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Abstract

Colombia is the country with the largest number of bird species worldwide, yet its avifauna is seriously threatened

by habitat degradation and poaching. We built a DNA barcode library of nearly half of the bird species listed in the

CITES appendices for Colombia, thereby constructing a species identification reference that will help in global

efforts for controlling illegal species trade. We obtained the COI barcode sequence of 151 species based on 281 sam-

ples, representing 46% of CITES bird species registered for Colombia. The species analysed belong to nine families,

where Trochilidae and Psittacidae are the most abundant ones. We sequenced for the first time the DNA barcode of

47 species, mainly hummingbirds endemic of the Northern Andes region. We found a correct match between mor-

phological and genetic identification for 86–92% of the species analysed, depending on the cluster analysis per-

formed (BIN, ABGD and TaxonDNA). Additionally, we identified eleven cases of high intraspecific divergence

based on K2P genetic distances (up to 14.61%) that could reflect cryptic diversity. In these cases, the specimens were

collected in geographically distant sites such as different mountain systems, opposite flanks of the mountain or dif-

ferent elevations. Likewise, we found two cases of possible hybridization and incomplete lineage sorting. This sur-

vey constitutes the first attempt to build the DNA barcode library of endangered bird species in Colombia

establishing as a reference for management programs of illegal species trade, and providing major insights of phylo-

geographic structure that can guide future taxonomic research.
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Introduction

The Neotropics are widely recognized for their huge

diversity in groups such as plants (Gentry 1982), amphib-

ians (Duellman 1999) and birds (Fjelds�a 1994). Deforesta-

tion and poaching are the major threats for bird species in

this region (BirdLife International 2000; Renjifo et al. 2002,

2014); where geographically restricted species with high

juvenile mortality and low reproductive outputs are par-

ticularly vulnerable to human activities and over-exploi-

tation (Nash 1993; Purvis et al. 2000). To prevent global

extinctions of wild populations, the international conser-

vation movement encouraged governments worldwide to

support the 1973 Convention on International Trade in

Endangered Species of Wild Fauna and Flora, giving birth

to the CITES Secretariat that classifies species depending

upon their vulnerability to human exploitation and regu-

lates and promotes legal mechanisms of wildlife trade

(CITES Secretariat 2000; Reeve 2002).

To monitor CITES species trade, it is pivotal to accu-

rately identify the species traded. To do so, species diag-

nostic has been traditionally based on morphological

traits. Unfortunately, these diagnostic characters are

insufficient when the specimen belongs to a highly

diverse taxonomic group or is a juvenile, or when the

sample is fragmented or highly processed. A proved

strategy to facilitate the identification of specimens or
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biological fragments with no or little diagnostic traits is

the use of standard DNA regions, also known as DNA

barcodes (Hebert et al. 2003, 2004a; Gonzalez et al. 2009;

Hubert et al. 2010; Tavares et al. 2011; Gonc�alves et al.

2015). DNA barcoding ensures a rapid and accurate

identification of a broad range of biological specimens

using a standard and small gene region of the DNA

sequence. Hebert et al. (2003) proposed to use a 648 bp

fragment of the mitochondrial gene Cytochrome c oxi-

dase subunit 1 (COI) to identify all animal species based

on a unique molecular identification system. Although

the mitochondrial DNA (mtDNA) by itself has some

shortcomings in delimiting or describing species (Ebach

& Holdrege 2005; Brower 2006), it has been readily

adopted as a key component of an integral taxonomic

framework (Sites & Marshall 2003; Padial & De La Riva

2007). Since its appearance, DNA barcoding has been

used for rapidly appraising cryptic diversity, which has

speeded up the discovery of new species particularly in

the Neotropics (Crawford et al. 2013). In addition, DNA

barcoding allows the identification of illegally traded

species by nonspecialized personnel by simply following

the standard procedures of molecular processing (Hsieh

et al. 2001; Caballero et al. 2012), therefore enhancing

controls on wildlife trade.

