written as follows:

Urad(x3) = 1
4π

∫
dk3

2π

∫
d p3

2π
eix3(k3+p3)

∫
dω

2π

∫
d2k‖
(2π)2

×[k‖2*̃(k‖)G̃(ω, k‖, k3)

×G̃(−ω,−k‖, p3)+(ω, k3, p3)] (13)

where

+(ω, k3, p3) =
∫

dt ′
∫

dt ′′
∫

dx ′
3

∫
dx ′′

3

×ei[ω(t ′−t ′′)−(k3x ′
3+p3x ′′

3 )]

×(δ′(x ′
3 − ψ(t ′)) + δ′(x ′

3 + ψ(t ′)))

×(δ′(x ′′
3 − ψ(t ′′))−δ′(x ′′

3 +ψ(t ′′)))ψ̇(t ′′),

(14)

and we have introduced *̃(k‖), the Fourier transform of the
autocorrelation function for the dipole layer:

*(x‖) = 1
L2

∫
d2 y‖ D(y‖)D(x‖ + y‖). (15)

In natural (h̄ = 1 and c = 1) units, *̃ above is a dimen-
sionless quantity. Note that a similar expression to the one
above could have been obtained if one had a random patch
potential distribution, with a translation invariant stochastic
correlation [10]. Namely, even without evaluating the aver-
age over a constant-x3 plane, the translation invariance of the
system does produce an entirely analogous expression to the
one above, now interpreting * as the result of an average
with a statistical weight.

We next evaluate +(ω, k3, p3) to the second order in q(t),
the departure of ψ(t) from its average position a; namely,
ψ(t) = a + q(t):

+(ω, k3, p3) ∼ +(2)(ω, k3, p3) (16)
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with

+(2)(ω, k3, p3) = −|q̃(ω)|2ω k2
3 p3 (eik3a − e−ik3a)

×(eip3a − e−i p3a). (17)

This order is the first non-trivial one to produce a non-
vanishing contribution to the radiated energy.

We then evaluate the integrals over k3 and p3, which can
be performed, for example, by using Cauchy’s theorem in a
rather straightforward way, obtaining a result that contains
both convection and radiation terms. The former correspond
to contributions which die off too fast at infinity as to produce
radiation.

Keeping just the radiation terms, we find

Urad =
∫ ∞

0

dω

2π
P(ω), (18)

where the spectral density P(ω) is given by

P(ω) = 8π |ω||q̃(ω)|2
∫

d2k‖
(2π)2 θ

( |ω|
c

− |k‖|
)

k‖2

×
√(ω

c

)2
− k‖2 sin2

[

a

√(ω

c

)2
− k‖2

]

*̃(k‖) ,

(19)

where θ denotes Heaviside’s step function. Assuming the
autocorrelation function to be isotropic,

P(ω) = 4|ω||q̃(ω)|2
∫ ω/c

0
dk‖ k3

‖

√(ω

c

)2
− k2

‖

× sin2

[

a

√(ω

c

)2
− k2

‖

]

*̃(k‖), (20)

which is the main result of this section.
As an example, we consider a sharp-cutoff model for the

autocorrelation function *̃(k‖) given by [10]

*̃(k‖) = 4d2

k2
max − k2

min
θ(kmax − k‖)θ(k‖ − kmin), (21)

identical to the one used in [10] within the context of patch
potentials but here interpreted in the context of polarization
correlation function. In this case, the spectral density in Eq.
(20) is

P(ω) = 2
15

d2

a5c4

|ω||q̃(ω)|2
(k2

max − k2
min)

×
[

4a5

√(ω

c

)2
−k2

min(2ω4+ω2c2k2
min−3c4k4

min)

−30a

√(ω

c

)2
−k2

min(c
4(3+2a2k2

min)−a2c2k2
min)

× cos

[

2a

√(ω

c

)2
−k2

min

]

+15(c4(3+6a2k2
min+2a4k4

min)

− a2c2ω2(5+2a2k2
min)) sin

[

2a

√(ω

c

)2
−k2

min

]]

,

(22)

where it has been assumed that kmin < ω/c < kmax, for
arbitrary cutoff-scales.

