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Abstract

Inspired by some recent experiments and numerical works related
to nanoresonators, we perform classical molecular dynamics simula-
tions to investigate the thermal expansion and the ability of the device
to act as a strain sensor assisted by thermally-induced vibrations. The
proposed model consists in a chain of atoms interacting anharmoni-
cally with both ends clamped to thermal reservoirs. We analyze the
thermal expansion and resonant frequency shifts as a function of tem-
perature and the applied strain. For the transversal modes the shift
is approximately linear with strain. We also present analytical results
from canonical calculations in the harmonic approximation showing
that thermal expansion is uniform along the device. This prediction
also works when the system operates in a nonlinear oscillation regime
at moderate and high temperatures.

1 Introduction

Increasing interest in resonant motion of nanosystems is due to its promis-
ing capability to act as sensors. Theoretical and experimental studies en-
abled advances not only in the characterization but also in the production of
nanoscale resonators [1, 2, 3].
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The functionality as sensors is based on their low masses, low force con-
stants, large resonant frequencies and low damping, i.e. high mechanical
quality factors [4, 5, 6, 7, 8, 9]. Nanoscale resonators are typically carbon-
based structures, capable of weighing single bacteria [4], detecting single spins
in magnetic resonance systems [5], and even probing quantum mechanics in
macroscopic systems [2]. In particular, carbon nanotubes and graphene res-
onators [10, 11] are nearly ideal building material due to their perfect atomic
structure with low density and high Youngs modulus.

Another interesting feature of nanoresonators is their strongly nonlinear
behavior [2, 12, 13]. This produces nonlinear vibrational modes, localized
and non-localized modes, enabling an energy transfer between them [14, 15].
These consequences directly affect their thermal properties such as thermal
expansion, intrinsic thermal vibrations and conductivity. In addition to non-
linearities and depending on the dimensionality of the device, the role played
by longitudinal, transversal and flexural modes and the coupling between
them will be critical when studying thermal properties. For example, it
was shown that the graphene’s superior thermal conductivity and the be-
haviour of the coefficient of thermal expansion are mainly due to the interplay
between its three acoustic phonon modes, the fundamental role of flexural
modes on thermal fluctuations and their particular vibration morphology
[16].

On the other hand, these nanomechanical carbon-based devices are usu-
ally suspended and thus subject to tensile stress, which leads to high mechan-
ical stability and high mechanical quality factors. The applied mechanical
stress also affects the vibrational modes frequencies, and consequently their
thermal response. This has led to the development of an elastic strain en-
gineering in order to improve the performance of the transport and sensor
properties of the resonators. This technique is a low-cost way of continu-
ously tuning the phonon and electronic modes and thus the desired material
properties. Just to mention an example, in a recent experimental work it
was proposed a versatile local-self-calibration and nondestructive method to
monitor the applied strains in semiconductor micro or nanostructures, where
local strains can be measured through analyzing the relative position of Ra-
man peaks [17].

Harmonic and anharmonic models [18, 19] have been proposed to the-
oretically study the underlying physical mechanisms involved in the energy
transfer. For example for carbon-nanotubes or nanowires devices, the models
are in general structures built from one dimensional arrays of atoms that can

2



vibrate only longitudinally. However, in order to get a more reliable picture
of the energy transfer phenomena, one should include the longitudinal modes
as well as transversal and flexural ones [20].

We propose a model for nanoresonator which can act as a strain sensor
while it undergoes a thermal expansion. In this work we model a nanowire as
a chain of atoms with a α− β Fermi-Pasta-Ulam interaction potential. The
Fermi-Pasta Ulam (FPU) model and its variants provide an ideal test-bed for
addressing fundamental issues in statistical mechanics such as the validity of
macroscopic laws in low dimensional systems [21, 22], when strong nonlinear-
ities have to be consider. Thermal properties, as thermal conductivity, have
been extensively investigated in one dimensional chains of atoms oscillating
in one direction using a FPU model , e.g. demonstrating a breakdown of the
normal-diffusional Fouriers law dynamics [23]. As we are interested in the
role of different kinds of modes, we generalize the α− β FPU model, to the
case of particles that are allowed to oscillate in any direction enabling also
transversal modes.

