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Quantum manifestations of classical nonlinear resonances
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When an integrable classical system is perturbed, nonlinear resonances are born, grow, and eventually disappear
due to chaos. In this paper the quantum manifestations of such a transition are studied in the standard map. We
show that nonlinear resonances act as a perturbation that break eigenphase degeneracies for unperturbed states
with quantum numbers that differ in a multiple of the order of the resonance. We show that the eigenphase splittings
are well described by a semiclassical expression based on an integrable approximation of the Hamiltonian in
the vicinity of the resonance. The morphology in phase space of these states is also studied. We show that the
nonlinear resonance imprints a systematic influence in their localization properties
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I. INTRODUCTION

Understanding the influence of classical structures at the
quantum level is the main concern of quantum chaos [1–3]. As
a mature subject, it has been the source of important results that
spread in several areas of physics. For example, the universality
of level fluctuations of chaotic systems conjectured in Ref. [4]
and recently proved [5] has helped in understanding the level
statistics of systems that range from atomic to mesoscopic
size. Quantum transport is another example in which the
classical integrable or chaotic behavior has a strong effect
on the quantum behavior [6].

Much less studied but ubiquitous are mixed systems. The
phase space of these systems is characterized by stability
islands surrounded by a chaotic sea. The transition from
integrable to globally chaotic behavior is convoluted due to
the fact that the border of the islands is of fractal nature.
The building blocks to understand such a transition are the
celebrated Kolmogorov-Arnold-Moser (KAM) and Poincaré-
Birkhoff (PB) theorems [7,8]. The KAM theorem states that
when an integrable system is perturbed, sufficiently irrational
tori survive. On the other hand, the PB theorem establishes
the fate of the resonant tori, that is, tori with a rational
rotational number are destroyed, resulting in the creation of
an even number of unstable and stable periodic orbits. In their
vicinity, chains of islands of regularity surrounded by a chaotic
separatrix organized by a homoclinic tangle are formed.

The manifestation of such a transition at the quantum level
is far from obvious. Classical dynamics develops increasingly
complex structures due to its fractal nature; however, the
absence of trajectories in the quantum realm makes an
effective diffusion (of size � in the phase space) blur such
a behavior. Understanding the traces of these opposing effects
is of paramount importance to understand several phenomena.
Examples of the relevance of quantal effects of this transition
are the enhancement of tunneling between symmetry related
tori in the nearly integrable regime [9–14] and experiments
in microwave ionization of exited hydrogen atoms [15]. More
recently, the transition from integrable to mixed dynamics was
studied in the quantum Harper map [16,17]. Clear signatures
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of nonlinear r:s resonances were shown in the eigenphases
and wave functions. An r:s resonance is characterized by a
chain of r islands in phase space. Here s is the number of
internal oscillations around the islands’ center that take place
within r periods of the driving. More specifically, nonlinear
resonances can produce series of avoided crossings (ACs) in
the eigenphase spectra for states whose quantum numbers
differ by a multiple of the order of the resonance r . The
minimum gaps of the ACs for states are well described using
semiclassical expressions based on the theory of resonance
assisted tunneling [10]. More surprisingly, the localization
properties of the eigenstates at the AC are driven by the
nonlinear resonance: One of the states is localized in the island
chain and the other in the vicinity of the unstable periodic
orbit (PO) associated with the resonance. The excitations of
the localized structure are related to the number of zeros in
each island or in the vicinity of the unstable PO associated
with the resonance.

In this paper we go one step further and analyze in detail
the quantum manifestation of the transition from integrable
to mixed dynamics in one of the exemplary models of mixed
dynamics, the standard map. Regarding the morphology of
wave functions, we obtain the same localization properties
as shown in Refs. [16,17] in the Harper map. Eigenstates
that exist near a resonance in phase space and have quantum
numbers that differ by a multiple of the order of the resonance
(�n = rl, with r the order of the resonance and l an integer)
are organized in pairs; one of the states is localized in the
island chain and the other on the corresponding unstable PO.
The Husimi distribution of the state localized in the island
chain has r zeros on the unstable PO and r(l − 1) zeros
inside the islands. The other state has rl zeros in the islands
(l zeros in each island of the chain). While these states are
degenerate when the parameter that controls the perturbation
is zero, they become energetically separate as the perturbation
increases and the classical resonance occupies more and more
volume in the phase space. We show that the splittings between
the eigenphases of these states are very well described by a
semiclassical formula that is based on the theory of resonance
assisted tunneling [10–13].