2.3 Analysis of the result

Let us consider here some particular cases of the general
result: The first amounts to the situation (which we had
already considered in [9]) of an autocorrelation function
*̃ such that the corresponding correlation length is much
smaller than c/ω. Then *̃(k‖) can be approximated by *̃(0)

and extracted out of the integral. Thus,

P(ω) , 4 *̃(0) |ω||q̃(ω)|2
∫ ω/c

0
dk‖ k3

‖

√(ω

c

)2
− k2

‖

× sin2

[

a

√(ω

c

)2
− k2

‖

]

, 4
15c5 p2 |ω|6 |q̃(ω)|2

+ c
a6 p2

{(ωa
c

)2
[(ωa

c

)2
− 3

]
cos

(
2ωa

c

)

− 1
2

∣∣∣
ωa
c

∣∣∣
[

5
(ωa

c

)2
− 3

]
sin

(∣∣∣
2ωa

c

∣∣∣
)]}

×|q̃(ω)|2 (23)

where we have used the notation *̃(0) = p2, since it has the
dimensions and interpretation of a single dipole moment p.
Note that the first, a-independent contribution in the previous
expression for the power, is twice the value we had found in
the absence of the conducting plane. This is understood as
follows: here we have two dipoles, the real one and its image,
which yields a factor of four. But in our previous reference
we had radiation both for positives and negative values of
x3, while here the conductor at x3 = 0 means that only the
positive x3 contribution has to be dealt with. Thus there must
be a factor of 4/2 = 2 between the first line of (23) and the
analogous result in the absence of the conductor, which is
correct.

The next term in (23) has a richer structure, since it intro-
duces resonant peaks in the total power, the location of which
are the roots of a transcendent equation. It is convenient to
introduce Pa(ω), the part of the power which depends on a:

Pa(ω) , c
a6 p2 f (ξ) |q̃(ω)|2 (24)
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Fig. 1 The function f (ξ) (ξ ≡ ωa
c ), defined in Eq. (25), which deter-

mines the a-dependent part of the radiated power per unit area for a
given mechanical frequency ω

where ξ ≡ ωa
c and

f (ξ)=ξ2(ξ2−3) cos(2ξ)− 1
2

|ξ |(5ξ2−3) sin(2|ξ |). (25)

In Fig. 1 we plot the function f (ξ): we see that the interfer-
ence between the radiation emitted by the dipole layer and its
reflection on the static mirror implies the existence of peaks
in the radiated power.

The second particular case corresponds to a more imme-
diate limit of the general result, and corresponds to a → ∞
(we recall that the power is always evaluated at x3 - a) and
the result becomes independent of x3). In this situation, we
have

P(ω) ∼ 2|ω||q̃(ω)|2
∫ ω/c

0
dk‖ k3

‖

√(ω

c

)2
− k2

‖ *̃(k‖),

(26)

since the highly oscillating sine function (assuming *̃ to be
a smooth function of its argument) can be approximated by
1/2. This corresponds again to twice the result in the absence
of the conducting plane, and for the same reason. It is also
self-evident that all the resonant phenomena disappear in this
limit.

Using the sharp-cutoff model for the autocorrelation func-
tion *̃(k‖) (with kmax > ω/c) it is possible to find that the
power in (26) is P(ω) ∼ |q̃(ω)|2ω6/c5. This case, can be
compared with that coming from the DCE [26], since a single
accelerated perfect mirror creates photons due to the inter-
action with the quantum fluctuations of the electromagnetic
field. Just considering dimensional arguments, and limiting
the analysis to the non-relativistic case, one expect that the
dissipative force per unit length on the mirror to be propor-
tional to

...
α/c4, where α denotes the acceleration. This force

corresponds to a spectral density PDCE(ω) ∼ |q̃(ω)|2ω6/c4

[1–3].
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0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ξ3

U
ra

d/
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∞ ra
d

Fig. 2 Normalized dissipation rate as a function of ξ3 = ω3a/c

In order to estimate the dissipation rate, Urad one may
assume that the location of the oscillation part is given by
q(t) = q3 cos(ω3t), where q3 is the amplitude and ω3 is the
frequency of the motion. Therefore, it is simple to evaluate
Urad/(q2

3 T ) from Eqs. (18) and (20) for the different exam-
ples of the autocorrelation functions we have considered. As
an example, using the expression in (23), one find that the
rate between Urad(ξ3) and the value in the limit a → ∞, U∞

rad
is given by

Urad(ξ3)

U∞
rad

= 1 + ξ2
3 (ξ2

3 − 3) cos(2ξ3) − 1
2 |ξ3|(5ξ2

3 − 3) sin(|2ξ3|)
4
15ξ6

3

,

(27)

where ξ3 = ω3a/c. In Fig. 2, we show the normalized dis-
sipation rate has been plotted as a function of ξ3. As can be
seen, the value of the normalized dissipation rate in the limit
of a → ∞ is 1. Moreover, due to the interference between the
radiation emitted by the moving dipole layer and its reflec-
tion on the static conducting mirror the peaks exist in the
normalized dissipation rate curve.