2 System model

We consider a system of N particles in a linear arrange, identified by an index
1 ≤ i ≤ N , at positions Ri, which in principle can have different masses
mi. The particles interact to nearest neighbors by an α-β Fermi-Pasta-Ulam
potential that only depends on the relative distance di = |Ri+1 −Ri|

v(di) =
1

2
k(di − l0)2 +

1

3
α(di − l0)3 +

1

4
β(di − l0)4 . (1)

where l0 is the equilibrium distance. The particles on the left (i = 1) and
right (i = N) borders also interact by the same potential with two substrates
that can be thought as a left (i = 0) and right (i = N + 1) fixed particles,
so we are considering a nanowire with fixed boundary conditions. Therefore,
there are (N + 1) interactions or bonds that contribute to the total potential

V ({Ri}) =
N∑
i=0

v(di) , (2)

that depends on the positions Ri. We allow for the particles to move in the
three dimensions (see figure 1). A natural equilibrium position of the parti-
cles is a linear array along the x-axe with lattice constant a = l0. However,
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if the distance between the fixed particles is bigger than (N + 1)l0, there will
be an uniaxial tension along the system that is parametrized by a change in
the lattice constant a > l0, or the strain ε = (a − l0)/l0. We are specially
interested on the effects of tension on the thermal properties of the system
because it is an external parameter that can be easily controlled. The equi-
librium positions of the particles are R0i = (ia, 0, 0). We characterize the
motion of the particles by the displacement with respect to their equilibrium
position ri = Ri − R0i = (xi, yi, zi). Moreover, the left and right particles
i = 1 and N are coupled to two thermal reservoirs respectively. We consider
a Langevin interaction by a viscous term proportional to velocity, and decor-
related random forces acting on the particles in contact with the reservoirs.
The equation of motion for each particle is

mi
d2ri
dt2

= −∂V
∂ri
− γi

dri
dt

+ fi(t) (3)

where γi = γ 6= 0 for i = 1 or N , and zero otherwise. The random forces
have the correlations

〈fi,µ(t)fj,ν(t
′)〉 = 2γ kBTi δi,j δµ,ν δ(t− t′) (4)

where Ti is TL and TR for i = 1 and N , the temperatures of the left and
right reservoirs, respectively, or zero otherwise. The indices (µ, ν) run over
the (x, y, z) directions of motion.

We focus on the thermal expansion of the nanowire, which we can com-
pute from the average distance di, and on the resonances of transversal and
longitudinal displacements of the atoms. The thermal expansion and reso-
nances will strongly depend on temperature and tension.

Figure 1: Schematic of the system. Particles on each extreme are coupled to
Langevin thermal baths.
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2.1 Expansion of the potential

Considering the general case of particles moving in three directions and with
tension, the nonlinear potential can be expanded around the new equilib-
rium positions for small displacements. The distance between two neigboring
atoms is

di =
√

(a+ ∆x)2 + ∆2
⊥ , (5)

where ∆x = xi+1 − xi and ∆2
⊥ = (yi+1 − yi)2 + (zi+1 − zi)2 are their relative

longitudinal and transversal displacements. For both displacements being
much smaller than the lattice constant a, we can expand it up to fourth
order obtaining

di = a+ ∆x +
1

2a
∆2
⊥ −

1

2a2
∆x∆

2
⊥ +

1

8a3
(4∆2

x∆
2
⊥ −∆4

⊥) +O(a−4) . (6)

Inserting this expansion into the potential (1) we obtain

v(di) = v0+F0∆x+
1

2
keff∆2

x+
1

2
k⊥∆2

⊥+
1

3
αeff∆3

x+c3∆x∆
2
⊥+

1

4
β∆4

x+
1

4
β⊥∆4

⊥+c4∆2
x∆

2
⊥ ,

(7)
with

v0 = v(a) =
1

2
k(a− l0)2 +

1

3
α(a− l0)3 +

1

4
β(a− l0)4

F0 = k(a− l0) + α(a− l0)2 + β(a− l0)3

keff = k + 2α(a− l0) + 3β(a− l0)2

αeff = α + 3β(a− l0)