The paper is organized as follows. In Sec. II we introduce
the classical and quantum standard map. In Sec. III we show
that due to the presence of a classical nonlinear resonance,
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pairs of degenerate eigenphases split as the perturbation
increases. We compute the splittings between these states using
a semiclassical theory. Section IV is devoted to showing the
particular morphology of eigenstates that are localized in the
vicinity of a nonlinear resonance. We show the systematic bias
that the resonance imprints over the Husimi distribution of the
eigenstates. We summarize in Sec. V.

II. STANDARD MAP

Classical and quantum maps have been very important in
the development of dynamical systems. Their simple equations
of motion have helped in the understanding of many important
phenomena. In this regard, the standard map is a paradigmatic
example that describes the generic transition from integrable
to completely chaotic behavior [18]. Its universal behavior
can describe interesting systems such as charged particle
confinement in magnetic traps, particle dynamics in accelera-
tors, electron magnetotransport in a resonant tunneling diode,
and dynamical localization for ionization of excited hydrogen
atoms in a microwave field [15,19–22].

The standard map is a two-dimensional area-preserving
map that in the unit square is given by

pn+1 = pn + (k/2π ) sin(2πqn) (mod 1),
(1)

qn+1 = qn + pn+1 (mod 1),

where k is a parameter that measures the strength of the
perturbation. This stroboscopic map is generated by the
time-dependent Hamiltonian

H (q,p,t) = p2/2 + k/(2π )2 cos(2πq)
∑

δ(t − n). (2)

Phase space portraits for k = 0.01, 0.25, 0.55, and 1.21 are
shown in Fig. 1. For very small k [Fig. 1(a)], the dynamics is
approximately integrable, where p is nearly constant and we
can see the emergence of the 1:1 resonance in the vicinity of
(q,p) = (1/2,0) and (1/2,1). We note that for k = 0 and for
p = a/b a rational number (a and b integers), the evolution is
periodic, that is, the orbits are periodic and nonisolated. These
POs are the origin of the nonlinear resonances when k �= 0.

For greater k, we can see the formation of other nonlinear
resonances such as 2:1 (the one of period 2) near p = 1/2
and 3:1 near p = 1/3 and p = 2/3 [Figs. 1(b) and 1(c)]. The
increase of k results in the formation of chaotic areas that
can eventually cover all of the phase space. This is shown
in Fig. 1(d). Although the chaotic sea covers a great portion
of the phase space for k = 1.21, nonlinear 1:1, 2:1, and 3:1
resonances survive this amount of perturbation.

The quantized version of Eq. (1) is provided by the unitary
time-evolution operator [18]

ψn+1 = Ûψn = exp

[
−i

p̂2

2�

]
exp

[
−i

k cos(2πq̂)

�

]
ψn. (3)

The periodic nature of the phase space implies that wave
functions should be periodic in both position and momentum
representations. Then the Hilbert space has a finite dimension
N that is related to the Planck constant as h = 1/N . As N

takes increasing values, the semiclassical limit is reached.
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FIG. 1. Classical phase space for the standard map (1) for (a)
k = 0.01, (b) k = 0.25, (c) k = 0.55, and (d) k = 1.21.

The evolution operator of Eq. (3) in a position representa-
tion reads [23]

Uk(n′,n,αq,αp) = 1

N
exp

[
−iN

k

2π
cos

(
2π

N
(n + αq)

)]

×
N−1∑
j=0

exp

[
− iπ

N
(j + αp)2

]

× exp

[
2π i

N
(j + αp)(n − n′)

]
, (4)

where αq and αp are fixed, arbitrary real numbers between 0
and 1 (2παq and 2παp are called Floquet angles). In this paper
we use αq = αp = 0.

III. NONLINEAR RESONANCE IN THE QUANTUM
SPECTRA: EIGENPHASES

Our goal is to reveal the quantum manifestation of the
classical transition from integrable to mixed dynamics in the
standard map that is shown in Fig. 1. In this section we uncover
the influence of such a transition in the spectra of eigenvalues of
the evolution operator of Eq. (4). This operator is numerically
diagonalized for a given N , the number of states of the Hilbert
space. Because the evolution operator is a unitary operator, the
eigenvalues exp(−iφ) are complex numbers with unit norm.
We have studied the cases of N = 20, 40, 80, 160, and 320. As
an example, in Fig. 2 we show the eigenphases φ as a function
of the perturbation strength k for N = 80.