The DNA Barcode initiative promotes the develop-

ment of a public reference library (www.boldsystems.

org) of DNA barcode markers of the world’s biodiversity

(Hebert et al. 2004b). There have been large initiatives to

barcode North American birds (Kerr et al. 2007), as well as

birds from Argentina and Brazil (Kerr et al. 2009; Tavares

et al. 2011). Results from these studies have shown unam-

biguous identifications, except for few cases of hybrid and

cryptic species. Interestingly, studies from Argentina

(Kerr et al. 2009) and the Brazilian Amazon (Tavares et al.

2011) have shown that some South American birds exhibit

high intraspecific divergences and geographic structure, a

pattern that has been reported for samples from large geo-

graphic areas with breaks between ecoregions wheremul-

tiple subspecies have been described (Tavares et al. 2011).

Therefore, DNA barcoding may be a valuable tool to

screen which taxa would benefit frommore extensive tax-

onomic revisions combinedwith amultilocus approach.

Colombia is a megadiverse country with the largest

number of bird species worldwide (c.a 1889 species; Bello

et al. 2014), most of them geographically restricted to the

Andean region (Hilty & Brown 1986; Orme et al. 2006;

Graham et al. 2010); however, no previous efforts have

been made to build a reliable barcode library. This study

represents the first step towards building a DNA bar-

code library of bird species from Colombia. We focus on

the species listed in the CITES appendices looking to

contribute with global efforts for controlling illegal

species trade, and to provide a basis for subsequent

taxonomic studies which will in turn shed light on this

biodiversity hotspot.

Materials and methods

Sampling collection

We selected tissue samples from the biological and tissue

collection of the Institute Alexander von Humboldt (here-

after IAvH-A and IAvH-CT; Arbel�aez-Cort�es et al. 2015)

for species included in 2014 list of Colombian CITES bird

species (www.checklist.cites.org). DNA was obtained

from different tissues: liver and muscle (222), blood (1),

feathers (7), and toe pads from museum specimens (52).

Samples were collected throughout the whole Colombian

territory with emphasis on the Andean region (Fig. 1).

Six samples were obtained from specimens confiscated

from illegal traders and eight more samples came from

individuals in captivity. Museum specimens were cap-

tured mainly between 1968 and 1986. Overall, a total of

281 samples belonging to 151 species were processed,

and up to six individuals per species were analysed. The

taxonomy of the samples was confirmed by checking its

associated information and the corresponding specimens

from the museums. We used this information as an a pri-

orimethod to validate the resolution of the DNA barcode.

Details of the specimens used are provided in the BOLD

data set CITES birds from Colombia (DS-IHCB16).

Laboratory procedures

DNA was extracted following the Ivanova et al. (2006)

spin columns protocol. For feather samples 20 ll of DTT

1 M was added during the lysis phase. For the toe pads

from museum specimens, 30 ll of proteinase K and 10 ll
of DTT 1 M were added during the tissue digestion

phase; the final elusion was split into three consecutive

sets of ddH2O preheated to 56°C. A ~700 bp fragment of

COI was amplified using Falco and Vertebrate primers

(Kerr et al. 2007). Falco and BirdR2 primers (Hebert et al.

2004b) were used instead when the Falco-Vertebrate pri-

mers failed to amplify. The PCR solution mix included

2.5 ll 109 Taq Buffer containing (NH4)2SO4, 1.25 ll
MgCl4 25 mM, 0.25 ll dNTPs (10 lM), 0.25 ll each primer

(10 lM), 1U of Taq polymerase (Thermo Scientific) and

1–5 ll of total DNA (5–2500 ng/ll) for a final volume of

25 ll. PCR thermal conditions were 1 min at 94°C fol-

lowed by 5 cycles of 1 min at 94°C, 1.5 min at 45°C, and
1.5 min at 72°C followed by 30 cycles of 1 min at 94°C,
1.5 min at 51°C, 1.5 min at 72°C, and 5 min at 72°C.

