
Interacting realization of cosmological singularities with variable vacuum energy

Luis P. Chimento1 and Mart́ın G. Richarte1

1Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires and IFIBA, CONICET,

Ciudad Universitaria, Pabellón I, Buenos Aires 1428 , Argentina
(Dated: June 22, 2015)

We examine an interacting dark matter–variable vacuum energy model for a spatially flat
Friedmann-Roberston-Walker spacetime, focusing on the appearance of cosmological singularities
such as big rip, big brake, big freeze, and big separation along with abrupt events (infinite γ-
singularity and new w-singularity) at late times. We introduce a phenomenological interaction
which has a nonlinear dependence on the total energy density of the dark sector and its derivative,
solve exactly the source equation for the model and find the energy density as function of the
scale factor as well as the time dependence of the approximate scale factor in the neighborhood
of the singularities. We describe the main characteristics of these singularities by exploring
the type of interaction that makes them possible along with behavior of dark components near
them. We apply the geometric Tipler and Królak method for determining the fate of time-
like geodesic curves around the singularities. We also explore the strength of them by analyzing
the leading term in some geometric invariants such as the square Riemann scalar and the Ricci scalar.
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I. INTRODUCTION

In 1998 astrophysical observations coming from distant
supernovae–stellar explosions led to the inevitable con-
clusion that our Universe is actually speeding up rather
than slowing down [1] due to the existence of a repul-
sive agent known as dark energy. Such outstanding find-
ing was promptly confirmed by additional cosmological
observations based on the measurements of cosmic mi-
crowave background anisotropies, baryon acoustic oscil-
lations, and power spectrum of clustered matter [2, 3].
Despite the plethora of observational evidences, in favor
of the present acceleration of the Universe, accumulated
over the last years by studying even more remote su-
pernovae and launching new satellites [2], quite little is
known about the true nature of dark energy. For in-
stance, there is not a fundamental theory which can ac-
count for the origin of dark energy at microscopic level.

In order to shed some light over the dark side of the
Universe one could devote some efforts to explore its ulti-
mate fate [4]. An appealing route to follow is to analyze
some dark energy models which can explain the current
speeding up of the Universe but exhibit the presence of
a cosmic singularity in the asymptotic (remote) future
[4], [5]; so one may link the present state of the Universe
with its drastic final state. A fundamental task to be
addressed by these alternative scenarios is the classifica-
tion of singularities that could emerge at a finite time or
abrupt events [4], [5], [6], [7], [8], [9], [10], [11], [12], [13].
Several useful ways to characterize such final doomsdays
are based on geometric methods which examine the ex-
istence of causal geodesics that cannot be extended to
arbitrary values of their proper time (geodesic incom-
pleteness) [14] or the possibility to show that geodesic

curves can be extended beyond cosmic singularity [15],
[16]. Another manner consists in taking into account
the behavior of curvature invariants near the singularity
so the strength of singularities can be determined using
the necessary and sufficient conditions obtained by Tipler
[17] and Królak [18]. These conditions are considerably
useful provided help to classify singularities as strong and
weak types, giving some insights on the magnitude of the
tidal forces experienced by a co-moving observer toward
the singularity. In fact, the Tipler definition requires that
any object has its volume crushed to zero as the singu-
larity is approached [17] whereas the Królak definition
is weaker than the Tipler version and is related with in-
quiries on the cosmic censorship conjecture [19].

A serious approach for understanding the nature of
cosmological singularities requires to take into account
the behavior of dynamical variables which enter into the
field equations. Therefore the blow up of the energy den-
sity and the divergent behavior of the pressure seem to
be of interest along with the behavior of geometric quan-
tities such as the scale factor, the Hubble function and its
derivatives. In this way, one must focus on certain phys-
ical properties which make these kinds of singularities
fairly distinctive among them and how such traits can
determine the ultimate fate of the universe [5], [6], [7],
[8], [9], [10], [11], [12], [13]. At this point, it would seem
crucial to explore a viable cosmological scenario where
the aforesaid singularities can appear naturally in order
to explore its physical outcome. To do that, we are go-
ing to present some interacting dark energy models [20],
[21] with the presence of singularities (or singular event)
and abrupt events. A natural question that could arise
is what kind of phenomenological interactions do imply
the existence of a future singularity or abrupt event. We
must stress that our approach for studying cosmic sin-
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gularities is considerably different from previous works,
thus, we focus in an interacting dark energy model with a
nonlinear interaction term and then analyze the ultimate
fate of the universe. As a consequence of this method, we
will firstly study the existence of singularity along with
its traits without imposing any particular type of scale
factor. However, we will obtain the approximate scale
factor or the exact one, in the cases where it is possi-
ble, to illustrate the model. Since we do not postulate
or give the form of scale factor from the very beginning,
it is clear that only some singularities will emerge in our
model. In this way, we will construct a posteriori a scale
factor associated with a cosmic singularity for a given
interaction. Such expression will be useful for studying
then the behavior of the Hubble function, its derivatives
in addition to the behavior of the energy density and
pressure in terms of the cosmic time.