We focus on the 2:1 resonance. It has two islands near
p = 1/2 (see Fig. 1). The first step is to find the family of
states that exists in the vicinity of the resonance [16,17]. This
is straightforward for k ≈ 0, where the evolution operator is
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FIG. 2. Correlation diagram for the eigenphases of the quantized
standard map with N = 80 as a function of the perturbation parameter
k. States that for k = 0 have p = 1/2 ± l/80 with l = 0, 1, 2, and
3 are highlighted. The state with l = 0 is plotted with a thick solid
black line, the pair of states with l = 1 are plotted with dashed lines,
the states with l = 2 are plotted with dotted lines, and the states with
l = 3 are plotted with dash-dotted lines.

approximately

U = exp(−ip̂2/2�), (5)

so its eigenstates are the momentum eigenstates p̂|i〉 = i/N |i〉
with i = 0,1, . . . ,N − 1. For N even, the state with eigenvalue
p = 1/2 is the nearest to the resonance. Then we have a pair
of states with eigenvalues p = 1/2 ± l/N with l = 1,2, . . .,
which have degenerate eigenphases and depart from the
resonance as l grows. For k > 0 the degeneracy breaks down,
the eigenphases separate from each other, and the pair of states
that are localized in momentum are coupled.

We want to know the behavior of these pairs of states
when the parameter k �= 0. For this reason we use the method
developed in Ref. [17] to follow eigenstates with definite
localization properties. Let us consider an eigenstate of the
evolution operator |φi(k)〉 that for very small perturbation k =
k0 has a specific localization. Then we associate a perturbed
one with k = k0 + δk, if the overlap 〈φi(k0)|φj (k0 + δk)〉 is
the maximum of all j = 0,1, . . . ,N − 1. This procedure is
repeated for perturbations k = k0 + nδk with n = 2, . . . ,nmax

an integer. Thus, we have associated a series of perturbed states
and eigenphases with the unperturbed one. We note that the
value of δk is very important for the success of the method.
If δk is very small, an avoided crossing with another state
changes the localization of the state that we are following. On
the contrary, if δk is very large, the method also fails because
the localization properties of the state get lost [17].

First, we consider the case of N = 80. In Fig. 2 the
eigenphases of the evolution operator of Eq. (1) as a function
of the perturbation parameter k are plotted. The states that
at k = 0 have p = 1/2 ± l/N for l = 0, 1, 2, and 3 are
highlighted. The evolution of the eigenphases as a function
of k was obtained using the described method. We can see that
except for the state with p = 1/2 at k = 0, all other pairs of
states are degenerate at k = 0 and separate as the perturbation
increases. We are going to show that such splittings can be
described using a semiclassical theory.

The semiclassical study of eigenphase gaps between states
localized in unperturbed tori due to nonlinear resonances was
considered in Refs. [9,10,24]. The first step is to obtain, using
secular perturbation theory, the time-independent Hamiltonian
that describes the classical motion in the vicinity of a resonance
[24,25]

Hr:s(I,θ ) = H0(I ) − 	r:sI +
∞∑
l=1

2Vr,l(Ir:s) cos(lrθ + φl),

(6)
where H0(I ) an integrable approximation of the Hamiltonian
of the map, Ir:s is the action of the resonance, and 	r:s =
dH0
dI

|Ir:s [10]. The effective Hamiltonian [Eq. (6)] can be
reduced to a pendulumlike form

Hr:s(I,θ ) � (I − Ir:s)2

2mr:s
+ 2Vr:s cos(rθ + φ1), (7)

where the effective mass parameter mr:s = [d2H0/dI 2(Ir:s)]−1

and only the first term for l = 1 [Vr:s ≡ Vr,1(Ir:s)] was included
[10–12]. This last assumption is supported by the fact that
Vr,l decays exponentially with l and the multistep process
generated by the first harmonic Vr,1 has, in the semiclassical
limit � → 0, a stronger amplitude than a single-step process
generated by the corresponding higher harmonic Vr,l (see
Refs. [10,12] for details).