For toe pad samples, three internal primer pairs were

used resulting in three overlapping fragments with an

average length of 310 bp each (Patel et al. 2010). PCR con-

ditions were: final volume of 20 ll, 2.5 ll buffer 109,
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1.25 ll MgCl2 25 mM, 0.25 ll dNTPs 10 lM, 0.25 ll each
primer 10 lM, 2 ll BSA 109 y 1U Taq polymerase. PCR

thermal conditions for all primer combinations consisted

in 2 min at 94°C followed by 10 cycles of 20 s at 94°C, 20 s

at 55°C and 20 s at 72°C followed by 40 cycles of 20 s at

94°C, 20 s at 50°C, 20 s at 72°C, and 4 min at 72°C. The
sequences of all the primers are shown in Table S1 (Sup-

porting information).

In both cases, amplification success was verified in 1%

agarose gel stained with Sybr� Safe dye. PCR products

were purified by ExoI/FastAP (Fermentas) and

sequences were obtained using the chemical reaction Big-

Dye Terminator v. 3.1 in an automated DNA sequencer

(ABI 3730XL and 3550 series, Applied Biosystems Inc).

Data analyses

Consensus sequences were assembled from forward and

reverse reads and edited manually using the GENEIOUS

7.0.5 (Kearse et al. 2012) software. Nucleotide-sequences,

traces files and images were uploaded to the BOLD Sys-

tem (www.barcodinglife.org) and are available in the

data set DS-IHCB16.

Sequence divergence was estimated with Kimura’s 2-

parameter (K2P) nucleotide evolution model imple-

mented by BOLD. To graphically represent the species

divergence, we generated a Neighbour-Joining (NJ) tree

based on K2P sequence divergence. Node support was

computed with 1000 bootstrap replicates.

Since species clustering can vary with the algorithm

used (Paz & Crawford 2012), we assessed the correspon-

dence between species identification and DNA barcodes

following three different methods: (i) the automatically

assignment of Automated Barcode Gap Discovery

(ABGD) (Puillandre et al. 2012) using the web interface

(http://wwwabi.snv.jussieu.fr/public/abgd/) and the

K2P measure with a Pmax of 0.1 and a relative gap width

of 1.0 (ii) the automatically Barcode Index Number (BIN)

km

Fig. 1 Localities of collection of the bird

samples used.
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clustering (Ratnasingham & Hebert 2013), and (iii) the

“Best Close Match” criterion implemented in the Species

Identifier tool of TAXONDNA 1.8 software (Meier et al.

2006). The “Best Close Match” considers the barcode

assignment to be correct when a query matches all con-

specific sequences within the 95th percentile of all

intraspecific distances (Meier et al. 2006).

In our data set, when we found incongruences

between DNA barcode and the specimen identification,

we resequenced the samples and revised the specimens

with experts in order to verify the identity. In four cases

both the expert revision and barcode information con-

curred, thus we corrected and included these sequences

in our data set. For four further samples, we did not have

enough guarantee to resolve possible troubleshooting

therefore they were excluded from our data set.

Results

We obtained 281 COI sequences belonging to 151 bird

species. This corresponds to 46% of the bird species reg-

istered in the Colombian CITES checklist. For 261 sam-

ples corresponding to 146 species, we obtained

sequences longer than 500 bp that were used in subse-

quent analyses. These species represent seven orders and

nine families, being Trochilidae and Psittacidae the most

abundant ones (Table 1). Sequence length varied from

218 bp (IAvH-CT 14590-Amazona ochrocephala) to 780 bp

(IAvH-CT 14733-Pionites melanocephalus). For 16 of the

toe pads sampled from museum specimens, only one of

the three fragments was successfully amplified, obtain-

ing sequences ranging from 218 to 337 bp. Also, for 18

toe pad samples we amplified two of the three fragments

obtaining sequences ranging from 308 to 614 bp. For

hummingbirds (order Apodiformes), which comprise

most of the species listed in CITES for Colombia, we

sequenced 95 out of the 152 species represented on the

list (Table 1). To the best of our knowledge, we obtained

for the first time the barcode records for 38 humming-

birds, four parrots, three hawks and two owl species,

mainly endemic of Northern Andes (Table S2, Support-

ing information).

