Contents lists available at ScienceDirect

Molecular Phylogenetics and Evolution

journal homepage: www.elsevier.com/locate/ympev

The Green Clade grows: A phylogenetic analysis of *Aplastodiscus* (Anura; Hylidae) $\stackrel{\pprox}{\sim}$

Bianca V.M. Berneck^a, Célio F.B. Haddad^a, Mariana L. Lyra^a, Carlos A.G. Cruz^b, Julián Faivovich^{c,d,*}

^a Departamento de Zoologia, Instituto de Biociências, UNESP – Universidade Estadual Paulista, Campus de Rio Claro, São Paulo, Brazil

^b Departamento de Vertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista, Rio de Janeiro, Rio de Janeiro, Brazil

^c División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" CONICET, Buenos Aires, Argentina

^d Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina

ARTICLE INFO

Article history: Received 27 August 2015 Revised 24 November 2015 Accepted 28 November 2015 Available online 21 January 2016

Keywords: Tree frogs Hylidae South America Molecular phylogeny Taxonomy

ABSTRACT

Green tree frogs of the genus *Aplastodiscus* occur in the Atlantic Forest and Cerrado biomes of South America. The genus comprises 15 medium-sized species placed in three species groups diagnosed mainly by cloacal morphology. A phylogenetic analysis was conducted to: (1) test the monophyly of these species groups; (2) explore the phylogenetic relationships among putative species; and (3) investigate species boundaries. The dataset included eight mitochondrial and nuclear gene fragments for up to 6642 bp per specimen. The results strongly support the monophyly of *Aplastodiscus* and of the *A. albofrenatus* and *A. perviridis* groups. *Aplastodiscus sibilatus* is the sister taxon of all other species of *Aplastodiscus*, making the *A. albosignatus* Group non-monophyletic as currently defined. At least six unnamed species are recognized for *Aplastodiscus*, increasing the diversity of the genus by 40%. A fourth species group, the *A. albosignatus* Group, and *A. callipygius* is considered a junior synonym of *A. albosignatus*. Characters related to external cloacal morphology reveal an interesting evolutionary pattern of parallelisms and reversions, suggesting an undocumented level of complexity. We analyze, in light of our phylogenetic results, the evolution of reproductive biology and chromosome morphology in *Aplastodiscus*.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The hylid tribe Cophomantini includes *Aplastodiscus* Lutz, 1950; *Bokermannohyla* Faivovich, Haddad, Garcia, Frost, Campbell, and Wheeler, 2005; *Hyloscirtus* Peters, 1882; *Hypsiboas* Wagler, 1830; and *Myersiohyla* Faivovich, Haddad, Garcia, Frost, Campbell, and Wheeler, 2005. The largest genus is *Hypsiboas* with 90 species, followed by *Bokermannohyla* and *Hyloscirtus* with 33 species each, *Aplastodiscus* with 15 species, and *Myersiohyla* with six species forming the sister group to the remainder of the tribe (Faivovich et al., 2005, 2013; Frost, 2015).

Aplastodiscus is distributed mainly in the Atlantic Forest of northeastern, southeastern, and southern Brazil, and adjacent Argentina, with one species reaching gallery forests in the Cerrado biome in central-eastern Brazil (Frost, 2015). All but one species are green, with usually colorful eyes with hues of copper, orange,

E-mail address: julian@macn.gov.ar (J. Faivovich).

pink, red, violet, and white (Cruz and Peixoto, 1985, 1987; Garcia et al., 2001; Orrico et al., 2006). *Aplastodiscus* formerly was included in the genus *Hyla* Laurenti, 1768; because of the coloration of the frogs, they have traditionally been called "the green species" of *Hyla* of the Brazilian Atlantic Forest.

Aplastodiscus was erected as a monotypic genus by A. Lutz (in Lutz, 1950) to include A. perviridis. The genus was considered valid or as a synonym of Hyla by different authors (Garcia et al., 2001; Faivovich et al., 2005, for a review). Several authors (Lutz, 1950; Haddad and Sawaya, 2000; Garcia et al., 2001; Hartmann et al., 2004; Haddad et al., 2005) presented grouping evidence for Aplastodiscus and some green species formerly included in Hyla (*i.e.*, H. albosignata and H. albofrenata complexes of the H. albomarginata Group of Cochran, 1955); this relationship was corroborated by Faivovich et al. (2005) in a comprehensive phylogenetic analysis.