The parameters mr:s , Ir:s , and Vr:s that characterize Hr:s

[Eq. (7)] can be obtained from the classical dynamics without
explicitly using the functional form of the integrable H0 that
approximately reproduces the regular motion in the islands.
All these quantities are connected by the equations obtained
in Refs. [11,26],

Ir:s = 1

4π
(S+

r:s + S−
r:s), (8)

√
2mr:sVr:s = 1

16
(S+

r:s − S−
r:s), (9)√

2Vr:s

mr:s
= 1

r2
arccos(trMr:s/2), (10)

where Mr:s is the monodromy matrix of a stable PO of the
resonance and S+

r:s and S−
r:s are phase space areas that are

enclosed by the outer and inner separatrices of the resonance,
respectively. Shown in the inset of Fig. 3 is a picture of the
relevant phase space areas of the 2:1 resonance.

Let us now compute the splitting of the eigenphases
between two degenerate states that are symmetrically located
around an r:s resonance. The effective Hamiltonian [Eq. (7)]
couples unperturbed states with quantum numbers that differ
by r . Then two degenerate states with quantum number
difference rl, with l an integer, interact via the effective
Hamiltonian [Eq. (6)] that in the unperturbed base is a
tridiagonal matrix with diagonal elements

Ei = �
2[(i − l/2)r]2/2mr:s , (11)

with i = 0,1, . . . ,l, and the nondiagonal elements are Vr:s .
Applying standard perturbation theory in the limit Vr:s → 0,
we obtain for the level splitting between the states with energy
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FIG. 3. (Color online) Eigenphase difference (scaled with �) as
a function of the perturbation strength k for states that at k = 0 have
p = 1/2 + 1/N and p = 1/2 − 1/N with N = 20 (solid line), 40
(short-dashed line), 80 (long-dashed line), 160 (dash-dotted line), and
320 (dotted line). The semiclassical approximation given by Eq. (15)
is plotted with red closed squares. Inset: Region of the classical phase
space for k = 0.7 that has been used to compute the semiclassical
approximation. The unstable periodic orbit associated with the 2:1
resonance is plotted with blue circles. The phase space area S+

2:1 − S−
2:1

is the region enclosed by the black and green lines.

E0 and El ,

�E = 2Vr:s

l−1∏
i=1

[Vr:s/(E0 − Ei)]. (12)

The eigenphase splitting �φ is obtained using �φ = �E/�

and Eqs. (11) and (12). We finally obtain

�φ = 2V l
r:s(2mr:s)l−1

[(l − 1)!]2�2l−1r2l−2
. (13)

The parameters mr:s and Vr:s are obtained from the mon-
odromy matrix Mr:s and the phase space area S+

r:s − S−
r:s . Note

that in the regime of large l � 1, in which we approximate (l −
1)!2 � (l/e)2l2π/l, Eq. (13) is identical to the semiclassical
Wentzel-Kramers-Brillouin (WKB) expression

�φ(WKB) = ω

π
e−σ/� � lr2

�

2πmr:s

(
2e2mr:sVr:s

l2r2�2

)l

(14)

for the eigenphase splitting between the states with the
momenta p = 1/2(1 ± �p) with �p = lr/N , where
we have ω = r�p/4πmr:s = r�/2mr:s for the effective
frequency of tunneling attempts and σ = −�p/2πr

ln[8π2e2mr:sVr:s/(�p)2] = −l� ln[2e2mr:sVr:s/(lr�)2] for
the imaginary action associated with the complex tunneling
path [10].1

We test Eq. (13) to compute the splittings produced by the
2:1 resonance between the states that are degenerate at k = 0

1Note that the latter imaginary action is a priori a purely classical
quantity that results from the properties of the complexified invariant
phase-space curves with the momenta p = 1/2(1 ± �p). However,
choosing �p = lr/N , as we effectively do in our calculations, will
introduce an effective � dependence in this imaginary action, which
in turn changes the scaling of the WKB splitting [Eq. (14)] with �.
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FIG. 4. (Color online) Eigenphase difference (scaled with �
2l−1)

as a function of the perturbation strength for the states that at k = 0
have p = 1/2 ± l/N (l = 2, 3, 4, and 5). The dimension of the Hilbert
space is N = 20 (solid line), 40 (short-dashed line), 80 (long-dashed
line), 160 (dash-dotted line), and 320 (dotted line). The semiclassical
approximation (15) is plotted with closed symbols [(l = 2 (squares),
3 (circles), 4 (upward triangles), and 5 (downward triangles)]. Inset:
m2:1 as a function of k. The solid black line plots m2:1 = 0.024.

and have p = 1/2 ± l/N (l an integer). For this resonance
we can go one step further and compute the scaling of Vr:s

with k. What helps us here is the fact that we know precisely
the positions of the periodic points associated with the 2:1
resonance. These periodic points become fixed points under
a twofold iteration of the standard map. Taking the stable
periodic point at k = 0, (p,q) = (1/2,0) and linearizing the
dynamics of the twice iterated standard map in the vicinity of
this point yields the monodromy matrix

M2:1 =
(

1 − k −k2

2 − k 1 + k − k2

)
.