Our goal is then to consider an interacting dark
matter–variable vacuum energy (VVE) framework and
explore the new details coming from the appearance of
cosmic singularities in the remote future (distant past) or
abrupt/singular events. Taking into account that these
viable models exhibit a current accelerating phase to-
gether with a future doomsday, we are going to describe
the physical traits associated with them. Further, we an-
alyze several kinds of singularities, make some comments
on the type of interaction supporting them, in particular,
we focus on the behavior of both dark component near
the singularity. Finally, we examine these singularities
with the help of the Tipler and Królak criteria.

II. INTERACTION FRAMEWORK

To study the interacting dark sector model we consider
the spatially flat Friedmann-Roberston-Walker (FRW)
metric ds2 = −dt2 + a2(t)dxidxi, where a(t) is the scale
factor and dxidxi is the line element corresponding to hy-
persurface of constant time. The universe is filled with
two perfect fluids, one accommodates as a matter com-
ponent while the the other represents a VVE substra-
tum. Both fluids are described by linear equations of
state, having energy densities ρm, ρx and pressures pm,
px, respectively. The total energy density ρ and the con-
servation equation ρ̇+ 3H(ρ+ p) = 0 for this interacting
two-fluid model can be written as

ρ = ρm + ρx, (1)

ρ′ = −γmρm − γxρx, (2)

where the dot stands for derivative with respect to the
cosmic time ˙ ≡ d/dt being H = ȧ/a, the prime is
the derivative with respect to scale factor ′ ≡ d/dη =
d/3Hdt = d/d ln (a/a0)3 and a0 is some value of ref-
erence for the scale factor. We have assumed that
both interacting components admit an equations of state
pi = (γi − 1)ρi with i = {m,x} such that the constant

barotropic indexes γm and γx satisfy the next condition:
0 < γx < γm. After having solved the algebraic linear
system of equations (1)-(2), we are able to get ρm and ρx
as functions of ρ and its η derivative ρ′:

ρm = − γxρ+ ρ′

γm − γx
, (3)

ρx =
γmρ+ ρ′

γm − γx
. (4)

To complete the model we introduce an exchange of en-
ergy in the dark sector in terms of a factorized interaction
3HQ(ρ, ρ′, η). Concerning this aim, we split the balance
equation (2) as follows:

ρ′m + γmρm = −Q, (5)

ρ′x + γxρx = Q. (6)

From Eqs. (3)-(6), we arrive at a second order differential
equation for the energy density

ρ′′ + (γm + γx)ρ′ + γmγxρ = Q(γm − γx), (7)

that we will call “source equation” [20] henceforth.
The uniqueness of the solutions (3)-(4) corresponding

to the algebraic system equations (1)-(2) allows us to ex-
tract some interesting conclusions of the model. In the
procedure outlined above one can find the energy density
ρ by solving the source equation (7) for a given inter-
action term Q, subsequently, the energy densities of the
matter and VVE components are reconstructed by means
of Eqs. (3)-(4), pointing that this procedure does not rely
on the specific cosmological equations that govern the dy-
namic of an homogeneous isotropic flat universe. Later
on, we will investigate a concrete example for a given in-
teraction term and obtain several general features about
the existence of initial and final singularities in the in-
teracting dark sector model without knowing of the scale
factor.

As a result of this approach, we have been reducing
the interacting framework to an effective one-fluid model
with energy density ρ = ρm + ρx and total pressure
p(ρ, ρ′) = pm + px = −ρ− ρ′. Comparing the later equa-
tion with the effective equation of state of the dark sector
p = (γ − 1)ρ , we obtain its effective conservation equa-
tion

ρ′ + γρ = 0, (8)

where the effective barotropic index reads

γ =
(γmρm + γxρx)

ρ
. (9)

In calculating the scale factor of the homogeneous and
isotropic flat universe, we adopt the Einstein field equa-
tions, so that the dynamic of the effective one-fluid model



3

will be governed by the corresponding Friedmann con-
straint,

3H2 = ρ. (10)

We will investigate a universe which transits from an
initial matter-dominated phase into a final era dominated
by an unknown component that will be identified with
VVE, the former component is associated with an initial
singularity and the latter one with a final singularity or
a possible doomsday of the universe. In our model the
VVE has an equation of state of the form px = −ρx, so
its barotropic index vanishes (γx = 0), and therefore the
source equation (7), the matter energy density (3), and
the VVE density (4) turn to be given by

ρ′′ + γmρ
′ = γmQ, (11)

ρm = − ρ′

γm
, ρx = ρ+

ρ′

γm
. (12)

So far we have been speaking of an exchange of energy
between matter and VVE fluids without specifying its
form. We now propose that the interaction term in the
dark sector can be defined via the equation

Q = − df
dη
. (13)