In their review of hylid systematics, <u>Faivovich et al. (2005)</u> included 10 species of the complexes previously included in the former *H. albomarginata* Group in their taxon sampling—*viz.*, the *H. albofrenata* Complex (3 of 6 species included at that time), the *H. albosignata* Complex (4 of the 7 species included at that time),

CrossMark

^{*} Corresponding author at: División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" CONICET, Buenos Aires, Argentina.

and the *H. albomarginata* Complex (3 of the 4 species included at that time). This was the first assessment of the relationships of *Aplastodiscus* and the former *Hyla albofrenata* and *H. albosignata* complexes. Their results showed that the former *Hyla albomarginata* Group was polyphyletic and that the exemplars of the *H. albofrenata* and *H. albosignata* complexes were individually monophyletic, and that *Aplastodiscus* was the sister taxon of the *H. albosignata* Complex.

Faivovich et al. (2005) redefined *Aplastodiscus* to include the former *Hyla albofrenata* and *H. albosignata* complexes, thereby increasing the number of species in the genus from two to fifteen. Furthermore, on the basis of the monophyly of their exemplar species, they recognized each complex as a species group (*A. albofrenatus* and *A. albosignatus* groups), as well as a third group (the *A. perviridis* Group) for the two original species included in *Aplastodiscus*. Based on published information, Faivovich et al. (2005) suggested that the reproductive mode, advertisement call, development of metarcarpal and metatarsal tubercles, and white parietal peritoneum are putative synapomorphies for *Aplastodiscus*. Putative phenotypic synapomorphies for the *A. perviridis* and *A. albosignatus* species groups also were discussed.

Wiens et al. (2005) presented a phylogenetic analysis of Hylidae with a smaller taxon sampling than Faivovich et al. (2005), including only *A. leucopygius* and *A. arildae* (as *H. leucopygia* and *H. albofrenata*, respectively). Their results recovered a large clade composed of the current genera *Aplastodiscus*, *Hypsiboas*, and *Bok-ermannohyla*, to which they applied collectively the generic name *Boana* Gray, 1825. Aside from *Boana* being a *nomem nudum* (Faivovich et al., 2005), for reasons of priority, these combinations never gained acceptance. Subsequent reanalyses of the DNA sequences produced by Faivovich et al. (2005) yielded a topology for *Aplastodiscus* congruent with that obtained by these authors (Wiens et al., 2005, 2006, 2010: supp. data; Pyron and Wiens, 2011; Pyron, 2014: supp. data).

Currently, three species groups are recognized in Aplastodiscus. The A. perviridis Group includes two species. A. perviridis and A. cochranae (Mertens, 1952) that share the lack of webbing between Toes I and II. reduction of webbing among the remaining toes, and a bicolored iris (Garcia et al., 2001). The A. albofrenatus Group includes six species: A. albofrenatus (Lutz, 1924), A. arildae (Cruz and Peixoto, 1987), A. ehrhardti (Müller, 1924), A. eugenioi (Carvalho-e-Silva and Carvalho-e-Silva, 2005), A. musicus (Lutz, 1949), and A. weygoldti (Cruz and Peixoto, 1987). The monophyly of this group is supported only by molecular data (Faivovich et al., 2005). The A. albosignatus Group includes seven species: A. albosignatus (Lutz and Lutz, 1938), A. cavicola (Cruz and Peixoto, 1985), A. callipygius (Cruz and Peixoto, 1985), A. flumineus (Cruz and Peixoto, 1985), A. ibirapitanga (Cruz, Pimenta, and Silvano, 2003), A. leucopygius (Cruz and Peixoto, 1985), and A. sibilatus (Cruz, Pimenta, and Silvano, 2003). Species of this group share elaborated tubercles in the cloacal region (Cruz and Peixoto, 1985; Cruz et al., 2003; Faivovich et al., 2005).

Although the monophyly of the three groups has been tested and corroborated with several species, there are six species that have been unavailable for phylogenetic analyses, and the relationships of these with the groups have been inferred on the basis of putative phenotypic synapomorphies: *Aplastodiscus albofrenatus, A. ehrhardti, A. flumineus, A. musicus, A. ibirapitanga,* and *A. sibilatus.*

The taxonomy of *Aplastodiscus* was last reviewed by Cruz and Peixoto (1985, 1987), who described four species related to the former *Hyla albosignata* and three related to the former *Hyla albofrenata* (one of them was considered a junior synonym of the former *H. ehrhardti*; see Faivovich et al., 2002.) Cruz et al. (2003) and Carvalho-e-Silva and Carvalho-e-Silva (2005) described three more species. Thus, the last taxonomic review of the genus was nearly 30 years ago, and several new populations have been discovered since then.