As expected det(M2:1) = 1 and we find that Tr(M2:1) =
2 − k2. Then, using Eq. (10) we obtain that V2:1 = m2:1k

2/32.
Finally, using this expression and Eq. (13), the eigenphase
splitting �φ for the resonance 2:1 results

�φ = k2lm2l−1
r:s

[(l − 1)!]2�2l−126l−2
. (15)

We have obtained mr:s ≈ 0.024 ≈ 1/(2π )2 (see the inset of
Fig. 4) using Eqs. (9) and (10) and computing numerically the
phase space areas S+

r:s and S−
r:s .

The splittings �φ for l = 1 are shown in Fig. 3. The
quantum splittings were computed for N = 20, 40, 80, 160,
and 320. The semiclassical result is plotted with symbols. We
see very good agreement between the quantum calculations
and the semiclassical prediction. We note that Eq. (13) works
also to describe the splittings for l = 1, 2, and 3 in the Harper
map (not shown). In the limit N → ∞ and for fixed l, the
semiclassical expression works when k → 0. In this limit,
we are moving closer and closer to the 2:1 resonance’s center
and then higher-order resonances, which can generally modify
tunneling rates in a drastic manner [10–14,27], practically do
not enter into consideration.

In Fig. 4 we plot the splittings for l = 2, 3, 4, and 5. The
semiclassical prediction also works very well for all these cases
for small perturbation strength k. We can see that for large N
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FIG. 5. (Color online) Eigenphase difference (scaled with �
2l−1)

as a function of the perturbation strength for the states that at k = 0
have p = 1/2 ± l/N on a log-log scale and (a) l = 2, (b) l = 3,
(c) l = 4, and (d) l = 5. The dimension of the Hilbert space is
N = 20 (solid line), 40 (short-dashed line), 80 (long-dashed line),
160 (dash-dotted line), and 320 (dotted line). The semiclassical
approximation (15) is plotted with closed symbols. A linear function
is plotted with a blue dashed line. Deviations from the semiclassical
power-law behavior at low values of k occur due to the fact that in
that regime couplings via the central pendulum feature at q = 1/2
and p = 0 become more dominant than resonance-assisted couplings
via the 2:1 resonance. At high values of k, the states become localized
within the islands of the 2:1 resonance. The splitting is then expected
to increase linearly with the perturbation strength.

the rescaled splittings saturate at some given value of k and do
not increase further with k. In Fig. 5 we plot on a log-log scale
the splittings for l = 2, 3, 4, and 5 as a function of k to show
in more detail the departure from the semiclassical growth law
given by Eq. (15). We can clearly see two regimes, a power law
of Eq. (15) for small k and a linear regime that is shown with a
dashed line as a guide for the eye. The occurrence of this linear
regime can be straightforwardly explained by the fact that the
two states that are involved in the tunneling process move
inside the 2:1 resonance islands in the limit of large N and
become Einstein-Brillouin-Keller localized within the islands.
Their associated eigenphase splitting will then be given by the
local oscillation frequency ω2:1 around the center of the 2:1
island and the latter is evaluated as ω2:1 = 2(2V2:1/m2:1)1/2 =
k/2 for the standard map. In the next section a connection of
this linear regime with the morphology of the wave functions
of these states will be given. We note that the deviation for
very low k that is visible in Fig. 5 is due to the fact that in
this regime the 1:1 resonance at p = 0 and q = 1/2 provides
a more dominant coupling mechanism than the 2:1 resonance,
especially if the involved states are located relatively far away
from the 2:1 resonance (i.e., for large l).

IV. MORPHOLOGY OF EIGENFUNCTIONS

In the previous section we focused on the spectral manifes-
tation of the nonlinear 2:1 resonance. We showed that pairs of
states with p = 1/2 + l/N and p = 1/2 − l/N (l an integer)
at k = 0 are degenerate, while for k > 0 the states depart from
each other as k grows due to the resonance 2:1. In this section

we study the morphology of these states as the perturbation
departs from k = 0.