Here we suppose that the input function f only depends
on ρ, ρ′, and η for simplicity. Replacing this interaction
term Q into the source equation (7), it leads us to a
nonlinear differential equation

ρ′′ + γmρ
′ = −γmf ′. (14)

Taking into account the first integral of Eq. (14), it al-
lows us to write the equation of state of the mixture
p = −ρ − ρ′, the effective barotropic index γ = −ρ′/ρ,
the acceleration of the universe ä along with the matter
and VVE densities (12) as follows

ρ′ = −γm(c+ ρ+ f), (15)

p = (γm − 1)ρ+ γm(c+ f), (16)

γ = γm

[
1 +

c

ρ
+
f

ρ

]
, (17)

ä

a
= −1

6
(3γm − 2)ρ− γm

2
(c+ f), (18)

ρm = c+ ρ+ f, ρx = −(c+ f). (19)

where c is an integration constant. From Eqs. (15)-(19),
we observe that the η derivative of the energy density,

the pressure, the effective barotropic index, the acceler-
ation term, the matter and VVE densities, all of them
depend linearly with the input function f to describe the
whole contribution coming from the energy transfer in
the dark sector (13). An interesting point in regard with
the role played by the interaction can be understood by
analyzing a regime where f gives the largest contribu-
tion, neglecting ρ and c. In such regime, the previous
dynamical quantities can be easily found as follows

ρ′ ≈ −γmf, p ≈ γmf, γ ≈ γmf/ρ,

ä ≈ −γmaf/2, ρm ≈ −ρx ≈ −f. (20)

In order to further motivate our results, let us assume
that function f(t) → f(ts) when t → ts so that in the
limit case f(ts) = ±∞, blowing up at the finite value
of the cosmic time ts. Then, we have that the cos-
mic time derivative of the Hubble variable Ḣ = ρ′/2 ≈
−γmf/2 → ∓∞, the pressure p ≈ γmf → ±∞, the
effective barotropic index γ ≈ γmf/ρ → ±∞, the accel-
eration ä ≈ −γmaf/2 → ∓∞ and the matter and VVE
densities ρm ≈ f → ±∞, ρx ≈ −f → ∓∞, indicating
that all these quantities diverge as t → ts. This promis-
ing approach then opens the possibility of producing an
initial or final singularity at ts within the framework of
interacting dark sector, so it will be useful for examining
the ultimate fate of a universe. In the next section, we
are going to generate Q by selecting the input function
f and examine its physical outcome.

III. INTERACTION FRAMEWORK PRODUCES
INITIAL AND FINAL SINGULARITIES

A. General properties

In this section, we wish to investigate the initial and
final singularities of the universe when the interaction in
the dark sector is generated by the function f , written
as a power-law of the energy density

f = αρ−n, (21)

which yields an exchange of energy associated with the
nonlinear interaction term (13)

Q = nαρ−n−1ρ′, (22)

where α is a coupling constant and n is a non-vanishing
real number. Then the first integral (15) becomes

ρ′ = −γm(c+ ρ+ αρ−n). (23)

To simplify our formulation, we slightly redefine the in-
teraction (22) to get a scenario where the integration con-
stant c vanishes and does not contribute to the model.
We insert the first integral (23) with c = 0 into Eq. (22)
and we obtain the final interaction

Q = −nαγmρ−n−1
(
ρ+ αρ−n

)
, (24)
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which can also be written as

Q = −n
(
ρ′2

γmρ
+ ρ′

)
. (25)

From Eqs. (13), (21) and (25), we obtain the solutions of
the source equation (11) in the case of c = 0. This kind of
interaction is very interesting because the effective equa-
tion of state of the effective one-fluid p = −ρ − ρ′ for
c = 0 turns to be that of a Chaplygin or anti-Chaplygin
gas depending on the sign of the coupling constant α, as
was noticed in Ref.[20]. Summing up, Eqs. (15)-(19) can
be recast as

ρ′ = −γm(ρ+ αρ−n), (26)

p = (γm − 1)ρ+ αγmρ
−n, (27)

γ = γm
[
1 + αρ−n−1

]
, (28)

ä

a
= −1

6
(3γm − 2)ρ− αγm

2
ρ−n, (29)

ρm = ρ+
α

ρn
, ρx = − α

ρn
. (30)

We are in condition to go a step forward for integrating
(26) and obtaining the energy density as a function of the
scale factor

ρ =

[
−α+ b

(a0

a

)3γm(n+1)
]1/(n+1)

, (31)

where a0 and b are both arbitrary integration constants.
A singularity can be achieved if any of the physical quan-
tities, such as the energy density (31), the pressure (27),
the barotropic index (28) or the acceleration (29), van-
ishes or diverges at a finite time ts. One way to meet this
condition is by choosing the integration constant b so that
the square bracket in Eq. (31) vanishes as the scale factor
reaches the finite value as, namely b = α(as/a0)3γm(n+1).
Finally, the energy density (31), its η derivative and the
effective barotropic index are given by

ρ =

{
α

[
−1 +

(as
a

)3γm(n+1)
]}1/(n+1)

, (32)

ρ′ = −αγm
(as
a

)3γm(n+1)

ρ−n, (33)

γ =
γm

1−
(
a
as

)3γm(n+1)
. (34)

To make contact with previous results we will examine
the behavior of several important quantities explicitly.

