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ABSTRACT: The vapor pressure of water is a key property in
a large class of applications from the design of membranes for
fuel cells and separations to the prediction of the mixing state
of atmospheric aerosols. Molecular simulations have been used
to compute vapor pressures, and a few studies on liquid
mixtures and solutions have been reported on the basis of the
Gibbs Ensemble Monte Carlo method in combination with
atomistic force fields. These simulations are costly, making
them impractical for the prediction of the vapor pressure of
complex materials. The goal of the present work is twofold:
(1) to demonstrate the use of the grand canonical screening approach (Factorovich, M. H. et al. J. Chem. Phys. 2014, 140,
064111) to compute the vapor pressure of solutions and to extend the methodology for the treatment of systems without a
liquid−vapor interface and (2) to investigate the ability of computationally efficient high-resolution coarse-grained models based
on the mW monatomic water potential and ions described exclusively with short-range interactions to reproduce the relative
vapor pressure of aqueous solutions. We find that coarse-grained models of LiCl and NaCl solutions faithfully reproduce the
experimental relative pressures up to high salt concentrations, despite the inability of these models to predict cohesive energies of
the solutions or the salts. A thermodynamic analysis reveals that the coarse-grained models achieve the experimental activity
coefficients of water in solution through a compensation of severely underestimated hydration and vaporization free energies of
the salts. Our results suggest that coarse-grained models developed to replicate the hydration structure and the effective ion−ion
attraction in solution may lead to this compensation. Moreover, they suggest an avenue for the design of coarse-grained models
that accurately reproduce the activity coefficients of solutions.

■ INTRODUCTION

Molecular modeling has significantly contributed to under-
standing equilibrium and transport phenomena in aqueous
solutions and polymer electrolyte membranes. The chemical
complexity associated with electrolyte solutions in fuel cells,1

batteries, biomolecular interfaces, or atmospheric aerosols2,3

often makes it difficult to predict their properties. In this
context, simulation methods are well suited to provide
microscopic insight complementary to the available macro-
scopic data. Atomistic quantum and classical modeling has been
useful to access information on electrode potentials, ion activity
coefficients, density profiles, mass transport, mobility, proton
exchange, and other properties in solution or in a diversity of
electrochemical environments.4−16 As for the vapor pressure of
aqueous electrolytes, only a few studies have been reported on
the basis of the Gibbs Ensemble Monte Carlo method in
combination with atomistic potentials.11,16−18 Yet, realistic
models of modern electrochemical devices typically involve
many thousands of atoms that have to be simulated over large
time scales. In this scenario, atomistic modeling may turn out to
be impracticable, and coarse-grained and multiscale methods
start to become indispensable to achieve a complete

thermodynamic picture.19−23 In recent years, a few coarse-
grained models have been developed to calculate the phase
diagrams of hydrocarbon mixtures.24,25

Various analytical expressions exist to predict the vapor
pressure (Pv) of binary systems. For electrolyte solutions in
both diluted and concentrated regimes, the model of Brunauer,
Emmett, and Teller (BET) has provided a framework to
calculate activity coefficients in bulk, which were successfully
applied to predict vapor pressures of aqueous salts.26−28 On the
other hand, a number of state equations have been derived for
mixtures from thermodynamic perturbation theories.29−32

Within the realm of molecular simulations, several method-
ologies have been formulated to determine the point of
coexistence and the vapor pressure of liquids. The most
widespread of these computational approaches is possibly the
Gibbs Ensemble Monte Carlo method by Panagiotopoulos and
co-workers on the basis of particle exchange between two
reservoirs containing the two phases in equilibrium.33−36

Grounded on a different conception, the so-called path-
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sampling techniques integrate the free energy along a trajectory
connecting the two phases of interest. Examples include various
schemes such as the expanded ensemble,37 simulated temper-
ing,38 adaptive umbrella sampling,39 and transition matrix
Monte Carlo.40 Alternately to these somewhat involved
techniques, we recently proposed a simple procedure, denoted
as grand canonical screening (GCS), to determine the point of
liquid−vapor coexistence for systems exposing an interface to
the vacuum.41 This approach has so far proved useful to study
pure bulk phases and aggregates.41,42