Our goal in this paper is to present a phylogenetic analysis of *Aplastodiscus* to test the monophyly of each species group, as well as to discuss the phylogenetic relationships among all included terminal taxa. On the basis of our results, we discuss the current taxonomy of the genus, putative synapomorphies, and the evolution of cloacal ornamentation, reproductive biology, and chromosome morphology.

2. Materials and methods

2.1. Taxon sampling

We included 48 samples of 14 of the 15 currently recognized species of *Aplastodiscus*. If available, up to five specimens for each species from different localities were included, as well as topotypes for 10 of the species (complete list in Appendix A). *Aplastodiscus musicus* is the only species for which samples were unavailable. This species is known only from its type locality, where it was last collected in 1995 by A. Carvalho-e-Silva, S. Carvalho-e-Silva, and M.T. Rodrigues; despite multiple visits to the type locality, it has never been found again (Berneck, pers. obs.).

Outgroup terminals were selected on the basis of the current phylogenetic hypothesis of Cophomantini (Faivovich et al., 2005) corroborated by several reanalyses (Wiens et al., 2006, 2010: supp. data; Pyron and Wiens, 2011; Faivovich et al., 2013). Thus, we included one member of each species group of *Hypsiboas* (the sister taxon of *Aplastodiscus*), *Bokermannohyla*, *Hyloscirtus*, and *Myersio-hyla*; the latter was used to root the trees.

2.2. Character sampling and laboratory protocols

Our analyses included three fragments of mitochondrial genes: the almost complete sequence of ribosomal RNA gene 12S, the intervening *tRNA-Val*, and partial sequence of 16S, a fragment including the downstream region of the rRNA 16S, the intervening tRNA-Leu, the complete sequence of the NADH dehydrogenase subunit 1 (ND1), a partial sequence of tRNA-Ile, and a fragment of the gene Cytochrome c oxidase I (COI). The nuclear gene sequences analyzed include portions of rhodopsin exon 1 (RHOD), tyrosinase (TYR), Recombinase-Activation 1 (RAG-1), Tensine 3 (TNS3), and Seventh in Absentia homolog I (SIAH). DNA extraction, amplification, and sequencing methods are those described by Blotto et al. (2013). The COI primers are those of Jungfer et al. (2013), the TNS3 primers are of Smith et al. (2007), and the remaining primers used are those of Faivovich et al. (2013). See Appendix A for voucher data and the GenBank access numbers of sequences employed in this study. We included some sequences produced by Faivovich et al. (2005). For all samples we calculated uncorrected pairwise distance for the 16S fragment delimited by the primers 16sAR (Palumbi et al., 1991) and Wilk2 (Wilkinson et al., 1996) and COI using PAUP (Swofford, 2002).

2.3. Phylogenetic analysis

The phylogenetic analysis under direct optimization was performed with POY5.1.1 (Wheeler et al., 2014), using a 1:1:1 weighting scheme (substitutions and insertion/deletion events). Sequences of 12S, 16S, tRNAVal, and tRNALeu were initially delimited in sections of putative homology (Wheeler et al., 2006), and equal-length sequences of protein-coding genes were used as static alignments to accelerate the searches.

Searches were performed using the command "Search." This command implements a driven search, building Wagner trees with random addition sequences (RAS), Tree Bisection and Reconnection (TBR) branch swapping followed by Ratchet (<u>Nixon, 1999</u>), and Tree Fusing (<u>Goloboff, 1999</u>). The command (Search) stores the shortest trees of each independent run and computes the final fused tree using the pooled trees as a source of topological diversity. The resulting topologies were submitted to a final round of TBR using iterative pass optimization (Wheeler, 2003).

Phylogenetic analyses using POY were executed in parallel using the Museu de Zoologia da Universidade de São Paulo's high-performance computing cluster Ace, which consists of 12 quad-socket AMD Opteron 6376 16-core 2.3-GHz CPU, 16 MB cache, 6.4 GT/s compute nodes (=768 cores total), eight with 128 GB RAM DDR3 1600 MHz (16 \times 8 GB), two with 256 GB (16 \times 16 GB), and two with 512 GB (32 \times 16 GB), and QDR 4X InfiniBand (32 GB/s) networking.