We start with the case α > 0. We achieve that the energy
density ρ → 0 for a → as with n > −1 provided a ≤ as
or in the complementary scenario where a → ∞ and
n < −1. The energy density blows up (ρ → ∞) under
two different conditions: i- a → as with a ≥ as and
n < −1 or ii- a → 0 and n > −1. Another branch to
study corresponds to a negative coupling constant, α < 0.
In this case, the energy density ρ → 0 as a → as with
a ≥ as and n > −1. On the contrary, the energy density
becomes divergent (ρ → ∞) in the a → as limit if two
conditions simultaneously holds: a ≤ as and n < −1.
In the last case, , we also have that the energy densities
tends to the constant which is indeed an exact solution
ρ→ ρc = (−α)1/(n+1) [ see Eq. (26)]. It can be obtained
in the a → 0 limit for n < −1 or in the case a → ∞ for
n > −1 [see Eq. (31)]. This constant solution gives the
exact de Sitter scale factor,

a
dS

= exp

[
(−α)1/(n+1)

3

]1/2

t. (35)

The η derivative ρ′ = 2Ḣ is negative or positive definite
and therefore the Hubble variable is a decreasing or an
increasing function of the time, respectively. An inter-
estingly fact is that the barotropic index always diverges
(γ → ∞) in the a → as limit for any value of n. The
remaining quantities, namely the pressure, the acceler-
ation, and the dark matter and VVE densities can be
obtained as functions of the scale factor by combining
the equations (27), (29), (30) along with (32).

By considering the second term of the first integral (26)
as the leading contribution [see Eqs. (20), (21))], it is pos-
sible to find the energy density after integrating the ap-
proximate conservation equation (ρ̇ ≈ −

√
3αγmρ

−n+1/2)
to arrive at

ρ ≈

[
−
√

3αγm
2(ν − 1)

∆t

]2(ν−1)

. (36)

Now the approximate pressure (27) is given by

p ≈ αγm

[
−
√

3αγm
2(ν − 1)

∆t

]ν−2

, (37)

while the approximate scale factors is obtained by inte-
grating the Friedmann equation (10) as

a ≈ as

{
1− 2(ν − 1)

3ναγm

[
−
√

3αγm
2(ν − 1)

∆t

]ν}
. (38)

We introduce the main parameter

ν =
2(n+ 1)

2n+ 1
, (39)

which will be useful for describing the different kinds of
singularities in the near future (see Fig. 1). We define
∆t = t − ts with ts being a finite cosmic time. Notice
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FIG. 1: Plot of the main parameter ν in terms of n indicating
the range where the different kinds of singularities or abrupt
events are achieved.

that the parameter ν vanishes for n = −1 or diverges
at n = −1/2, hence, the expansions (36)-(38) are not
well defined in those cases and we are going to deal with
them separately. In fact, we will be able to solve the
whole dynamics of the model and give the exact scale
factor for both values of ν.

Combining the energy density (36), (24), and (26)-
(30), we can rewrite the interaction term, the approx-
imate Hubble variable, its first, its second time deriva-
tives, the acceleration term, the barotropic index, and the
matter and VVE densities, under the assumption that
the αρ−n-term in Eq. (26) becomes dominant:

Q ≈ 2(ν − 2)(ν − 1)

3γm∆t2
, (40)

H ≈ − 1√
3

[
−
√

3αγm
2(ν − 1)

∆t

]ν−1

, (41)

Ḣ ≈ −αγm
2

[
−
√

3αγm
2(ν − 1)

∆t

]ν−2

, (42)

Ḧ ≈
√

3α2γ2
m(ν − 2)

4(ν − 1)

[
−
√

3αγm
2(ν − 1)

∆t

]ν−3

, (43)

ä

a
≈ Ḣ, (44)

γ ≈ αγm[
−
√

3αγm
2(ν−1) ∆t

]ν , (45)

ρm ≈
−2Ḣ

γm
, ρx ≈

2Ḣ

γm
. (46)

We have carried out a detailed calculation of the dynam-
ical quantities (densities, pressures, interaction term, ac-
celeration, etc) that we will employ for addressing the
issue of cosmic singularities. The next step is to classify
the singularities using the behavior of the above quanti-
ties near them.

B. Classification of singularities

After having discussed the main traits of an interact-
ing cosmology with two components in the presence of an
initial or a final singularity, we must classify the different
kinds of singularities that will emerge within this inter-
acting framework. In order to do that, we mainly use the
approximate energy density (36), the pressure (37), the
scale factor (38) and remaining quantities (40)-(46). We
classify the singularities according to the values taken by
the main parameter, ν. Here, we will exclude the non
interacting cases corresponding to ν = 2 and ν = 1.