The morphology of the eigenfunctions is studied using the
Husimi distribution, a quasiprobability distribution in phase
space. An interesting feature of such a representation for
quantum maps is that it has exactly N zeros in the unit square
[28]. In Fig. 6 the Husimi distributions of the highlighted
states of Fig. 2 for k = 0.01, 0.25, 0.57, and 1.21 are shown.
The left column [labeled with (1)] shows the eigenstates for
k = 0.01. The state (1a) corresponds to the state that at k = 0
has p = 1/2. It is clearly localized in the vicinity of this value
of p as expected. What is unexpected is the behavior of the
other states. We can clearly see that states (1b), (1c), (1d),
(1e), (1f), and (1g) are also localized near p = 1/2 but a series
of zeros is clearly visible in the region where the values of
the Husimi distribution are large. Inspecting those states more
carefully, we note that states (1b), (1d), and (1f) have zeros
on the unstable PO corresponding to the 2:1 resonance and
have 0, 2, and 4 zeros, respectively, in the region of the islands
of the resonance. On the contrary, states (1c), (1e), and (1g)
have a maximum on the unstable PO and 2, 4, and 6 zeros
in the region of the islands. This behavior of the zeros is also
observed for greater values of k and does not depend on the
value of N . This surprising behavior of zeros was also shown
in the Harper map [16,17]; however, it is important to note a
different aspect of that system. In the case of the Harper map
for small values of the perturbation, each unperturbed state
has a different eigenphase slope [16,17]. Then unperturbed
states that exist around invariant tori are mixed when they
interact in an avoided crossing if their quantum numbers differ
by a multiple of the order of the classical resonance. So, the
localized states that are observed in the standard map for all
values of k > 0 is developed in the Harper map only in the
vicinity of avoided crossings. This fact makes the standard
map more suitable for these studies because it is no longer
needed to find the precise location of the ACs.

To see the behavior of the localization of the zeros in more
detail, we plot in Fig. 7 the natural logarithm of the Husimi
distribution ln[H (q,p)] of the state that is plotted with a blue
line in Fig. 2 and corresponds to the second row of Fig. 6 [states
(1d), (2d), (3b), and (4d)]. In Fig. 7 we also plot the location of
the unstable PO. We can clearly see that for k = 0.01 [Fig. 7(a)]
the positions of the zeros of the Husimi distribution agree very
well with the position of the unstable PO (center of the black
circles). We note that the zeros of the Husimi distribution are
located in the isolated minima of the function [for example,
blue spots in Fig. 7(a) of 6]; however, as soon as k increases
[Figs. 7(b)–7(d)] the agreement is no longer valid.

We remark that we have studied other values of N

(dimension of the Hilbert space) and the same system was
observed. In Fig. 8 we show an example for N = 320. It
shows the Husimi distribution of the pairs of states that at
k = 0 have p = 1/2 ± 3/320 for k = 0.01, 0.1, 0.25, 0.57,
and 1.11. We can see that the states plotted in the left column,
labeled (1a)–(1e), have 2 zeros in the unstable PO and 4
zeros in the islands (2 zeros in each island). The other states,
plotted in the right column [panels (2a)–(2e)], have 6 zeros
in the islands (3 in each one). In Fig. 5(b) (black line) we
have plotted the eigenphase splitting of these states. We can
see that states (1d), (1e), (2d), and (2e) correspond to the
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FIG. 6. Husimi distribution H (q,p) of the highlighted states of Fig. 2 at k = 0.01 (labeled 1), 0.25 (labeled 2), 0.57 (labeled 3), and 1.21
(labeled 4). States labeled (a) correspond to states that have p = 1/2 at k = 0 (thick solid black line in Fig. 2), states (b) and (c) correspond to
states that have p = 41/80 and p = 39/80 at k = 0 (l = 1, dashed lines in Fig. 2), states (d) and (e) correspond to states that have p = 42/80
and p = 38/80 at k = 0 (l = 2, dotted lines in Fig. 2), and states (f) and (g) correspond to states that have p = 43/80 and p = 37/80 at
k = 0 (l = 3, dash-dotted lines in Fig. 2). The stable and unstable periodic orbits of the resonance 2:1 are plotted with circles and crosses. The
corresponding areas of phase space are plotted in (h).