Finally, as the final limiting case we see that the radiated
energy also vanishes when the correlation length is infinite.
This result can be understood by applying Gauss law for E, on
a large closed box with two of its faces parallel to the planes,
taking into account the fact that the total electric charge is
zero.

3 Patch potentials

3.1 The system

Let us consider the second model, again assuming the motion
to be non-relativistic. The moving plane is assumed to have
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a patch potential distribution on its side facing the static
mirror.

Now, the patch potentials may be constructed by intro-
ducing two dipole layers close to the moving plane. One
of them represents the patch potential itself and is located
at x3 = ψ−(t), ψ− ≡ ψ − ε (ε a positive infinitesimal).
The other, its image, is introduced in order to have perfect-
conductor boundary conditions at x3 = ψ(t); therefore it
is located at ψ+ ≡ ψ + ε. Leaving aside for the moment
the existence of perfect-conductor boundary conditions at
x3 = 0, we have the charge and current densities ρP (x, t)
and jP (x, t), respectively:

ρP (x, t) = −D(x‖) [δ′(x3 − ψ−(t)) + δ′(x3 − ψ+(t))] ,

jP (x, t) = −D(x‖) [δ′(x3 − ψ−(t)) + δ′(x3 − ψ+(t))]
×ψ̇(t) ê3. (28)

In order to satisfy perfect-conductor boundary conditions at
x3 = 0, we must introduce now an infinite number of images
which mirror the previous sources (at the appropriate loca-
tions). Is is straightforward to see that the full charge and
current densities which ensure the proper boundary condi-
tions to hold true, are given by:

ρ(x, t) = −D(x‖)
+∞∑

n=−∞
[δ′(x3 − ψ−

n (t)) + δ′(x3 − ψ+
n (t))],

j(x, t) = −D(x‖)
+∞∑

n=−∞
[δ′(x3 − ψ−

n (t)) + δ′(x3 − ψ+
n (t))]

×ψ̇n(t)ê3 (29)

where ψn(t) ≡ (2n + 1)ψ(t), and ψ±
n (t) ≡ (2n + 1)ψ±(t).

It is convenient, for later use, to note that the charge and
current densities above may be written as follows:

ρ(x, t) = −D(x‖)
∂σ

∂x3
(x3, t),

j(x, t) = D(x‖)
∂σ

∂t
(x3, t) ê3, (30)

with

σ (x3, t) =
+∞∑

n=−∞
[δ(x3 − ψ−

n (t)) + δ(x3 − ψ+
n (t))]. (31)

3.2 Mechanical power per unit area on the moving plate

There is no radiation outside of the volume enclosed by the
two plates, but there may be energy traded between the EM
field and the environment, by means of the mechanical work
exerted on the moving mirror. The rate of change of E(t), the
total energy per unit area contained between the static and
moving planes, is given by

dE
dt

(t) = ψ̇(t) f (t) (32)

where f (t) denotes the x3 component of the force per unit
area on the moving plate. This is in turn obtained as follows:

f (t)=
∫

d2x‖ [T33(x‖,ψ+(t), t)−T33(x‖,ψ−(t), t)]
(33)

where Ti j is Maxwell’s stress tensor.
In terms of the potentials, T33, the only relevant component

of Ti j for this calculation, may be written as follows:

T33 =− 1
8π

[

(∂ j∂3χ)2+ 1
c2 (∂ j∂tχ)2−

(
∂2

3 χ+ 1
c2 ∂2

t χ

)2
]

,

(34)

where we have used the property that the potentials may be
written (for the kind of sources that we are considering) as
follows:

φ = − ∂χ

∂x3
, A3 = 1

c
∂χ

∂t
, (35)

where the scalar function χ can be written in terms of the
retarded Green’s function G:

χ(x, t)=
∫

d3x′
∫

dt ′ G(x, t; x′, t ′) D(x′
‖)σ (x ′

3, t ′), (36)

with σ (x3, t) as introduced previously in (31).
The perturbative expansion for dE(t)

dt = Ė(t), in powers of
q(t) has the form

Ė(t) = Ė (0)(t) + Ė (1)(t) + Ė (2)(t) + · · · (37)

where the index denotes the order of the corresponding term.
Since ψ̇ is of order 1, we see that

Ė (0) = 0, (38)

as it should, since at the zeroth order both planes are static,
and therefore there can be no power.