1 . (1 < ν < 2)-case Big Brake singularity

If we now consider the case of a positive coupling constant
(α > 0) and the time approaching to the finite value ts
from the left t→ ts (thus ∆t < 0) then the scale factor of
the universe (38) reaches a finite value a→ as, the time
derivative of the scale factor vanishes ȧ→ 0 but the sec-
ond and third derivatives both diverge at the singularity
(äs = −∞, a···s = +∞). However, the energy density (36)
along with the Hubble variable (41) are zero near the
singularity, namely ρ(ts) = 0 and H(ts) = 0. The time
derivative of the Hubble variable and their subsequent
ones diverge as well as the acceleration of the universe
ä ≈ asḢ → −∞, see Eq. (42), while the pressure (37)
positively grows without limit (p→ +∞). Consequently,
the interacting dark sector model has a late-time singu-
larity at the finite cosmic time ts for n > 0 and α > 0
characterized by a finite scale factor, a vanishing time
derivative, energy density and Hubble variable as well.
But the acceleration and the pressure both diverge while
the effective fluid fulfills anti-chaplygin gas equation of
state (27). These results show us that this kind of be-
havior corresponds to a big Brake singularity, see [7]. In-
terestingly enough, it turned out the energy transfer from
the VVE to the matter diverges as t → ts (Q → −∞),
ρm → +∞, and ρx → −∞ [see Eq. (40)]. It is important
to stress that the physical set up associated with a big
brake singularity can be described in terms of a tachyonic
scalar field [7]. A weaker extension of the big brake sin-
gularity is obtained when a dust component is included
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in the Friedmann equation provided the Hubble function
does not vanish any longer at the singularity [8].

We end this case with the analysis of a complemen-
tary branch where the scale factor is defined in the re-
gion t > ts and the coupling constant is negative (α < 0).
The former branch which corresponds to α > 0 and t < ts
matches with the latter one at t = ts up to its first time
derivative whereas their higher order derivatives are all
divergent [8]. Near the singularity the effects introduced
by the interaction (40) on the matter and VVE compo-
nents (30) are the same of the α > 0 case, thus, their
limits are coincident.

2 . (2 < ν <∞)-case Big Separation singularity

In the interval of ν ∈ (2,∞) under the assumption of
positive coupling constant (α > 0), we find that the scale
factor (38) reaches a constant value as as t → ts from
the left while the energy density (36) and the pressure
(37) both approach to zero [6], however, the barotropic
index (45) becomes divergent as t → ts. The first time
derivative of the scale factor ȧ→ 0, its second derivative
ä → 0, the Hubble variable H → 0 and its first time
derivative Ḣ → 0. Taking into account that ρ′ = 2Ḣ → 0
as t→ ts and ρ′′ = 2Ḧ/3H, the source equation (11) then
becomes

Ḧ ≈ 3γm
2
H Q. (47)

This equation explicitly shows that the second and subse-
quent time derivatives of the Hubble variable are strongly
dependent on the interaction term. In fact, from Eqs.
(43) and (47), we find that H, Ḣ, and their subsequently
time derivativesH(k) vanish up to order k ≤ [[ν−1]] while
the remaining ones diverge for k ≥ [[ν − 1]] if t → ts,
where [[x]] stands for the integer part of its argument.
From Eqs. (40) and (46), we also have that Q → ∞,
ρm → 0 and ρx → 0 as t → ts. In conclusion, the
interacting dark sector model exhibits a big separation
singularity, sometimes considered as a more softer singu-
larity.

3 . (ν → +∞)-case Exact solution

We will discuss in detail the mysterious case associated
with n → −1/2. In fact, we are going to show that the
field equations can be solved exactly and therefore we can
obtain a complete picture of the interacting model. To
this end, we introduce a new variable s = (a/as)

3γm/2 so
that the Friedmann equation (10) with the energy density
(32) reduces to the linear differential equation

ṡ = ±
√

3 γmα(1− s). (48)

Having solved this equation we obtain four different types
of solutions which need to be examined. Our starting
point is to consider the expanding a1-solution and its
effective barotropic index (γ = −2Ḣ/3H2),

a1 = as

[
1 + e

√
3

2 αγm∆t
] 2

3γm
, (49)

γ1 = −γme−
√

3
2 αγm∆t, (50)

where H1 = ȧ1/a1 > 0 and γ1 < 0. The contracting a3-
solution, obtained from the time reversal symmetry of
the former one, leads to a3 = a1(−t) with H3 = ȧ3/a3 <
0 and γ3 = γ1(−t). We name the another expanding
solution as a4 and is given by

a4 = as

[
1− e−

√
3

2 αγm∆t
] 2

3γm
, (51)

γ4 = γme
√

3
2 αγm∆t. (52)

Here H4 = ȧ4/a4 > 0 and the contracting case is defined
as a2 = a4(−t) with H2 = ȧ2/a2 < 0 and γ2 = γ4(−t).
There we have assumed a positive coupling constant,
α > 0. The branches a1 and a3 are defined in the in-
terval −∞ < t <∞ while for the branches a2 and a4 are
specified in the intervals t ≤ 0 and t ≥ 0, respectively.
We have fixed the integration constants so that the so-
lution a1 → as and a3 → as in the limits t → −∞ and
t→ +∞, respectively. We have fixed the final big crunch
or the initial big bang singularity in a2 or in a4 at t = 0.