k⊥ =
F0

a

β⊥ =
c3

a

c3 =
1

2
k
l0
a2

+
1

2
α

(
1− l20

a2

)
+

1

4
β

(
4a− 6l0 + 2

l30
a2

)
c4 = −1

2
k
l0
a3

+
1

2
α
l20
a3

+
1

2
β

(
1− l30

a3

)
(8)
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v0 is an energy constant with no effect on the dynamics. F0 is the force in the
longitudinal direction in between two neighboring atoms, i.e. the tension as a
function of the lattice constant a, which indeed is nonlinear. keff is an effective
value of the force constant in the longitudinal direction. Depending on the
values and sign of α it can increase or decrease with strain. αeff replaces the
α constant for the term proportional to the cube of the displacement in the
longitudinal direction. k⊥ represents a force constant, proportional to the
tension, which is the leading term for the transversal direction. In case of no
tension, this term vanishes, and the leading term in the transversal direction
is quartic in the displacement and proportional to β⊥. c3 and c4 are two
constants which couple the longitudinal and transversal coordinates at third
and fourth order in the displacements, respectively. These terms are the
responsible for the mixture and coupling of modes, reducing the transport of
energy along the nanowire.

Summing these terms for every bond, the force terms proportional to ∆x

cancel each other, obtaining up to second order

V ({ri}) = (N+1)v0+
1

2
keff

N∑
i=0

(xi+1−xi)2+
1

2
k⊥

N∑
i=0

[(yi+1−yi)2+(zi+1−zi)2]+. . . .

(9)
These quadratic terms give rise to the usual harmonic normal modes for a
finite chain. In the case of equal masses mi = m the frequencies are

ωx,n = 2

√
keff

m
sin

[
nπ

2(N + 1)

]
ωy,n = 2

√
k⊥
m

sin

[
nπ

2(N + 1)

]
(10)

for n = 1 to N . The frequencies in the z direction are degenerated with
those in y. In the case of no strain, the constant k⊥ goes to zero, therefore,
there are no harmonic modes in the transversal directions. The vibrations
can be described by nonlinear modes whose frequencies are proportional to
the amplitude and interact chaotically.
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3 Canonical calculation

Considering that both thermal baths have the same temperature, the atomic
chain is in thermal equilibrium, allowing a canonical calculation of the aver-
age displacement of the particles and their correlations. We start from the
probability density of some possible state in the phase space:

P({ri}, {pi}) =
1

Z
exp(−βH({ri}, {pi})) , (11)

with β = 1/(kBT ), and the canonical partition function

Z = C
∫

dp1 . . . dpNdr1 . . . drN exp(−βH({ri}, {pi})) . (12)

In the harmonic approximation, the Hamiltonian with potential energy (9)
can be written as

H({ri}, {pi}) =
1

2

N∑
i=1

p2
x,i + p2

y,i + p2
z,i

mi

+
1

2

N∑
i=1

N∑
j=1

[keffxiKijxj+k⊥yiKijyj+k⊥ziKijzj] .

(13)
The matrix K is triadiagonal with Kii = 2,Ki,i+1 = Ki+1,i = −1, and zero
otherwise. It can be easily diagonalized by the eigenvector unitary matrix

Akl =

√
2

N + 1
sin

(
πkl

N + 1

)
, (14)

with eigenvalues Ωl = 2 sin
[

πl
2(N+1)

]
. Changing to the eigenvector variables,

all integrals in (12) are gaussian and can be performed. Finally the partition
function is

Z =
(2πkBT )3N

k
N/2
eff kN⊥

N∏
l=1

m
3/2
l

Ω3
l

. (15)

With this result, and the same change of variables, we can compute the
correlations, obtaining

〈xixj〉 =
kBT

keff

N∑
l=1

AilAjl

Ω2
l

=
kBT

keff

i(N + 1− j)
N + 1

, (16)
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and similarly for

〈yiyj〉 = 〈zizj〉 =
kBT

k⊥

i(N + 1− j)
N + 1

. (17)

In this harmonic approximation of the potential, there are no correlations
between different directions, and we can now compute the average distance
between atoms. From (6), up to second order we have

〈di〉 = a+ 〈xi+1 − xi〉+
1

2a
〈 (yi+1 − yi)2 + (zi+1 − zi)2〉 , (18)

and replacing by the correlations we finally obtain

〈di〉 = a

(
1 +

N

N + 1

kBT

k⊥a2

)
. (19)

The most important feature of this result is that the average distance between
atoms does not depend on the bond index i, i.e. the thermal expansion is
uniform along the nanowire. It also gives a leading term which is linear in
temperature. This formula is for kBT � k⊥a

2.