Based on 160 assessments, the mean intraspecific pair-

wise genetic distance calculated was 1.37% (0.00–14.61%;

Fig. 2a, Table 1). For eight species, intraspecific distances

were above 2.5%, which match with the lower 5% of con-

generic distances assessed (Table 2, Fig. 2b); and three

further species (Boissonneaua flavescens, Glaucidium jar-

dinii and Eriocnemis vestita) appeared to be polyphyletic

based on the NJ tree (Fig. 3). Based on 650 comparisons,

the mean K2P genetic distance among congeneric species

was 8.96%, ranging from 0.15% to 16.53% (Fig. 2,

Table 1). Interspecific divergences lower than 2.5% were

obtained for 15 species (Table 3).

Barcode clustering

The ABGD analysis reported 143 groups out of the 146

nominal species studied, 86.3% of which were correctly

designated to single groups (Fig. 3). This algorithm

clumped 15 nominal species in six groups and six further

nominal species were split into multiple groups (Table 2,

Table 3).

For the TaxonDNA analysis, we excluded seven

museum samples with ambiguous bases in their

sequences. The 254 sequences with >500 bp left corre-

sponded to 141 nominal species. Using the estimated

divergence threshold computed by the Best Close Match

method (2.0%), 239 sequences showed a successful

match. Seven species were split (Table 2), whereas six

species were clumped (Table 3). Overall 92.2% of the

nominal species were correctly identified.

Table 1 Summary of total CITES bird species in Colombia by order according to the CITES checklist webpage (http://check-

list.cites.org/) and total species sequenced in this study. K2P genetic distances for bird species analysed in total and by order. All K2P

genetic distances were calculated for sequences with length >500 bp

Categories

Total CITES

species

Analysed

species No. samples

Intraspecific distances Conspecific distances

Min K2P Mean K2P Max K2P Min K2P Mean K2P Max K2P

Anseriformes 4 1 1 – – – – – –
Apodiformes 152 95 184 0 1.50 14.61 0.15 9.35 16.53

Falconiformes 73 12 14 0.15 0.16 0.16 6.00 11.72 15.01

Passeriformes 5 1 1 – – – – – –
Piciformes 5 1 1 – – – – – –
Psittaciformes 54 29 48 0 0.68 2.00 0.75 6.26 12.28

Strigiformes 25 7 12 0 2.37 7.86 5.77 9.30 11.50

Total 329* 146 261 0 1.37 14.61 0.15 8.96 16.53

*The value of total CITES species included 11 species of orders Galliformes (6), Ciconiiformes (3), Charadriiformes (1) and Sphenisci-

formes(1) not processed in this paper.
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BIN records were generated for 248 sequences of 137

nominal species, yielding 144 BIN clusters (Fig. 3). The

samples without BIN records corresponded to sequences

that did not fulfil with barcode compliance standards.

We obtained multiple BIN records for eleven species

(Table 2) and six species were clumped into single BINs

(Table 3). Excluding those cases, 89.7% of the analysed

species were identified in congruence with their morpho-

logical characteristics.

In order to evaluate the effect of sequences without

barcode standard compliance (museum incomplete

sequences and sequences with ambiguous results) on the

performance of the clustering methods, we executed the

ABGD and TaxonDNA analyses for the 248 sequences

analysed by BIN, and then compared these with the ini-

tial results. No differences were found between the clus-

tered/splitted species in relation to the analyses for all

261 sequences.
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Fig. 2 a) Frequency distribution of K2P distances within (light-grey) and among (dark-grey) species of Colombian CITES birds. b) Com-

parison of intraspecific versus interspecific distances (K2P) of the COI sequences from individual species, showing the threshold of bar-

code-gap and troubleshooting species. The grey bars show the visible gap between the 2.5% (corresponding to the lower 5% congeneric

distances) and the value immediately above (3.2%).