The solution a1 (a3) describes a universe which ex-
pands (contracts) from a finite scale factor as, free of an
initial singularity, (from a infinite scale factor) at t = −∞
and a final de Sitter stage (a finite scale factor). However,
the solution a4 (a2) represents a universe which evolves
from the big bang singularity (a finite scale factor as) at
t = 0 (in the limit t = −∞) and increases (decreases)
monotonically until reaches the finite scale factor as (the
big crunch singularity) in the limit t→∞ (at t = 0). The
last two scale factors a4 and a2 behave as a power-law
solution a ≈ as[

√
3αγm |t|/2]2/3γm in the limit |t| → 0

when the universe begins from a big bang singularity or
ends in a big crunch singularity.

The scale factors a3 and a4 (a1 and a2) all of them go to
as as ∆t→∞ (∆t→ −∞) while its first and higher order
time derivatives vanish in those limits. Furthermore, we
find that the Hubble variables can be written in terms of
the barotropic index as

Hi =
α√
3

1(
1− γi

γm

) , (53)

where the index i runs from 1 to 4. Their subsequent

time derivatives H
(k)
i → 0 as a→ as.

The energy density of the mix, its pressure and the
interaction term read

ρi = α2

[
−1 +

(
as
ai

) 3γm
2

]2

, (54)

pi = (γm − 1)ρi + αγmρ
1/2
i , (55)

Qi =
αγm

2

[
α+ ρ

1/2
i

]
. (56)
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At this point, we highlight that the time dependence of
these quantities can be obtained by replacing each one
of the exact scale factors found before [see Eqs. (49)
and (49)]. From (54) and (55), we have that the energy
density ρ(a)→ 0 and the pressure p→ 0 in the limit a→
as. Although the energy density and the pressure vanish
in this limit, however, the effective barotropic index γ =
(ρ+ p)/ρ = γm[1 + αρ−1/2] diverges. Most importantly,
the higher order time derivatives of γ also diverge as a→
as so we name this behavior as “infinite γ-singularity”.

Consequently, the universe presents an infinite γ-
singularity in the distant past or the remote future
(t = ±∞) where the scale factor reaches a finite val-
ues as, but the first and subsequent time derivatives of
the scale factor vanish, further, the Hubble variable along
with their higher order time derivatives also vanish near
as. We remark this “new singularity” differs from the
one reported in [23] provided it could not be reached
at finite time. Nevertheless, this singularity is charac-
terized by a non-vanishing interaction term (56) at as,
Q → α2γm/2, while the matter component ρm → 0 and
the VEE ρx → 0. Even though all physical quantities (p,
ρ, ρm, ρx ) fades away quickly as one approaches to the
singularity, in the far remote future or distant asymp-
totic past, the interaction cannot be turned off neither
the barotropic index.

4 . (−∞ < ν < 0)-case New w-singularity

In addition to the spacetime singularities at finite time
mentioned above there are another kinds of abrupt events
[22] related with the ultimate fate of the universe which
indeed requires some mentioning for sake of complete-
ness. The abrupt events were discovered within the
framework of dark energy model and attracted some at-
tention mostly beacuse are less dangerous than singular-
ity. Concerning this aim, we are going to analyze a new
kind of abrupt event that is related with the so called
w-singularity found in [23] and re-examined in [24].

For these values of the main parameter ν, the scale
factor (38), the energy density (36) and the pressure (37)
have the limits a → as, ρ → 0 and p → 0 as the time
variable t → ∞ while the first and higher order time
derivatives of these three quantities vanish in the remote
future(t → ∞). Due to that the effective barotropic in-
dex (45) and their subsequent time derivative γ(k) di-
verges up to order k ≤ [[−ν]] but vanishes for all the
following ones in the limit t → ∞; as a result the uni-
verse ends in an abrupt γ-singularity in the remote fu-
ture, again, this kind of singular event differs from the
case explored in [23]. The approximate interaction term
(40) vanishes in the abrupt event whereas Eq. (46) shows
us that ρx → 0 and ρm → 0 as a → as. This singular
event differs from the “infinite γ-singularity” because the
interaction vanishes in the latter case while the former
one leads to Q→ α2γm/2.