4 Numerical results

For higher temperatures, the displacements of the atoms are of the same order
of the lattice constant, and the nonlinear terms become important. Also for
the case of no tension, the potential in the transversal direction is nonlinear
for all amplitudes. For these cases it is necessary to integrate the equations of
motion numerically, taking into account the stochastic forces of the thermal
baths. In all simulations we start from the equilibrium configuration, waiting
for the system to attain a stationary regime before starting to perfom different
statistics.

We consider the equilibrium distance l0 between atoms as unit of length,
the mass m of atoms as unit of mass, τ0 =

√
m/k as unit of time, kl20 as unit

of energy, and therefore Θ0 = kl20/kB as unit of temperature. As an example,
for carbon atoms in graphene l0 ≈ 0.14 nm and k ≈ 650 nN/nm typically,
giving Θ0 ≈ 106 K and 1/τ0 ≈ 180 THz for temperature and frequency
units, respectively. Also expanding the Tersoff-Brenner potential around the
equilibrium position up to fouth order, we obtain the dimensionless values
α ≈ −5.5 and β ≈ 16.9.

8



We study the thermal expansion of the system, by computing the tem-
poral average distance between neighboring particles along the system. Al-
though we perfom these calculations for different temperatures, strains, and
strength of the cubic term of the potential, in all cases we find that the mean
distance 〈di〉 does not depend on the index i significantly, beside some statis-
tical errors, as it was shown in equation (19). Thus, the thermal expansion
is uniform and particles near the thermal baths expand in the same way that
particles in the middle of the nanowire.

0 2 4 6 8 10

1.02

1.03

1.04

1.05

1.06

1.07

x10
-4

 

< d >

T

Figure 2: Average distance between neighboring atoms 〈d〉 as a function of
temperature, for an homogeneous chain with N = 50, strain ε = 0.025, and
quartic term in the interatomic potential β = 16.9. Black squares and red
circles are for cubic term α = 0 and α = −5.5, respectively. Full lines are
the canonical predictions given by equation (19), for the same two values of
α.

We analyze the temperature dependence of the thermal expansion in fig-
ure 2, for a fixed positive value of strain. As expected, we observe a general
increasing of 〈d〉 for increasing temperature. For low temperatures, there is
a linear relation as predicted by equation (19), the slope being the coefficient
of thermal expansion. Nevertheless, at moderate and higher temperatures,
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the expansion has a decreasing slope, showing the effect of the nonlinear
terms. We also plot the dependence for two different values of α, the cubic
term in the interatomic potential. A negative value of α implies a repulsive
potential at short distances. Therefore it is not surprising that in this case
we observe the biggest expansion in all temperature regimes, compared with
α = 0. We remark that even if the canonical calculation takes into account
only harmonic terms in the potential, the dependence on α comes through
k⊥ after expanding the interatomic potential for a finite strain.

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 51 . 0 0

1 . 0 1

1 . 0 2

1 . 0 3

  

 

< d > / a

ε

 T = 1 0 - 4

 T = 6 . 1 0 - 4

 T = 1 0 - 3

Figure 3: Average distance between neighboring atoms 〈d〉 as a function of
strain, for an homogeneous chain with N = 50, α = −5.5, β = 16.9 and
different temperatures. Black squares correspond to T = 10−4, red circles to
T = 6.10−4 and blue triangles to T = 10−3

In Fig.3 we plot the thermal expansion as a function of strain, for three
different temperatures. From now on we keep fixed α = −5.5 (repulsive
potential at short distances) and β ≈ 16.9, which accounts for typical val-
ues between carbon atoms. Consistently with the previous figure, thermal
expansion is bigger at higher temperature. But in all three regimes the av-
erage distance 〈d〉 decreases at increasing strain. This is an evidence that
the chain becomes more rigid with tension, which is compatible with the
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increasing value of the transversal effective constant k⊥.
In order to better understand the mechanical and thermal behavior, it is

important to study the vibrational modes as a function of the different pa-
rameters. This would provide useful relations to use the system as a nanores-
onator.