We performed a multiple alignment with MAFFT Version 7 (Katoh and Standley, 2013). For the regions of 12S, tRNA-Val, and the 16S, tRNA-Leu, ND1 and tRNA-Ile, we employed the alignments generated with Q-INS-i strategy (secondary structure of RNA is considered), whereas the alignments for the remaining genes were generated with G-INS-i (global homology considered). For the phylogenetic analysis using parsimony, we used T.N.T Willi Hennig Society Edition (Goloboff et al., 2008). Searches were conducted using the new technology search under Search Level 50, which included sectorial searches, tree drift, and tree fusing (Goloboff, 1999), and requesting the driven search to hit the best length 100 times. Parsimony Jackknife absolute frequencies (Farris et al., 1996) were estimated using new technology, requesting 10 hits with driven searches, each of the 1000 replicates. Trees were edited with FigTree (Rambaut, 2014).

For the Bayesian analysis, models for each partition were chosen with jModelTest v0.1.1 (Posada, 2008). First, second, and third codon positions were treated as separate partitions for each protein-coding gene. The regions of 12S, tRNA-Val, 16S, tRNA-Leu, and *tRNA-Ile* were treated as a single partition for model selection. The Akaike Information Criterion (AIC) was used to select the best fitting model for each gene (Pol, 2004; Posada and Buckley, 2004). Bayesian analyses were performed in MrBayes 3.2 (Ronguist et al., 2012) in the CIPRES web cluster (Miller et al., 2010). Analyses consisted of four runs, each consisting of two replicate Monte-Carlo Markov Chains. Each run used four chains and default settings of priors (Dirichlet for substitution rates and state frequencies, uniform for the gamma shape parameter and proportion of invariable sites, all topologies equally likely a priori, and branch lengths unconstrained: exponential). Two analyses running 60 million generations were performed (with a burn-in fraction of 0.20). Stabilization of resulting parameters was evaluated using Tracer (Rambaut et al., 2014).

3. Results

Direct Optimization in POY produced four most parsimonious trees (MPTs) with 11,054 steps (Fig. 1). The static parsimony analysis in T.N.T also yielded in four MPTs with 11,656 steps; Direct Optimization in POY, static parsimony in T.N.T., and Bayesian analysis resulted in similar topologies (Appendix B). The main differences among alternate topologies for each optimality criterion are the internal relationships among terminals of *A. eugenioi* (a polytomy in Direct Optimization but not in static parsimony), and *A. leucopygius* (a polytomy in static parsimony but not in Direct Optimization). For the three analyses, see Fig. 1 and Appendix B.

The monophyly of *Aplastodiscus* is supported with 100% Parsimony Jackknife Frequency (hereafter PJF) (Fig. 1). Six unnamed species were recognized for *Aplastodiscus* based on topology and genetic *p*-distances (Fig. 1). See Table 1 for species and clades distances and Appendix C for pairwise comparisons among all

samples; the discussion contains further details and evidence for each unnamed species. A clade formed by *A. sibilatus* and *Aplastodiscus* sp. 1 (aff. *sibilatus*) is the sister taxon of all other species of *Aplastodiscus*, making the *A. albosignatus* Group nonmonophyletic as currently recognized. The remaining 13 described species are recovered as a well-supported clade with 95% PJF.

All species of the *A. albofrenatus* Group are monophyletic and recovered with 100% PJF. This clade is the sister taxon of a clade composed of the monophyletic *A. perviridis* Group plus a well-supported clade that includes the remaining six species of the *A. albosignatus* Group, both with 100% PJF support. *Aplastodiscus ehrhardti* is the sister taxon of all other species of the *A. albofrenatus* Group. These are grouped in two clades; one includes *A. arildae* with 100% PJF, and the other has 77% PJF support, and includes *A. weygoldti*, *Aplastodiscus* sp. 2, and *A. albofrenatus* + *A. eugenioi*. The *A. perviridis* Group is monophyletic, with *A. perviridis* being the sister taxon of *A. cochranae* + *Aplastodiscus* sp. 3.

Most species of the *A. albosignatus* Group are monophyletic, with 100% PJF, and with internal relationships having support values of 52–100%. *Aplastodiscus ibirapitanga* and *Aplastodiscus* sp. 4 form the sister taxon of the remaining species in the clade. These are further grouped in two clades. One includes *A. cavicola*, *A. leucopygius*, and *Aplastodiscus* sp. 6. The other clade includes *Aplastodiscus* sp. 5, *A. flumineus*, and a clade including topotypes of *A. albosignatus* and exemplars of *A. calipygius* (including topotypes).