The purpose of this article is twofold. On the one hand, we
illustrate the application of the GCS approach to compute the
vapor pressure of solutions. We present an alternative
implementation of this methodology that can be applied in
the absence of an interface, which can be particularly useful in
the case of hydrophobic solutes yielding strongly inhomoge-
neous profiles in finite liquid slabs. On the other hand, we
analyze the free energy contributions related to the vapor
pressure of aqueous electrolytes described with coarse-grained
models without electrostatic interactions and show how
compensation of low hydration and vaporization free energy
of the electrolyte leads to the correct equilibrium behavior. The
present results provide a general framework for computing
liquid−vapor properties of electrolytic systems in physically
complex architectures and insights on the development of
computationally efficient coarse-grained models that reproduce
activity coefficients and the colligative properties that depend
on them.

■ METHODOLOGY
Coarse-Grained Models.Water was described with coarse-

grained model mW,43 which represents each molecule as a
single particle interacting through anisotropic short-ranged
potential favoring “hydrogen-bonded” water structures. This
model does not have electrostatic interactions and is based on
the short-ranged Stillinger−Weber (SW) potential,44 which
consists of a sum of two-body attraction terms that favor high
coordination and three-body repulsion terms that encourage
tetrahedral “hydrogen-bonded” configurations (see Supporting
Information). The mW potential reproduces the energetics,
density, and structure of liquid and solid water and its phase
transitions with comparable or better accuracy than that of
most atomistic models at nearly 1% of the computational
cost.43,45−47 In the last few years, this model has proved useful
to describe water under a variety of conditions and environ-
ments.42,48−61

The absolute value of the vapor pressure of mW water (0.5
mbar) is nearly 2 orders of magnitude below the experimental
value.41 We have shown that this shift, for which the magnitude
can be accurately predicted via a statistical thermodynamics
analysis, originates in the lack of rotational entropy of the mW
model in the gas phase.41 Despite this shift, the liquid−vapor
behavior of experimental water is faithfully reproduced by the
mW model in terms of relative vapor pressure (Pv/Pv*), as it has
been assessed for the dependence of equilibrium pressure with
respect to temperature,41 interface curvature,42 or confine-
ment.51

We consider here coarse-grained models of salts, LiCl and
NaCl, that have been parameterized with the SW potential to
be used with the mW water force field, without introducing
long-range electrostatic interactions. The LiCl ions were
represented by the coarse-grained solute S introduced in ref
52. This species was conceived as a single hydrophilic solute

with no charge, which interacts with water via the same
potential and parameters as an mW particle, but setting to zero
the angular dependence of the three-body terms centered on
the ions. Because this term is repulsive, the net strength of
solute−water interactions is larger than that between water
molecules. The ion−ion interaction in this model is weak,
represented by a pair potential with strength equal to 10% of
that between water and solute. As a result of this choice of
parameters, this model quantitatively reproduces the behavior
of LiCl ions in their effect on water structure, melting
temperature of ice, and a crossover between crystallization
and vitrification as a function of salt concentration.52,62,63 The
NaCl ions were modeled using the coarse-grained potential
presented in ref 53. This solute yields an accurate
representation of the hydration structure and the relative
diffusivity of Na and Cl ions in solution, and of the
experimental association constant of the Na+−Cl− pair, as
well as of the free energy barrier between the solvent-separated
and contact ion-pair configurations.53 The Yukawa potential
was included to mimic the repulsion of ions of the same charge
in the case of NaCl.53 In both LiCl and NaCl models, the
interaction between the coarse-grained ions is much weaker
than that expected for charged ions. The Supporting
Information details the functional form and parameters of the
coarse-grained models used in this study.
For consistency with the thermodynamic analysis presented

in the last part of the Results and Discussion section, we define
the molar fraction of a salt as xsalt = n+/(nw + n− + n+) and the
molar fraction of water as xw = nw/(nw + n− + n+), where n+, n−,
and nw are the number of cations, anions, and water molecules,
respectively.

Molecular Simulations. All simulations were carried out
using a version of the LAMMPS code64 properly modified by us
to perform grand canonical molecular dynamics (GCMD) with
monoatomic potentials.41 GCMD allows for the exchange of
water particles between the system and a reservoir to produce
the temporal evolution at a controlled chemical potential, μ.
The GC/MD ratio was set equal to 20. The equations of
motion were integrated using the Verlet algorithm with a time
step of 5 fs. The temperature was controlled with the Nose−́
Hoover thermostat at 298 K with a relaxation time of 0.25 ps.
When indicated, the pressure was controlled with a Nose−́
Hoover barostat. Periodic boundary conditions were used in all
directions.