0 . 0 0 0 0 . 0 0 4 0 . 0 0 8 0 . 0 1 20 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 0 0 0 . 0 1 0 . 0 2
0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

A x

 

 

A y

ω

 

 
 

Figure 4: Spectra of transversal and longitudinal (inset) displacements. N =
50, ε = 0.025, T = 6 · 10−4

We perform Fourier transform of the longitudinal and transversal dis-
placements of an atom in the chain, in order to find the main involved fre-
quecies. In figure 4 we observe that most of the power is concentrated in
the lowest transversal mode with ω⊥ ≈ 0.0017 (that would correspond to
approximately 300 GHz for carbon atoms). The longitudinal lowest mode
has a much higher frequency ω ≈ 0.007, but around an order of magnitude
lower in power. It’s also interesting to observe a small peak around ω⊥ in
the longitudinal spectrum. This means that both directions are effectively
coupled by the nonlinear terms of the potential c3 and c4.

In figure 5 we observe an increase of ω⊥ with temperature. If harmonic
normal modes of vibration are considered, their frequencies should not de-

11



0 2 4 6 8 10

1.00

1.25

1.50

1.75

x10
-3

x10
-4

 

 

ω
T

T

 ε=0.025

 ε=0

Figure 5: Frequency of the lowest transversal mode as a function of temper-
ature for N = 50 at two different strains.

pend on available energy, i.e. the temperature. Therefore, the observed
behavior is a consequence of nonlinear modes of vibration, whose frequencies
depend on their amplitude. This effect is more pronounced when ε = 0, as
k⊥ = 0, and the restitutive force in the transversal direction is proportional
to the cube of the displacement.

We plot in figure 6 the frequency ω⊥ as a function of strain, for a fixed
temperature. We observe an approximate linear increasing. On one hand,
this corresponds with the increasing value of k⊥ with strain, that increases
the rigidity and consequently the frequency of normal harmonic modes. On
the other hand, at low strain the transversal modes are highly nonlinear,
in which case their frequencies strongly depend on amplitude. From this
linear behavior it is possible to calibrate the system as a strain sensor from
measurements of the resonant frequency.
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Figure 6: Frequency of the lowest transversal mode as a function of strain,
for N = 50 and T = 6 · 10−4

5 Conclusions

We have characterized thermal expansion and resonant frequencies in a nanowire
at different temperature and strain regimes. We modeled the system as a one
dimensional array, with interatomic potentials that depend on the absolute
distance between atoms. However, the atoms can vibrate in the three direc-
tions, to consider a more general model. In turn, the interatomic potential
besides a harmonic term includes nonlinear cubic and quartic terms (an α-β
Fermi-Pasta-Ulam potential), as a general expansion of any potential.

Expanding the total potential energy around the equilibrium, effective
coupling constants were obtained which depend on the strain and can explain
the interactions between the longitudinal and transversal vibrational modes.
We performed a canonical calculation, obtaining a theoretical expresion for
the thermal expansion, which is uniform along the nanowire and linear with
temperature. There is also a dependence with strain through the effective
transversal harmonic constant.

These theoretical results were compared to molecular dynamics simula-
tions. For low temperatures up to 2 · 10−4 (around 200 K for carbon atoms),
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the canonical calculation accurately describes the thermal expansion. For
higher temperatures the expansion has a decreasing slope, pointing to a more
relevant contribution of the nonlinear terms and a coupling between longi-
tudinal and transversal directions. Nevertheless, it was checked that the
thermal expansion is uniform along the system even at high temperatures
and different strains.

We obtained the main resonant frequency of the system, that correspond
to the lowest transversal vibrational mode, studying its dependence with
temperature and strain. The dependence of the frequency with temperature
shows that this vibrational mode is highly nonlinear. Moreover, we also found
that it is linearly shifted when strain is applied, which allows to use this
type of systems as nanoresonators. A challenging technological implication
is the use of nanowires as sensors of nano-forces by inducing the system
into a thermally nonlinear vibrational regime. Experimentally this can be
achieved by measuring resonant frequencies from shifts observed in Raman
spectroscopy [24].

More theoretical work should be done to better understand the nonlinear
vibrational modes, the coupling between different modes, the localization
phenomenon, and the implications in mechanical and thermal properties.
The present work contributes in this direction and one of the authors (AM)
will give a deeper insight to these aspects in a near future work.

In conclusion, the proposed atomistic model is a suitable approach to un-
derstand the underlying physics of nanosytems when transport properties are
mediated by acoustic phonons. This model can also help to understand other
thermal properties as conductance and thermal rectification phenomena.
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