Table 2 Bird species displaying high K2P intraspecific genetic distances

Nominal species

Clustering

method splitting

No. of.

sequences

Min intraspecific

K2P

Mean intraspecific

K2P

Max intraspecific

K2P

Adelomyia melanogenys □○D 3 1.07 5.21 7.45

Aglaiocercus kingi ○D 2 2.81 2.81 2.81

Amazilia amabilis ○ 4 0.16 1.00 2.02

Boissonneaua flavescens □○ 4 0.93 9.73 14.61

Coeligena coeligena ○D 2 2.28 2.28 2.28

Eriocnemis vestita □○ 4 0 5.21 12.06

Glaucis hirsutus ○ 3 0.92 1.76 2.34

Metallura tyrianthina ○D 3 0 1.71 2.66

Phaethornis syrmatophorus □○D 2 6.68 6.68 6.68

Schistes geoffroyi □○D 2 12.58 12.58 12.58

Glaucidium jardinii □○D 3 0 5.22 7.86

Symbols indicate splitting by any of the automatically clustering methods: ABGD (squares), BIN (circles) and TaxonDNA (triangles).

All K2P genetic distances were calculated for sequences with length >500 bp. Bold values indicate K2P genetic distances above 2.5%

which coincides with the lower 5% of overall congeneric distances.
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Discussion

Clustering based on COI sequences was 86–92% congru-

ent with morphological species delimitation of the

Colombian bird species included in the CITES checklist,

depending upon the algorithm used. Although these

results indicate that most species were clearly distin-

guishable from related species, the percentage of congru-

ency is slightly lower than that found for North

American, Brazilian and Argentinean bird species (94%,

93% and 98% respectively) (Kerr et al. 2007, 2009;

Tavares et al. 2011). In this study, conflicting cases corre-

sponded to samples from either splitting or clumping of

nominal species (Tables 2 and 3).

Barcode gap

The presence of a gap between the intra- and interspeci-

fic genetic distances is the main requirement for success-

ful barcode identification (Hebert et al. 2004b; Aliabadian
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Fig. 3 Neighbour-Joining (NJ) dendrogram obtained from mitochondrial COI sequences of Colombian CITES birds showing the molec-

ular relationships of split (filled) and clumped (blank) species according to ABGD (squares), BIN (circles) and TaxonDNA (triangles)

clustering methods. Numbers in each node represent posterior probability values < 0.9 after bootstrap with 1000 replicates.
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et al. 2009). Previous studies have used a 2.4% K2P

threshold for Argentinean species (Kerr et al. 2009) and

2.7% K2P threshold for North American birds (Hebert

et al. 2004b) following the 109 criterion. Also, while

Chaves et al. (2015) found an overlap between intra- and

interspecific genetic distances rather than a barcoding

gap in Neotropical birds, Tavares et al. (2011) defined a

1.5% K2P threshold for Brazilian species based on the

minimum genetic distance found for the lower 5% of

congener’s comparisons. In this study, we found a visible

gap at K2P values among species between 2.4% and 3.2%

(Fig. 2b), which coincides with the minimum genetic dis-

tance found for the 5% of congeneric comparisons.

Cryptic diversity and geographic patterns

The topographic complexity of the Andes Cordillera,

characterized by a number of geographical barriers,

resulted in many bird species exhibiting deep intraspeci-

fic divergences, reflecting the challenge of DNA barcod-

ing for Neotropical species (Moritz & Cicero 2004). In

Colombia, this difficulty is further enhanced as this

mountain range is a single mass in the south of the coun-

try that splits towards the north into three different

mountain systems, known as the Eastern, Central and

Western Cordilleras. Such complexity may promote spe-

ciation though vicariance by acting as geographic or eco-

logical barriers limiting the dispersal of individuals

(Ruggiero & Hawkins 2008; McGuire et al. 2014; Smith

et al. 2014; Mendoza et al. 2015).

Some samples from different cordilleras exhibited

high intraspecific divergence, and interestingly, several

of these high divergences matched with recognized sub-

species and/or phylogenetic clades. For instance, in the

Coquettes hummingbirds (Fig. 4a–c), samples of Aglaio-

cercus kingi (K2P = 2.18%) coming from different cordil-

leras corresponded to either the subspecies A. kingi

mocoa (Central Cordillera) or A. kingi emmae (Western

Cordillera), which differs in the colour of their throat and

tail (Ayerbe-Qui~nones 2015; del Hoyo et al. 2016).