■ RESULTS AND DISCUSSION
Calculation of the Vapor Pressure of Solutions

through the GCS Approach. The GCS approach41,42 is a
simple procedure for the computation of the vapor pressure of
finite and bulk systems, with a precision comparable to or
better than the one offered by the Gibbs Ensemble Monte
Carlo method. To compute the vapor pressure of a pure
substance with the GCS approach, various grand canonical
simulations must be conducted in the presence of a liquid−
vapor interface, each one at a different chemical potential
around the presumed equilibrium value. If the chemical
potential of water μ fixed in the simulation is above μeq, then
the number of molecules increases until the simulation box fills
completely. Conversely, if μ is below μeq at the beginning of the
simulation, then the number of molecules decreases until all
particles have disappeared. By repeating this computational
experiment for a given system at different chemical potentials,
an upper and a lower bound can be established for μeq, which is
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directly linked to Pv. We have shown that this methodology can
be equally extended to clusters and curved interfaces.41,42

There is a fundamental difference in the application of the
GCS approach to a solution in comparison to a pure phase. If
the initial chemical potential μ of the solvent is above the one
corresponding to equilibrium, then condensation of the solvent
will take place. In a solution, this will produce a progressive
dilution of the electrolyte, which shall bring with it an increase
in μeq. Thus, condensation will proceed until μeq equalizes the
chemical potential μ fixed in the simulation, at which point the
system will reach equilibrium and thereafter the number of
solvent molecules will remain constant. Analogously, if μ is
initially below μeq, then the system will evolve via solvent
vaporization until the value of μeq drops to the fixed chemical
potential. This means that at variance with the case of pure
phases the screening of chemical potentials is not needed to
locate the point of coexistence of a solution because the system
spontaneously evolves to the equilibrium composition for each
chemical potential, provided that the cell is large enough to
accommodate a liquid−vapor interface.
This behavior is illustrated in Figure 1 for a lithium chloride

solution. As mentioned above, in the framework of the GCS

scheme, grand canonical simulations at different values of μ
must be carried out in the presence of a liquid−vapor interface,
which for a bulk solution implies the use of a liquid slab in
contact with a vacuum region. The first system studied
consisted of a slab of 820 water molecules and 204 ions in a
cell of dimensions Lx = Ly = 30 Å and Lz = 150 Å, where z is the
direction normal to the interfaces. The liquid slab has initially a
thickness of 30 Å in z. Figure 1 shows how a larger chemical
potential leads to a higher number of solvent molecules or a
lower final concentration. For the range of chemical potentials
explored, equilibrium is reached within a few nanoseconds.
The strong interaction of LiCl with water produces an

inhomogeneous distribution of ions in the slab along the
direction perpendicular to the interfaces, with the concentration
in the surface tending to be smaller than that in the bulk in the
outer ∼1 nm.63 We studied solution slabs of different
thicknesses to assess the impact of cell size on the vapor
pressure of water computed in the presence of liquid−vapor
interfaces. Aside from the model with 204 ions and an initial
thickness of 150 Å described above, denoted in Figure 2 as the

small slab, a second liquid slab equal to the first one but 3 times
thicker (big slab) was also examined. Figure 2 presents the
relative vapor pressure (Pv/Pv*) obtained for these two models
as a function of the molar fraction of the salt. Both exhibit a
very similar behavior up to 0.1 molar fraction of salt, falling at
the same time very close to the experimental curve. Above this
concentration, which is approximately one-half of the
experimental solubility of LiCl at room temperature, the results
for the small and large slabs differ, and only the larger slab
reproduces quite accurately the experimental data points. As
the inhomogeneity induced by water interfaces is always ∼1
nm,66 slabs with a thickness of 9 nm are sufficient to minimize
finite-size effects and render accurate vapor pressures in GCS
calculations with liquid−vapor interfaces.