5 . (ν = 0)-case Big Rip/Crunch Singularity

For this particular value of the main parameter ν, the
constant n = −1 and the interaction term (22) becomes
a linear function of the η-derivative of the energy density,
Q = −αρ′, and therefore the first integral (23) turns to
be

ρ′ + γm(1 + α)ρ = cγm. (57)

We will solve this equation for the energy density and
below show the general exact solution of the Friedmann
equation for any value of the integration constant c. This
includes the corresponding power law scale factor for c =
0:

a = ast
2/3γm(1+α), c = 0, (58)

ρ =
4

3γ2
m(1 + α)2

(as
a

)3γm(1+α)

, c = 0, (59)

and two families of solutions associated with c 6= 0,

a = as

[
1− cosωt

2

]1/3γm(1+α)

, (60)

ρ =
3c2γ2

m

ω2

[
sinωt

1− cosωt

]2

, (61)

where ω2 = 3c γ2
m(1 + α) > 0 and

a = as

[
1 + coshωt

2

]1/3γm(1+α)

, (62)

ρ =
3c2γ2

m

ω2

[
sinhωt

1 + cosωt

]2

, (63)

where ω2 = −3c γ2
m(1 + α) > 0 while the pressure and

the interaction term are

p = cγm + [γm(1 + α)− 1]ρ, (64)

Q = αγm[c+ (1 + α)ρ]. (65)

For ω2 = 3c γ2
m(1 + α) > 0 and α > −1, we have

that the integration constant c > 0 and the solution (60)
represents a universe with a finite time span that begins
with a big bang at t = 0, then passes by a maximum
at tmax = π/ω and ends in a big crunch at tbc = 2π/ω
[6]. However, for α < −1 and c < 0 there is a significant
difference in the behavior of the solution (60) provided
the universe has a finite time span but begins with a
contracting phase at t = 0 associated with an infinite
scale factor, then bounces at tbounce = π/ω and ends
with an infinite scale factor in a big rip singularity at
tbr = 2π/ω [6]. Near the big bang, big crunch and big
rip singularities, the energy density (61), the pressure
(64), interaction term (65) and the matter and the VVE
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densities (46) diverge, namely ρ → ∞, p → −∞, Q →
+∞, ρm → −∞, and ρx → +∞. At the extrema of
the scale factor (60) tmax/bounce = π/ω, we have that
ρ vanishes, both p and Q become constants p = cγm,
Q = αp while ρm = ρx = 0.

For ω2 = −3c γ2
m(1 + α) > 0 and α > −1, we have

that the integration constant c < 0 and the solution (62)
describes a universe with an initial contracting de Sitter
phase in the remote past, then bounces at t = 0 and ends
in an expanding de Sitter stage in the remote future. For
α < −1 and c > 0, the universe evolves from a zero radius
(vanishing scale factor) at the distant past, then passes
by a maximum at t = 0 and ends in the remote future,
again, with a vanishing scale factor. The energy density
(63), pressure (64), the interaction term (65) and the
matter and VVE densities (30) approach to the constants
ρ→ 3c2γ2

m/ω
2, p→ −3c2γ2

m/ω
2 = −ρ, Q→ αγm(1− c),

ρm → −c and ρx → cα/(1 + α) as time t → ±∞. At
t = 0 the scale factor exhibits an extreme where ρ = 0,
p = cγm, Q = αp and ρm = ρx = 0.

6 . (0 < ν < 1)-case Big Freeze

The big freeze singularity was firstly encountered in the
literature by Bouhmadi-López et al. within the context
of a phantom generalized Chaplygin gas [11]. Further,
they proved that this singularity at a finite scale factor
arises in a Randall-Sundrum I brane-world scenario if the
brane is filled with the dual version of the generalized
phantom Chaplygin gas [11]. Besides, the avoidance of
this singularity within the context of quantum cosmology
was explored with the help of the Wheeler-de Witt equa-
tion by mimicking a (phantom) generalized Chaplygin
gas with a scalar field [12].

The scale factor (38) approaches to a finite value a→
as in the limit t→ ts. However, its time derivative ȧ and
their subsequent ones a(k) with k > 1 diverge for t→ ts,
indicating the existence of the big freeze singularity [10].
Concerning the Hubble variable (41), the energy density
(36), the pressure (37), the barotropic index (45) and the
interaction term (40), these and their higher order time
derivatives diverge in the limit t → ts. Then, we have a
divergent behavior of the dark matter and VVE density
as t→ ts.

C. Krolak and Tipler criteria

In what follows, we give a reinterpretation of the above
classification making a description of the singularities
and/or abrupt events from a geometric point of view
based on a method developed by Tipler [17] and Królak
[18]. A spacetime is Tipler strong [17] iff as the proper
time t→ ts, the integral

T (t) =

∫ t

0

dt′
∫ t′

0

|Rabuaub|dt′′ →∞. (66)

In same manner, a spacetime is Królak strong [18] iff as
the proper time t→ ts, the integral

K(t) =

∫ t

0

|Rabuaub|dt→∞, (67)

where the component of Ricci tensor are understood to be
written in a parallel transported frame along the geodesic
curves. Notice that a singularity can be strong by Królak
criteria but weak according to Tipler’s criteria, however,
the reverse situation always holds. Because weak singu-
larities can be extended beyond them, the method de-
veloped by Tipler and Królak are useful tools for deter-
mining the fate of the universe in terms of the fate of
geodesic curves near potential strong singular point.