Although nowadays both are considered subspecies,

A. kingi mocoa has been historically treated as a separate

species (e.g., Cory 1918; Peters 1945; Salaman & Mazarie-

gos 1998). RegardingMetallura tyrianthina, we found high

genetic divergence between samples from the Western

and Eastern Cordilleras (K2P = 2.66%, Fig. 4b); this

result is in agreement with recent multilocus analyses

that found high genetic structure across major topo-

graphical barriers in this particular species (Benham et al.

2015). Samples of Adelomya melanogenys clustered in two

different groups with sequences from the Western and

Central Cordillera (K2P = 7.45%, Fig. 4c) corresponding

to the subspecies A. melanogenys cervina (Ayerbe-

Qui~nones 2015) and the sequence from the western part

of the Eastern Cordillera corresponding to a recently pro-

posed new subspecies A. melanogenys sabinae (Donegan

& Avenda~no 2015). In fact, recent analyses based on mul-

tilocus data confirmed six phylogroups in Adelomya

(Chaves & Smith 2011; Chaves et al. 2011); our samples

correspond to clades D and F described in Chaves &

Smith (2011) the former clade being restricted to the

northern section of the Eastern Cordillera in Colombia.

Other cases of high genetic divergence between hum-

mingbird subspecies were found. For instance, Coeligena

Table 3 Bird species displaying low K2P genetic distances among species

Nominal species in

each cluster

Clustering method

grouping

No. of.

sequences

Intraspecific distances Distants among species

Min K2P Mean K2P Max K2P Min K2P Mean K2P Max K2P

Amazilia viridigaster □ 2 0.90 0.90 0.90 1.54 2.07 2.66

Amazilia saucerrottei □ 2 0.15 0.15 0.15

Chlorostilbon gibsoni □ 2 0.61 0.61 0.61

Chrysuronia oenone □ 1 – – – 2.34 2.42 2.49

Amazilia versicolor □ 2 0.15 0.15 0.15

Coeligena lutetiae □○D 2 0.15 0.15 0.15 0.15 0.95 2.16

Coeligena orina □○D 1 – – –
Coeligena bonapartei □○D 3 0.15 0.40 0.61

Coeligena helianthea □○D 2 0.15 0.15 0.15

Eriocnemis cupreoventris □○D 4 0 0.31 1.08 0.16 9.68 12.94

Eriocnemis vestita □○D 5 0 5.21 12.06

Phaethornis griseogularis □ 1 – – – 2.40 2.40 2.40

Phaethornis striigularis □ 1 – – –
Pyrrhura melanura □ 1 – – – 0.75 0.75 0.75

Pyrrhura calliptera □ 1 – – –

Symbols indicate clustering by each method: ABGD (squares), BIN (circles) and TaxonDNA (triangles). All K2P genetic distances were

calculated for sequences with length >500 bp.

© 2016 John Wiley & Sons Ltd
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coeligena (K2P = 2.28%, Fig. 4d), showed two different

DNA clusters corresponding to samples from subspecies

C. coeligena obscura (southern sample) and C. coeligena

columbiana (northern sample). These two subspecies dif-

fer in size and coloration (Cory 1918; Ayerbe-Qui~nones

2015; del Hoyo et al. 2016). Samples of Phaethornis syr-

matophorus from the Central and Eastern cordilleras also

showed high intraspecific divergence values

(K2P = 6.68%, Fig. 4e), this result is in agreement with

previous studies reporting morphological differentiation

in this species. Indeed, the eastern clade is recognized as

the subspecies P. syrmatophorus columbianus, which dif-

fers from P. syrmatophorus syrmatophorus in having dark

brown throat and breast (del Hoyo et al. 2016). Hinkel-

mann & van den Elzen (2002) raised the subspecies

P. syrmatophorus columbianus to the species level based

on morphological differences; the genetic distances

found in this study support their hypothesis, although,

this category has not been formally accepted.

An interesting case of high genetic divergence was

found in Glaucidium jardinii between samples from the

Eastern and Western cordillera (K2P = 7.86%, Fig. 4f).