Implementation of the GCS Approach without a
Liquid−Vapor Interface. Opposite to the case of aqueous
LiCl, the local concentration of hydrophobic solutes in water
tends to peak near the liquid−gas interface. When dealing with
very insoluble substances, such as the hydrophobic polymer
electrolytes used for fuel cell membranes, increasing the
dimensions of the slab may not be enough to get converged
vapor pressures. An approach to the vapor pressure that
eliminates the interface altogether would be of help in that
scenario. In this section, we propose an alternative
implementation of the GCS scheme to compute the
equilibrium vapor pressure without the need to include a
liquid−vapor interface.
As a first step, the system with no interfaces and with a given

composition is equilibrated in the isothermal isobaric NPT
ensemble at zero pressure. That run is employed as the starting
point for a series of grand canonical simulations at different
chemical potentials around the presumed equilibrium value.
Along these simulations, however, the mechanical pressure
ought to be monitored instead of the number of water particles.
If the chemical potential is above μeq, then the number of water
molecules will tend to increase, which will be reflected in a
strong increase of the mean mechanical pressure. The opposite
behavior will take place if μ is smaller than μeq, providing that
cavitation does not take place. In this way, the average
mechanical pressures can reveal the value of the equilibrium
chemical potential for a given electrolyte composition. Figure 3
shows how the mechanical pressure is affected by different

Figure 1. Number of water molecules versus time obtained from
GCMD simulations of a slab model of an aqueous LiCl solution. Each
curve starts from the same initial configuration, comprising 820 mW
water molecules and 204 S ions, simulated at different chemical
potentials that correspond to relative vapor pressures of 0.4 (0.20
mbar), 0.6 (0.30 mbar), and 0.7 (0.35 mbar).

Figure 2. Relative vapor pressure of aqueous LiCl solutions as a
function of the molar fraction of the salt. Experimental data from ref
65 simulation data computed with the GCS method for mW water and
the S model of LiCl.52 Small and big refer to slabs having 820 and
2460 water molecules, respectively, at the beginning of the simulation.
The no interface system is equivalent in size to the small slab but
without the vacuum region.
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chemical potentials in a model of aqueous LiCl without
interfaces.

The vapor pressures of LiCl solutions obtained through this
approach in a simulation cell with 204 ions and initially 820
water molecules are compared in Figure 2 with those calculated
from the variation of the number of particles in systems with
liquid−vapor interfaces. The method shows excellent accord
with the results for the large simulation cell, suggesting that it is
a convenient strategy to get rid of boundary effects in the case
of solutes presenting strongly inhomogeneous distribution
profiles. However, while the elimination of the liquid−vapor
interface may be advantageous in some situations, in return this
approach reintroduces the need for chemical potential
screening to compute every data point on the coexistence
curve.
Why Do Coarse-Grained Models Reproduce the

Experimental Relative Vapor Pressure? Figure 4 depicts
the vapor pressures and associated water activity coefficients
calculated without interfaces for LiCl and NaCl solutions
described with the coarse-grained models, compared to those
for an ideal electrolyte, and with the experimental data for the
two salts in water. Not only are relative deviations from ideality
captured by both models but also these coarse-grained
descriptions without electrostatics or other long-range inter-
actions reproduce almost quantitatively the decrease in relative
vapor pressure of water in aqueous solutions of increasing
concentration. The quality of the description for NaCl
deteriorates for high molar fractions (e.g., for xsalt ∼ 0.09 or a
concentration of 6 molal, the error in the activity coefficient is
slightly below 4%), but even so the errors in the relative vapor
pressures fall below those obtained with various atomistic
potentials.11 We were unable to find in the literature previous
results for the vapor pressure of aqueous LiCl based on
molecular simulations. However, for other solutes such as NaCl
or CaCl2, recent Gibbs Ensemble Monte Carlo computations
using atomistic models have shown typical deviations between
5 and 15% with respect to the experimental relative vapor
pressures.11,18 These errors are comparable to or higher than
those yielded by the present coarse-grained models at similar
concentrations.
The excellent agreement between the coarse-grained

predictions and experiments is not only quite remarkable but
also puzzling if one notes that the hydration free energy