4. Discussion

4.1. Outgroups

As in previous phylogenetic studies, *Hyloscirtus* is the sister taxon of a clade comprising *Hypsiboas*, *Aplastodiscus*, and *Bokermannohyla*, and these genera are monophyletic (Faivovich et al., 2005, 2013; Pyron and Wiens, 2011). The placement of *Hypsiboas* as the sister group of *Aplastodiscus* is corroborated by our analysis. The internal relationships in *Hypsiboas* differ from those recently recovered by Faivovich et al. (2013). However, our study has a much reduced taxon sampling for the study of the relationships within *Hypsiboas*, and thus, does not constitute a valid test of previous phylogenetic hypotheses within this genus.

4.2. Aplastodiscus

Our analysis corroborates the monophyly of the *A. albofrenatus* and *A. perviridis* groups. However, the position of *A. sibilatus* as the sister taxon of all other species of *Aplastodiscus* makes the *A. albosignatus* Group not monophyletic as currently recognized. The relationships recovered among species groups of *Aplastodiscus* (in which the *A. albofrenatus* Group is sister taxon of the *A. albosignatus* + *A. perviridis* groups) corroborate previous results (Faivovich et al., 2005, 2013; Pyron and Wiens, 2011).

Our results indicate the possible existence of at least six unnamed species of *Aplastodiscus*, which represents an increase of 40% of the known diversity of this clade. This inference stems from the analysis of our topological results, vouchers, and current taxonomic knowledge of the group. All these putative new species have been confused in collections, something usual with the admittedly complex taxonomy of *Aplastodiscus*.

4.3. The position of A. sibilatus

In its original description, *Aplastodiscus sibilatus* was associated with *A. albosignatus*, *A. callipygius*, and *A. flumineus* on the basis of the absence of a cloacal flap (<u>Cruz et al., 2003</u>). In the context of our results, this character state is plesiomorphic for *Aplastodiscus*

Fig. 1. One of the four most parsimonious trees recovered by direct optimization. Black dots indicate nodes that collapse in strict consensus; an asterisk at nodes indicates 100% Parsimony Jackknife absolute frequency. Samples followed by a # were employed by <u>Faivovich et al. (2005</u>), in some cases using different names, see <u>Appendix A</u> for details and <u>Appendix B</u> for results of the T.N.T. and Bayesian analyses.

Ranges of uncorrected pairwise sequence distances (*p*-distances) of the 16s fragment (below the diagonal) delimited by primers Ar and Wilk2 and Cytochrome c oxidase subunit 1 (above the diagonal). For individual values of all samples see Appendix C. Values are percentages.

Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1. A. albofrenatus	-	19.3	12.1-12.4	19.7	19.9	20.9-21.2	16.4-16.9	7.5-7.8	20.2	19.9	19-19.5	19.9-20.9	22.1	14.1-14.4	22.1	11.9	20.1	19.8-21.8	20.2	18.9
2. A. albosignatus	10.45	-	19.0-19.6	3.2	11.8	14.6-14.7	19.8-20.1	19-19.36	5.1	13.8	10.9-11.8	13.5-17.1	21	18.1-19.1	21	18.4	16.1	13.7-15.3	11	11.0
3. A. arildae	6.33-6.87	10.83-11.94	-	19.1-20.3	19.5-19.6	17.5-18.8	14.7-15.6	11.7-13.5	19.6-20.8	18.1-19	18-19.2	17.3-20.2	21.0-21.5	12-14.1	21-21.2	11.9-12.9	17.5-17.9	17.4-20	18.8-19	18.4
4. A. callipygius	10.8-11.1	0.3-0.7	10.8-12.3	-	12.6	14.6-14.8	19.7-19.7	19.5-19.6	4	13.1	10.4-11.4	13.2-16.5	20.7	18.3-18.6	20.7	19.1	15.8	13.2-14.9	11.2	9.7
5. A. cavicola	11.3-11.7	4.77-4.78	11.75-13.4	4.5-4.7	-	12.6	18.1-18.5	20.4-20.7	11.9	14.4	8.3-9.8	13.8-15.5	20.8	19.9-20.2	20.8	18.7	13.8	13-15.3	12.4	9.8
6. A. cochranae	11.2-11.4	5.32-5.67	12.72-13.82	5.1-5.6	6.9-7.2	-	19.9-20.4	20.4-20.9	14.8-15.6	16.2-16.5	13.2-15.2	9-10.3	20.3-21.3	17.9-18.9	20.3-21.3	19.5-19.6	9-9.4	14.3-16.3	13.6-13.7	11.8-12.3
7. A. ehrhardti	8.4-11.4	11.93-11.98	8.18-10.49	12.1-12.4	12.1-13.4	12-12.7	-	15.4-16.4	19.6-19.9	19.8	18.9-19.9	18.1-20.4	22.5-22.7	16.9-17.4	22.5-22.7	15.6-15.8	18.4-19	18.7-20.8	19.2-19.5	19.3-19.8
8 A eugenioi	24-33	954-1012	5 70-7 01	99-104	112-114	11 1-11 5	78-95	_	20.6-21.0	19.8-21	18.8-19.9	18 3-20 8	219-223	12 3-14 7	21 9-22 3	11 4-12 7	196-199	191-212	18.8-19.2	18 2-19 5
9 A flumineus	11 71	26	119-128	22-26	54-56	51-55	123-124	10-104	-	13.0 21	10.2-11.4	13.6-16.8	195	18.7-19	195	18.5	15.9	128-144	10.5	10.2 15.5
10 A ibiranitanga	112-117	49-50	12 1-12 7	47-52	5.8-6.5	67-84	12.5 12.1	103-114	44-55	-	12 9-13 6	14 5-17 8	20.1	18 2-18 2	20.1	19	16.1	913-104	14.5	13
11 A lauconvaius	11_112	31_33	11.2.12.1	3_3.3	4-51	58 65	12.5 15.5	10.1 10.6	3730	41.63	12.5 15.0	13_16.4	20.1	17.5 10.2	20.1	186-103	133_145	128-147	11.9_13.5	62.72
12 A narviridic	112_118	62.67	12.1_13.6	5-5.5	6-76	21_3	12-12.7	11/11/118	63-7	71_8	6.64	15-10.4	20.3-20.5	17_10.3	20.3-20.5	18.2 10.0	92_104	12.0-14.7	14.4-16.2	125 138
12. A. perviriuis	10.1 10.9	127 122	12.1-15.0	127 126	122 120	120 121	12.2-13.1	10 11 9	127 126	12/122	126 142	121 14	20.1-21.0	210 224	20.1-21.0	10.2-15.5	3.2-10.4	10.2 21.6	14.4-10.2	20.0
1.5. A. Sibilatus	7 5	12.7-13.2	67.76	115_115	12.2-13.9	12.9-13.1	08 10 2	7.72	12.7-13.0	12.4-13.3	11.0-14.5	13.1-14	-	21.9-23.4	-	20.8	18/100	17.4 19.6	187 102	18/105
15 A cp 1	10.1	12.7	126 120	127 121	12 1 12 2	12.0-12.0	11 4 12 1	10 10 1	12.2	121 129	126 129	12.4-12.4	2 10	-	21.5-25.4	14.5-15.0	18.4-15.0	20.2 21.6	10.7-15.2	20.0
10. A. sp. 1	67.69	12.7	12.0-12.0	12.7-13.1	11 11 2	11 11 2	01.02	10-10.1	12.7	12.1-12.0	10.1 10.0	10.0 11	J.10	CO 71	-	20.8	21.2	20.3 - 21.0	21.0	20.9
10. A. sp. 2	0.7-0.8	10.4-10.5	0.1-7.4	10.4-10.6	72.00	11-11.2	9.1-9.5	0-0.2	11	11.8-12	71 72	10.9-11	11.4-11.0	0.9-7.1	11.4-11.0%	-	19.0	16.9-20.7	17.9	13.9
17. A. sp. 3	12.3	/	13.2-14.1	6.9-7	7.2-8.8	4	12.2-12.7	11.4-12	6.2	7.9-9.5	7.1-7.2	4.6-5.5	14.4	13.5	14.4	11.8	-	15.4-17	15.6	12.9
18. A. sp. 4	11.2	5.1	12.7-13.4	4.6-5.1	6.2-6.3	7.6-8	12./-13.1	11-11.2	5.4	2.6-3.1	5.1-5.7	7.4-8.3	12.9	11.4	12.9	11.2	9	-	12.3-13.5	13-14.2
19. A. sp. 5	10.1-11.2	2.6-3.7	10.6-13	2.6-3.8	4.9-6	4.9-5.8	11.4-12	9.4-10.4	2.8-3.3	3.9-5.2	3.2-4.4	5.3-6	12.2-12.5	11.2-11.5	12.2-12.5	9.9-10.4	6-6.3	4.8-5.4	-	11.6
20. A. sp. 6	11.2-11.5	3.5-3.7	11.4-12.7	3.5-3.8	3.8-4.7	6.3-6.9	12-12.5	10.6-11	3.53-4.23	4.2-6.1	2.3-3.7	6.5-7.4	13.1-13.3	11.5-11.9	13.1-13.3	10.3-11	6.7-7.4	5.1-5.5	3.3-4.7	-