Regarding the first-order term, one clearly has the relation:

Ė (1) = ψ̇(t) f (0), (39)

where f (0) denotes the zeroth order force per unit area for a
static system. Thus, the previous equation may be integrated
out to obtain

δE = δa f (0), (40)
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in other words, f (0) = ( ∂E
∂a )(0). The explicit evaluation of

f (0) yields

f (0) = 8π

∫
d2k‖
(2π)2 |k‖|2*̃(k‖)

×
[

1

e2|k‖|a − 1
+ 1

(e2|k‖|a − 1)2

]
, (41)

which agrees with the force one would obtain from the static
interaction energy resulting between two conductors with
patch potentials [26].

The second order term requires the calculation of f (1):

Ė (2) = ψ̇(t) f (1)(t). (42)

We see that

f (1)(t) = 1
4π

lim
L→∞

1
L2

∫ +L/2

−L/2
dx1

∫ +L/2

−L/2
dx2

×
{

−
[
∂ j∂3χ(x1, x2,ψ

−(t), t)
](0)

×[∂ j∂3χ(x1, x2,ψ
−(t), t)](1)

−
[1

c
∂ j∂tχ(x1, x2,ψ

−(t), t)
](0)

×
[∂ j

c
∂tχ(x1, x2,ψ

−(t), t)
](1)

+
[
∂2

3 χ(x1, x2,ψ
−(t), t)

− 1
c2 ∂2

t χ(x1, x2,ψ
−(t), t)

](0)

×
[
∂2

3 χ(x1, x2,ψ
−(t), t)

− 1
c2 ∂2

t χ(x1, x2,ψ
−(t), t)

](1)
}
. (43)

It is rather straightforward to show that the first two terms
on the rhs of the equation above vanish. Thus, keeping only
the third term, and introducing Fourier transforms, we see
that

f (1)(t) = 1
4π

∫
d2k‖
(2π)2 *̃(k‖) F1(k‖, a) F2(k‖, a, t), (44)

where we have introduced

F1(k‖, a) ≡
∫

dk3

2π

∫
dω

2π
ei(k3a−−ωt) G̃(k‖, k3, 0) k2

3

×σ̃ (0)(k3,ω) (45)

and

F2(k‖, a, t) ≡
∫

dk3

2π

∫
dω

2π
ei(k3a−−ωt) G̃(k‖, k3,ω)

×
[

k2
3 −

(ω

c

)2
]

σ̃ (1)(k3,ω). (46)

Fig. 3 The function g(ξ) (ξ ≡ ωa
c ), defined for a given mechanical

frequency ω. Parameters of the autocorrelation function are kmin = 0
and kmax > ω/c

Using the explicit form of the Green functions, σ , and of their
Fourier transforms, we find after some algebra

F1(k‖, a) = −4π |k‖| coth(|k‖|a), (47)

while for F2 the result may be put in the form:

F2(k‖, a, t) = 4π

a2 |k‖|2
(

−1 + a
d

da

)

×
+∞∑

−∞

∫
dω

2π
e−iωt q̃(ω)

( nπ
a )2 + k2

‖ − (ω+iη
c )2

.

(48)

We have discarded in F2 an infinite (additive) contribution
which is proportional to q(t). This divergence is due to the
zero width of the mirrors, and it can naturally be interpreted
as a renormalization of the self-energy of the moving mirror.
Besides, note that is not related to dissipation, since the force
is conservative and can be derived from a harmonic potential.

In order to gain some insight into the nature of the system,
we now write f (1) in Fourier (frequency) representation,

f̃ (1)(ω) = 4π

a2 q̃(ω)

∫
d2k‖
(2π)2 *̃(k‖) |k‖|3 coth(|k‖|a)

×
(

1 − a
d

da

) +∞∑

−∞

1

( nπ
a )2 + k2

‖ − (ω+iη
c )2

.

(49)

Performing the summation, assuming rotational invari-
ance for *̃, and keeping just the dissipative terms, we see
that

f̃ (1)(ω) = 2 q̃(ω)

∫ ω

0
dk‖*̃(k‖) k4

‖ coth(k‖a)

× csc2
(√

ω2 − k2
‖a

)
. (50)
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We write this expression in terms of a new function,

f̃ (1)(ω) = q̃(ω) g(ξ), (51)

where, again, ξ = ωa/c. In Fig. 3 we show the function g(ξ)

for the two-cutoff model autocorrelation function in which,
for the sake of simplicity, we have set kmin = 0 and kmax >

ω/c. Again, the existence of resonances is evident. As in the
case of the first example, we see that bigger frequencies are

able to excite all the normal frequencies
(√

( nπ
a )2 + |k‖|2

)

which are smaller than ω. That explains the fact that the peaks
grow with the frequency.