(ΔGhyd) of coarse-grained ions is off by an order of magnitude.
This quantity can be estimated through the Widom insertion
method, whereas the hydration enthalpy ΔHhyd can be
straightforwardly estimated from the potential energy in
molecular dynamics simulations. The thermodynamic proper-
ties for the coarse-grained model of lithium chloride are
presented in Table 1 together with the experimental values.
The model reproduces accurately the relative vapor pressure of
water in spite of these serious deviations in the energetics of the
solutions. In what follows, we investigate the thermodynamics
of the solution with focus on the LiCl−water mixture to
elucidate the origin of this accuracy of the coarse-grained
models.
To gain insight on how the relative vapor pressure of the

model is right despite the low hydration free energies of the
coarse-grained ions, we consider the following thermodynamic
cycle, which establishes a connection between the relative vapor
pressure and ΔGhyd:

The ideal free energy of mixing (ΔmixG
id) has a purely

entropic origin, independent of the parametrization of the
model

Figure 3. Mean value of the mechanical pressure as a function of the
relative vapor pressure for a model of aqueous LiCl in the absence of
interfaces. Each data point has been collected at a different chemical
potential. At this composition, the relative pressure corresponding to
equilibrium is close to 0.69.

Figure 4. Relative vapor pressure of water (upper panel) and water
activity coefficient γw (lower panel) as a function of the molar fractions
of salt for solutions of LiCl (red) and NaCl (blue). The triangles show
data computed with the GCS method in the absence of liquid−vapor
interfaces. The experimental vapor pressures are shown with circles
and were taken from refs 65 and 67. The black lines indicate the
relative vapor pressures (upper panel) and the activity coefficients
(lower panel) for an ideal solution.
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Δ = +G x RT x x RT xln 2 lnmix
id

w w salt salt (1)

where the effect of the interactions is accounted for by the
excess free energy Gex, which is related to the relative vapor
pressure of the electrolyte solution through

γ γ

γ

= +

= * +

±

±

G x RT x RT

x RT
P

x P
x RT

ln 2 ln

ln 2 ln

ex w mW salt

w
v

w v
salt

(2)

where γmW is the activity coefficient of the solvent and γ± is the
ionic activity coefficient. These activity coefficients are mutually
linked through the Gibbs−Duhem relation70

γ γ+ =±x xd 2 d 0w w salt (3)

Thus, because the coarse-grained model provides a correct
description of the relative vapor pressure in the range from 0 to
m ≈ 8 mol kg−1, the excess free energy must be also well
captured by the model at least up to that molality.
Given these arguments, we can conclude that the Gibbs

energy of mixing, which is the sum of Gex and ΔmixG
id, is

correctly represented by the coarse-grained model. Now,
according to the above thermodynamic cycle, we have

Δ + Δ = Δ +‐G G G Ghyd vap salt mix ideal ex (4)

which means that in the coarse-grained models the over-
estimation of the hydration free energy must be compensated
by an underestimation of a similar magnitude in the
vaporization free energy of the salt. More precisely, if ΔGhyd
for the LiCl solution is about 185 kcal/mol less exothermic
than the experimental value, then the ΔGvap‑salt of the model
must be close to −150 kcal/mol (see Table 1). This implies
that the vaporization of liquid LiCl has to be spontaneous at
298 K, the stable phase of pure LiCl resulting a gas. We in fact
corroborated this prediction through NPT simulations of pure
LiCl at 1 atm and 298 K, which spontaneously evolved from a
condensed phase to a gas phase within 1 ns of dynamics.
For NaCl, we were not able to obtain a reliable estimate of

ΔGhyd using the Widom method because of the low insertion
rate associated with the chloride ion. Preliminary tests,
however, suggest that it is much less exothermic than the
experimental hydration free energy, in analogy with the case of
LiCl. On the other hand, NPT molecular dynamics simulations
at 298 K and 1 bar starting from the NaCl crystal also end up in
complete vaporization. Thus, this compensation mechanism
between ΔGhyd and ΔGvap‑salt appears to be general.
These models have not been parametrized to represent the

properties of a pure phase but those of an aqueous electrolyte
in the context of mW water, and there is no particular reason
why they should reproduce properties of the ionic crystal phase.
Instead, the model of lithium chloride replicates quantitatively
the experimental phase behavior of aqueous solutions of
LiCl,52,62 including the depression of the melting point of ice.
The model of sodium chloride, on the other hand, was
developed to reproduce the hydration structure of the Na and
Cl ions in mW water and was shown to also produce the