However, G. nubicola, morphologically very similar to

G. jardinii, also occurs in the same localities from the

Western Cordillera where G. jardinii was collected (Rob-

bins & Stiles 1999). As both species can only be distin-

guished vocally, by weight or by subtle coloration

patterns (del Hoyo et al. 2016), western samples might

have been misidentified. Morphological traits and

weight of our samples are not conclusive to distinguish

between both species (S. Cordoba pers. comm.). Gather-

ing more genetic and population information to better

distinguish these two species is critical as G. nubicola is

vulnerable and highly threatened by forest degradation

(del Hoyo et al. 2016).

Cases of high intraspecific genetic divergence do not

always concur with long distances or geographical barri-

ers between sampled localities. For instance, the samples

of the Emerald Amazilia amabilis from lowland localities

were clustered in two different BINs and their K2P

intraspecific distance was of 2.0% (Fig. 4g), while the

mean intraspecific distance in hummingbirds was of

1.4%. Considering the overall pattern of high net diversi-

fication rates shown by Emeralds in other studies

(McGuire et al. 2014), we should not expect multiple

BINs in a single species. Instead, the overall pattern

described by McGuire et al. (2014) is in agreement with

the low divergence between other Amazilia species

(A. viridigaster and A. saucerrottei) showing mean K2P

values of 1.56%. Likewise, the sequences of Glaucis hisru-

tus were clustered in two different BINs despite their

mean K2P intraspecific distance being 1.76%. In this case,

the divergence between BIN clusters is not related to a

geographical or ecological barrier (Fig. 4h). However,

one of our samples is clustered in a BIN with other

sequences from Trinidad and Tobago, French Guiana,

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4 Sampling localities of CITES birds with high intraspecific divergences based on K2P genetic distances of the COI barcode. a)

Aglaiocercus kingi b) Metallura tyrianthina c) Adelomyia melanogenys d) Coeligena coeligena e) Phaethornis syrmatophorus f) Glaucidium jardinii

h) Amazilia amabilis i) Glaucis hirsutus i) Schistes geoffroyi j) Boissonneaua flavescens. The area of species distribution is displayed in grey.

Triangles and circles correspond to different BINs.
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Guyana and Brazil; whereas the remaining samples are

clustered in a BIN with sequences from Peru, Panama

and Bolivia. This species represents a very interesting

case that needs further investigation.

Another example is that of Schistes geoffroyi, which

shows extremely high intraspecific divergences between

samples collected <100 km apart (K2P = 12.58%), but in

opposite slopes of the south part of the Eastern cordillera

(Fig. 4i). Shistes albogularis, a former subspecies of S. geof-

froyi, is distributed on the Western and Central cordil-

leras (del Hoyo et al. 2016). Some authors still refer to

S. g. geoffroyi and S. g. albogularis as conspecifics

(Ayerbe-Qui~nones 2015) whereas others consider them

as different species (Cory 1918; Ridgely & Greenfield

2001). It is plausible that the samples analysed corre-

spond to both S. geoffroyi and S. albogularis in a small

area of contact. Finally, four samples of Boissonneaua fla-

vescens were clustered in two different groups, one group

represented two specimens from the Western and the

Eastern cordilleras collected in elevations ranging 2300

and 2600 m.a.s.l that correctly matched other Bois-

sonneaua species in our data set, and the other group rep-

resented two specimens from the Eastern cordillera

collected at 3200 m.a.s.l that were not monophyletic with

other Boissonneaua (Fig. 4j). In order to verify these

results, we sequenced additional genes ND2 and ND4

for the four samples of this species and found that they

correctly matched other Boissonneaua sequences from

Genbank (results not shown). One possible explanation

for this result is that the COI region of the samples from

high elevation corresponds to pseudogenes, although the

quality of the sequences was good and did not have stop

codons.

Clumped species

We found two cases of low interspecific genetic distances

that represent a complex case for barcode identification.