Finally, as another manifestation of the same effect, we
can derive the spectral density of the power (to the second
order in q):

˜̇E (2)(ω) =
∫ ∞

0

dω

2π
P(ω), (52)

which has a rather similar interpretation to the one we cal-
culated in the previous example. Its form can be obtained
explicitly by performing the integration, the result being

P(ω) = 8π

a2 c2 |q̃(ω)|2
∫

d2k‖
(2π)2 *̃(k‖) |k‖|3 coth(|k‖|a)

×
(

1 − a
d

da

) +∞∑

−∞
δ

[

ω −
√(nπ

a

)2
+ |k‖|2

]

.

(53)

The presence of the resonances is again evident, now in the δ-
functions. The position of the resonances agrees with the ones
determined in Ref. [27] within the context of the DCE, for a
quantum system with a similar geometry but corresponding
to a quantum real scalar field.

In order to be able to compare the properties of this result
with the one for the previous model, we again make the
assumption that the correlation function can be approximated
by its value at zero momentum, and is denoted as p2. Thus,
keeping only radiation terms, we see that the expression for
P(ω) reads

P(ω) = 4cp2

a6 |q̃(ω)|2
{

ξ4 coth(ξ) + 2
∞∑

n=1

θ(|ξ | − nπ)

×
[
(ξ2 − (nπ)2)3/2 coth

√
ξ2 − (nπ)2

}

. (54)

In Fig. 4 we have used Eq. (54) in order to numerically
evaluate the normalized dissipation rate has been plotted as
a function of ξ3 = w3a/c, where we have again considered
q(t) = q3 cos(ω3t) as in the previous Section. This plot is
similar to those in [28–30].

0 2 4 6 8 10 12

0.75

0.8

0.85

0.9

0.95

ξ3

U
ra

d/
U

∞ ra
d

Fig. 4 Numerically normalized dissipation rate from Eq. (54) as a
function of ξ3 = ω3a/c

4 Conclusions

We have presented results as regards the spectrum of the
radiation generated by two closely related systems, contain-
ing a planar dipole layer distribution which oscillates in front
of a conducting plane, in terms of the layer autocorrelation
function. In one of the systems, where the layer on the mov-
ing plane is meant to describe a dielectric with permanent
polarization, we have found that the radiated power exhibits
enhancements for certain frequencies of oscillation. We inter-
pret them as being related to the existence of constructive
interference between the radiation generated by the layer and
the one that bounces on the conductor before reaching a given
point.

For the sharp-cutoff model for the autocorrelation func-
tion we have found that the power is P(ω) ∼ |q̃(ω)|2ω6/c5.
this result can be compared with the one corresponding to
the DCE [26], since a single accelerated perfect mirror cre-
ates photons due to the interaction with the quantum fluc-
tuations of the electromagnetic field. In a situation like this
it is possible that the dissipative force per unit length on
the mirror to be proportional to

...
α/c4, where α denotes the

acceleration. This force corresponds to a spectral density
PDCE(ω) ∼ |q̃(ω)|2ω6/c4 [1–3].

In the other system, the moving plane also has conductor
boundary conditions on the face opposite to the static plane,
and is used to describe patch potentials. The extra bound-
ary condition makes it possible to have infinite bounces, and
therefore resonances, which we have plotted for a simple
autocorrelation function. The physical observables consid-
ered for this case were the force exerted on the moving plane,
and its power. As mentioned, the position of the resonances
agrees with the corresponding ones in the context of the DCE,
for a quantum system with a similar geometry but corre-
sponding to a quantum real scalar field.
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For the classic models we have considered, the power has
a different spectrum compared with the DCE. It is impor-
tant to emphasize that we do not intend to generate a classic
model with an identical spectrum to the DCE, rather, to show
that there are existing classical systems with similar resonant
phenomena. In particular, in the patches example, the spectra
of DCE and what we have calculated here are different, and
the physical reason is that the correlation function between
patches acts only within each plate. There is no correlation
function between patches belonging to different plates. In the
DCE, this correlation between patches arises naturally and
has a very specific profile.

Finally, we note that the existence of the kind of resonant
phenomena that we have explored is relevant to the eventual
realization of DCE experiments, since both effects (classical
and quantum) would appear simultaneously.
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