correct association pathway and relative free energies of contact
pairs versus solvent separated pairs as well as the ratio of the
diffusivity of these two ions in water.53 Very recently, it proved
accurate to predict the freezing point of concentrated
solutions.71 The ability of these coarse-grained models to
reproduce the freezing point depression of aqueous solutions
constitutes an independent corroboration of their ability to
reproduce the activity coefficients of water as shown in Figure
4.
The error compensation observed in every case for ΔGhyd

and ΔGvap‑salt may look fortuitous, but it is probably not. Both
models of aqueous electrolytes bear the correct values of
activity coefficients. Equation 4 shows that ΔGhyd and ΔGvap‑salt
must exactly compensate for this to happen. Our findings
suggest that in the absence of electrostatic interactions a
parametrization strategy based on reproducing some funda-
mental features of the solution, such as solvation structure and
effective association between ions, can result in a faithful
representation of the activity coefficients of water and ions in
solution and all the properties that depend on them. This is
possible through compensation of low cohesive energies of
hydration and vaporization of the salt resulting from the use of
short-ranged interactions in lieu of long-range electrostatics.
The short-range interaction potentials of the mW-ion coarse-
grained models should be particularly well suited to reproduce
activity coefficients of concentrated solutions, for which short-
range interactions dominate the nonideal interactions.26,72−74

We note that the Debye lengths of the solutions of the present
study would be comparable to or smaller than the diameter of a
water molecule. This insight provides a constraint for the
development of coarse-grained models of solutions for
applications in which colligative properties such as the
depression of the vapor pressure and melting temperature or
an increase in the boiling point are of interest. In practice, we
expect that these models will grasp those physical features
imminent to the solution determined by the solvent activity,
such as phase transitions, osmotic pressure, and colligative
properties in general. Instead, they cannot be expected to
provide reliable estimates for thermodynamic parameters
involving the nonaqueous salts, hydration or solubility, or to
reproduce the concentration dependence of the activity
coefficient of the ions in very dilute solutions.

■ CONCLUDING REMARKS
We illustrate in this article the application of the GCS approach
to compute the vapor pressure of solutions. At variance with
the case of pure phases, given a chemical potential and a
number of ions in the system, the grand canonical simulations
spontaneously evolve to the equilibrium composition. This
circumstance spares the needinherent in pure phasesof
multiple runs at different chemical potentials to situate the
equilibrium condition, making this scheme natural and
straightforward to explore the liquid−vapor behavior of
aqueous solutions. In terms of computational cost, this renders
the GCS procedure as efficient as the Gibbs Ensemble Monte
Carlo method while this is not necessarily true for pure

Table 1. Thermodynamic Properties of Hydration and Vaporization of LiCl (kcal/mol) at Infinite Dilution and 298 Ka

ΔHhyd −TΔShyd ΔGhyd ΔHvap‑salt −TΔSvap‑salt ΔGvap‑salt

experimental −210.89 11.59 −199.3 45.58 −9.57 37.01
coarse-grained model −22.24 7.19 −15.05

aExperimental data from refs 68 and 69.
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systems, where only the later technique finds the point of
coexistence in a single simulation. Moreover, we have proposed
a modification of the GCS approach on the basis of the mean
mechanical pressure, which lifts the requisite of an interface
exposed to vacuum to compute the point of coexistence. This
approach can be helpful to deal with highly hydrophilic or
hydrophobic solutes presenting inhomogeneous density
profiles in finite slabs, but in exchange it reinstates the
screening of chemical potentials.
Our simulations indicate that the coarse-grained models of

aqueous LiCl and NaCl based on short-range interactions and
developed to work with the mW water model predict the
relative vapor pressure of water in the solutions in very good
agreement with experiments, with an accuracy comparable to or
above that yielded by atomistic potentials. The present results
suggest that these coarse-grained models quantitatively capture
the activity coefficients of water in electrolyte solutions
regardless of the representation of thermodynamic functions
such as vaporization, hydration, or solubility energies and
entropies. This attributean exceptional accuracy in the
activity coefficients coexisting with an unphysical representation
of certain thermodynamic variables involving any constituent in
a state of aggregation different from the one considered in the
parametrizationwill likely become a signature of high-
resolution coarse-grained modeling based on short-range
interactions, as these models are extended to systems of
increasing complexity.
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