linear regime of �φ. These states are localized within the
two islands of the 2:1 resonance. The resulting eigenphase

0

0.7

0.3

p

q 1

(a) (b)

(d)(c)

FIG. 7. (Color online) Logarithm of the Husimi distribution
H (q,p) of the states (1b), (2b), (3b), and (4b) of Fig. 6. The location
of the unstable periodic orbit of the resonance 2:1 is indicated with
circles. (a) k = 0.01, (b) k = 0.25, (c) k = 0.57, and (d) k = 1.21.

splitting is then the energetic difference between the nth
and the (n + 1)th excited eigenstates within one of the two
resonance islands for some n > 0 that should be proportional
to the local oscillation frequency around the stable fixed point
of the 2:1 resonance. Further increasing the size of the islands
generally gives rise to a larger number of states being localized
within the islands, hence more and more states depart from
the growth behavior predicted by Eq. (15). Their splittings
are still expected to increase with increasing perturbation,
because the local oscillation frequency is generally enhanced
with increasing size of the island. This linear growth, however,
is much weaker than the power law increase of splittings
[Eq. (15)] due to enhanced tunneling between states that are
anchored outside the islands.

In conclusion, we have shown that the states near a
nonlinear r:s resonance have a definite morphology. Pairs of
states that are degenerate at k = 0 separate as k increases: One
of the states has rl zeros inside the islands with l = 1,2, . . .

(l zeros in each island) and the other state has a zero on each
point of the unstable periodic orbit of the nonlinear resonance
and r(l − l) zeros inside the islands (l − 1 in each one).

062923-6



QUANTUM MANIFESTATIONS OF CLASSICAL NONLINEAR . . . PHYSICAL REVIEW E 92, 062923 (2015)

0.7

0.3

p

q 10

(2d)

(2c)

(2b)(1b)

(2a)(1a)

)e2()e1(

(1c)

(1d)

FIG. 8. Husimi distribution H (q,p) of the states that at k = 0
have p = 1/2 ± 3/320 for N = 320: (1a) and (2a) k = 0.01, (1b)
and (2b) k = 0.1, (1c) and (2c) k = 0.25, (1d) and (2d) k = 0.57, and
(1e) and (2e) k = 1.11. The stable and unstable periodic orbits of the
resonance 2:1 are plotted with circles and crosses.

V. CONCLUSION

In this paper we have studied the quantum manifestations of
the classical transition from integrable to mixed dynamics in a
paradigmatic standard map. We have shown a clear systematic
behavior that nonlinear resonances imprint to the eigenphases
and eigenstates of the evolution operator of the map. The
nonlinear resonance mixes degenerate unperturbed states that
exist in its vicinity. The perturbation that breaks the degeneracy
of unperturbed states can be modeled by a time-independent
Hamiltonian whose parameters can be obtained from the

classical dynamics. This Hamiltonian that is obtained using
secular perturbation theory describes the classical motion in
the vicinity of the resonance. Using this integrable Hamiltonian
and perturbation theory, we have obtained a semiclassical
expression for the gaps between the eigenphases of perturbed
states. We have numerically shown in the standard map that this
expression works very well to describe the quantum results not
only in the limit of � → 0. We also note that the semiclassical
expression works very well in the Harper map. These findings
can be useful in predicting resonance assisted tunneling rates
also in a more generic case of nonresonant transitions across
the island chain, which is a topic for further investigation.

The perturbed states have well defined localization prop-
erties. One of the states is localized in the island chain and
the other on the corresponding unstable PO. The Husimi
distribution of the state that is localized in the islands has a
zero in each point of the unstable periodic orbit of the nonlinear
resonance and r(l − 1) zeros inside the islands (l − 1 in each
one, with l an integer). The other state has rl zeros inside the
islands. We note that in the Harper map the same morphology
of wave functions was shown, but in the center of avoided
crossings [16,17] when the unperturbed states are mixed.

The transition from integrable to mixed dynamics is
ubiquitous in Hamiltonian systems and its quantum manifes-
tation now attracts a renewed interest in optical microcavities
[29]. Such devices were in general seated in the region of
mixed classical dynamics and were shown to be important
for quantum phenomena such as scarlike modes [30–32].
Although this system has an open dynamics, our results could
be of importance in obtaining a desired localization of the
output directionality.
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