because the taxonomic distribution of the cloacal flap is restricted to some species of the *A. albosignatus* Group (discussion below); thus, there is no conflict with our finding that *A. sibilatus* is the sister taxon of all other species of *Aplastodiscus*.

Aplastodiscus sibilatus is known from Atlantic Forest patches in southern and central Bahia, and in southwestern Alagoas (Cruz et al., 2003; Lima et al., 2006). Two samples of this clade were included, one from southern Bahia and the other from Alagoas (Appendix A). These two samples have a p-distance of 3.18% for 16S (Table 1 and Appendix C). A parallel morphological study by Cruz et al. (in prep.) concludes that the voucher from Alagoas belongs to an unnamed species, morphologically distinct from *A. sibilatus*. The *p*-distances are congruent with the specific identity of the population from Alagoas, here referred to as *Aplastodiscus* sp. 1 (Fig. 1).

The topology of *A. sibilatus* and the unnamed species sequence of the recognition of a fourth group of species in *Aplastodisus*, the *A. sibilatus* Group. Some character states, in contrast with other species of *Aplastodiscus* and the outgroups, uniquely characterize *A. sibilatus* and *Aplastodiscus* sp. 1 and are considered putative phenotypic synapomorphies of the *A. sibilatus* Group—*viz.*, subcloacal dermal fold (<u>Cruz et al., 2003</u>; Appendix D) and white gastrointestinal peritoneum (Berneck, pers. obs.). According to Mercês and Juncá (2010), tadpoles of *A. sibilatus* differ from other tadpoles described for *Aplastodiscus*; however, further studies on Cophomantini are needed to corroborate any putative synapomorphies for the *A. sibilatus* Group or other clades of *Aplastodiscus*.

4.4. The Aplastodiscus albofrenatus Group and the putative position of A. musicus

The erection of the Hyla albofrenata Complex (now the A. albofrenatus Group) was a consequence of the recognition that the name Aplastodiscus albofrenatus actually was applied to several different species (A. arildae, A. ehrhardti, and A. weygoldti; Cruz and Peixoto, 1987; Faivovich et al., 2002). Faivovich et al. (2005) reported molecular support for the monophyly of this group. Some authors suggested a red-orange iris as a possible synapomorphy of the group (Carvalho-e-Silva and Carvalho-e-Silva, 2005; Orrico et al., 2006). However, we find that iris color varies among individuals of the same population; at the type locality of A. arildae, we recorded two individuals with copper-colored irises, whereas all other individuals had red irises. We have similar observations for A. calipygius (of the A. albosignatus Group), which is known to have a reddish iris; however, we recorded individuals from Campos do Jordão (State of São Paulo) with white irises. A similar situation was reported by Rivera-Correa and Faivovich (2013) for Hyloscirtus *larinopygion*. Whereas there is notable variation in the pattern and coloration of irises within Aplastodiscus, we find it is premature to hypothesize homologies until intraspecific variation and the nature of iris coloration are better known.

The only species of *Aplastodiscus* not available for our study is *A. musicus*, a species that was assigned to the *A. albofrenatus* Group by Cruz and Peixoto (1987) without specific discussion. In her description of *A. musicus*, Lutz (1949) noted some unusual characters, such as an unpigmented nuptial pad in males and a strong peculiar odor of a slimy secretion—characters absent in all species now included in *Aplastodiscus*. A strong odor was reported for *Myersiohyla* by Faivovich et al. (2013), and for *Hyloscirtus* by Rivera-Correa and Faivovich (2013). Lutz (1949) also noted the musical call of *A. musicus*, reminiscent of "an old fashioned glockenspiel," after which the species was named. She described "a green tree-frog closely akin to H. albofrenata and especially to H. albosignata" and "though nearer to H. albosignata, it is less heavy in build, has a shorter and wider snout and lacks the rows of yellow, milium-like, post-anal glands." The contents of the original description and the study of external morphology of six topotypes of *Aplastodiscus musicus* (Appendix E) suggest the association of *A. musicus* with the *A. albosignatus* Group rather than the *A. albofrenatus* Group.