The first is in the Coeligena genus, as C. bonapartei, C. he-

lianthea, C. lutetiae and C. orina showed K2P distances

values between 0.15% and 2.16% and were clumped as a

single species in all the analyses performed (Table 3;

Fig. 3). Based on a multilocus study, Parra et al. (2009)

found low genetic divergence in this genus and sup-

ported the monophyly in C. lutetiae, but not in C. bona-

partei and C. helianthea. Interestingly, these two species

differ strongly in several morphological characters and

are not usually sympatric, although they occupy oppo-

site slopes of the same cordillera. Parra et al. (2009) rec-

ognized both species as an interesting case for further

detailed studies on the efficacy of phenotypic differentia-

tion in reproductive isolation. The second case was a sin-

gle sample that morphologically corresponded to

Eriocnemis vestita (IAvH-CT 17313), but its COI sequence

clustered within the Eriocnemis cupreoventris clade

(Fig. 3). This sample was collected in a “paramo” region

at 3100 m.a.s.l., a location where both species overlap.

The collectors reported unusual aspects in the plumage

of this specimen (O.A. Acevedo-Charry pers. comm).

Further analysis (e.g. examining nuclear loci and mor-

phological traits) is needed to test for hybridization or

incomplete lineage sorting.

Taxa representativeness

We included half of the parrot species registered in

Colombia using specimens collected either in expedi-

tions to several pristine sites conducted before 1995, or in

captivity due to illegal trade activities. Parrots are the

most trafficked birds and their capture historically has

implied habitat degradation through illegal methods

(Beissinger & Snyder 1992; Meyers 1994). Using primers

of small overlapping fragments of COI, we were able to

obtain sequences from toe pad samples for specimens

collected since 1968. Indeed, in the effort to recover DNA

from museum specimens, we obtained the first DNA

barcodes for restricted and endemic parrot species such

as Bolborhynchus ferrugineifrons, Pionopsitta pulchra,

Pionopsitta pyrilia and Pyrrhura calliptera. Among these,

P. calliptera and B. ferrugineifrons are categorized as vul-

nerable in the IUCN red list of endangered species, and

their records are very scarce (Renjifo et al. 2002, 2014).

Unfortunately, our analyses included a low number

of samples from raptors. In Colombia, 73 raptor species

are included in CITES appendices, yet we only

sequenced 12 of them (Bildstein et al. 1998). Raptors

specimens are rare in biological collections since they are

not easy to sample (Wang & Finch 2002). To date, there

are records for 62 out of the 73 raptor species registered

in CITES for Colombia in the BOLD system, yet these

records come from Brazil, Peru, Argentina and Panama.

Implications and further analysis

Gonc�alves et al. (2015) recently reported the use of

DNA barcode for identification of avian eggs being

transported illegally in a Brazilian airport. Thanks to

DNA identification, they were able to designate these

eggs to parrots and owl species. This information

could serve to direct conservation strategies for regio-

nal, national and international authorities. In fact, it

provides a tool to easily identify traded species or

their parts, and in several cases it also provides valu-

able information about the origin of the captured

specimen. This information can highlight regions of

major poaching that together with an accurate identi-

fication of the specimens can be used to update spe-

cies management conservation plans.

© 2016 John Wiley & Sons Ltd

DNA BARCODE OF COLOMBIAN ILLEGALLY TRADED BIRDS 9



Although bird species have been well studied taxonomi-

cally, we keep deciphering their taxonomic and evolution-

ary relationships. For instance, between 2000 and 2014, 29

new species of birdswere described in Colombia using bioa-

coustics, morphology and genetic data (Caycedo-Rosales

et al. 2014). Our results based on a single gene provide a

good idea of what has been recently described using multi-

ple genes (e.g. Krabbe et al. 2005; Donegan et al. 2010; Lara

et al. 2012), and establish a promising way to reveal poten-

tial cryptic diversity. DNA barcoding paves the road to

inquire for cryptic diversity, although determining specific

status of each mtDNA lineage should be accomplished

through an integrative approach to taxonomy (Will et al.

2005). Our long-term goal is to complete the DNA barcode

library of bird species in Colombia, the country with largest

number of bird species worldwide, in order to provide base-

line for species delimitation (e.g., Toews & Irwin 2008),

information that is critical to environmental authorities

(Gonc�alves et al. 2015).
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