Let us consider time-like geodesic curves, xi = c
with i spatial index and c a constant [25], associated
with co-moving observer, i.e, we take into account a co-
moving world-line congruence with velocity uα = (∂t)

a =
(1, 0, 0, 0) so that the proper time and the coordinate time
are the same. Moreover, the components of the Ricci
tensor measured by an observer along this congruence
lead to R abu

aub = −3ä(t)/a(t). Using the latter fact
together (38) and (42) is not difficult to see that a big
brake singularity is T-weak and K-weak provided both in-
tegrals (66)-(67) vanish for ν ∈ (1, 2), namely T ∝ ∆τν

and K ∝ ∆τν−1 as ∆τ → 0. Nevertheless, the leading
term in the square Riemann RabcdRabcd ∝ (ä/a)2, given
by ∆τ2(ν−2), diverges as ∆τ → 0 [26]. Also the Ricci
scalar, R ∝ ä/a ∝ ∆τν−2, blows up at the singularity
[26]. A big separation singularity can be considered as
a weaker event provided is not only T-weak and K-weak
but also RabcdRabcd and R both vanish at the singular-
ity. The “new w-singularity” is T/K-weak and avoids
divergences in geometric invariant as RabcdRabcd in the
asymptotic past or remote future, indeed a similar situ-
ation occurs for the infinite γ-singularity. On the other
hand, the behavior of scale factor near a big rip singu-
larity is a(t) ∝ (t− tbr)

−p with p > 0, so we classify it as
a K/T-strong singularity, and all scalar invariants blow
up at tbr. Besides, one could expect that both big bang
and big crunch singularity exhibit a similar behavior re-
garding the K/T criteria or the blow up of RabcdRabcd.
In the case of a big freeze ultimate fate, the leading term
in Krolak strength gives K ∝ ∆τν−1 so it diverges as
t → ts, however, Tipler measure involves a second inte-
gration and yields T ∝ (t − ts)

ν , being totally regular
as t → ts provided ν ∈ (0, 1). Notice that the squared
Riemann and the Ricci scalar both diverge for the big
freeze event, as can be seen from (38) and (42). It is im-
portant to stress that the analysis performed with casual
geodesic which meets a T/K-strong singularity gave the
same kind of finding because involves the integral of com-
ponent Riemann tensor parallel transported, Rabcdubud,
for which the non-vanishing components turned to be the
same (Ratct = −ä/a) also [15]. We end this section by
studying the violation or not of the energy conditions
for the aforesaid singularities [27]. Interestingly enough,
we obtained that all the energy conditions (WEC, NEC,
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SEC) are fulfilled near the singularities except for a few
cases, namely the big rip and the infinite γ singularity
(associated with the expanding solution a1) both violate
SEC [27].

An open question related with the present work is what
kind of fundamental theory can support these singulari-
ties? In this direction, Barrow and Graham have recently
shown that a new ultra-weak generalized sudden singu-
larity can be supported by a scalar field with a simple
power-law potential [28]. We hope to return to this issue
in the near future.

IV. CONCLUSIONS

We have investigated the evolution of an interact-
ing dark sector model in a spatially flat FRW space-
time, solved exactly the source equation when the en-
ergy exchange is produced by a nonlinear interaction
term and found that the equation of state of the effec-
tive dark fluid turned to be that of a Chaplygin or anti-
Chaplygin gas according to the sign of the coupling con-
stant. We highlighted that this interacting dark matter-
VVE model, generated by a nonlinear interaction term,
harbored future-like singularities related with the ulti-
mate fate of the universe and two abrupt events called
infinite γ singularity and new w-singularity.

We have obtained the approximate scale factor in the
vicinity of the singular events and used it to study physi-
cally viable models describing the current along with final

state of the universe, in particular, we have examined the
behavior of the interaction and the dark component en-
ergy densities near the singularities. We have classified
entirely the singularities of the model for any value of
the main parameter ν while for certain value of ν, we
have shown that the two-fluid system is fully integrable,
so the exact form of the scale factor and the remaining
representative quantities of the model were found.

Using the aforesaid scale factor and the geometric
method developed by Tipler and Królak for the case of
time-like geodesic curves, associated with co-moving ob-
server, we have obtained a regular behavior of Tipler
measure in the case of big separation, big brake, big
freeze, new w-singularity, and the infinite γ-singularity,
making them traversable in the sense that a time-like
geodesic curves can be extended beyond such singular
events. However, big freeze singularities are K-strong due
to Królak measure becomes divergent near them. On the
other side, we have shown that brig rip singularity cannot
be smoothed within interacting scenarios and therefore
Tipler and Królak measures diverges as geodesics meet
such final event.
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