Our results indicate the existence of one new species (*Aplastodiscus* sp. 2) of the *A. albofrenatus* Group. This species is the sister taxon of *A. albofrenatus* + *A. eugenioi*, and was confused with *A. eugenioi* by previous authors (<u>Salles et al., 2012</u>). Although this species is morphologically difficult to diagnose from *A. albofrenatus* and *A. eugenioi*, its specific distinctiveness is supported by a unique advertisement call (Berneck, pers. obs.). Uncorrected *p*-distances of 16S between *A. albofrenatus* and *A. eugenioi* are 2.4–3.3%. The latter has been distinguished from *A. albofrenatus* by a smaller snoutvent length, larger calcar tubercle, femur and tibia size, iris color, morphology and coloration of the tadpole (Carvalho-e-Silva and Carvalho-e-Silva, 2005), and was considered *A. aff. ehrhardti* by <u>Hartmann et al. (2004</u>). Our data suggest that the diagnostic characters of *A. albofrenatus* and *A. eugenioi* require further study.

Only four species of this group were included in previous analyses. The voucher specimen identified as *A. weygoldti* by Faivovich et al. (2005) and subsequent analyses) has been re-identified as *A. arildae* in our analysis. The specimen is from Domingos Martins (State of Espírito Santo). Apparently, both species occur at this locality (Silva-Soares et al., 2011; <u>Silva et al., 2012</u>). <u>Orrico et al.</u> (2006) described the call of *A. weygoldti* from Domingos Martins and compared it with topotypic *A. arildae*, finding them to differ significantly in duration (details in <u>Orrico et al., 2006</u>).

Wiens et al. (2005) included sequences of 12S and 16S/tRNA-Leu/ND1 fragment of a voucher specimen identified as Aplastodiscus albofrenatus (USNM 208734), collected in 1975 by W.R. Heyer in Boraceia (Salesópolis, São Paulo). So far, only A. arildae is known from that locality (Cruz and Peixoto, 1987; Berneck, unpubl.). Without further comments, Wiens et al. (2006) replaced the 12S fragment with the sequence DQ380346, produced from a voucher identified as A. albofrenatus (USNM 303022) from the same locality. The latter sequence is identical to our sequences of A. arildae from Boraceia. The position of the terminal USNM 208734 in the analysis of Pyron and Wiens (2011), as the sister taxon of the remaining exemplar species is unusual. Our study of the voucher specimen USNM 208734 indicates that it actually is A. arildae. A study of the available 12S sequences shows striking differences even in conserved regions, when compared with the sequences of other specimens of A. arildae and also all other species of the genus. This pattern might indicate problems with sequence quality (Lyra, pers. obs.), but the unavailability of the chromatograms hinders the confirmation of this hypothesis. We did not include the sequences from Wiens et al. (2005, 2006) because they are nearly identical to the samples we have from the same locality (12S, Boraceia); moreover, apparently there are sequencing-quality issues.

The A. albofrenatus Group is distributed in the Atlantic Forest of Brazil from Bahia (15°25′S; 39°34′W) to Santa Catarina (27°46′S; 49°45′W). The distributions of most members of this group are associated with coastal mountain systems (*e.g.*, Serra do Mar, Serra Bonita), with the notable exception of *A. arildae*, the distribution of which extends westward toward the Serra da Mantiqueira Range and central regions of Minas Gerais (19°56′S; 43°54′W). Putative phenotypic synapomorphies for the *A. albofrenatus* Group are discussed below in "Evolution of external morphology of the cloacal region."

4.5. The Aplastodiscus perviridis Group

Based on observations by Garcia et al. (2001), Faivovich et al. (2005) suggested the following putative synapomorphies for the *A. perviridis* Group—*viz.*, the bicolored iris (the superior third white silver and inferior two thirds reddish copper); absence of an

interdigital membrane between Toes I and II (with instances of homoplasy as identified by Faivovich et al. (2005)); and reduction of webbing between the other toes. In addition, we consider the following features to be putative synapomorphies—the absence of white parietal peritoneum (present in all other species of *Aplastodiscus*) and absence of any cloacal ornamentation as described for the *A. albosignatus, A. albofrenatus*, and *A. sibilatus* groups. (In *A. cochranae*, the cloaca is not glandular; only a pigmentary white line is present).

The A. perviridis Group includes the nominal species, Aplastodiscus sp. 3 a species identified as A. perviridis in previous studies (e.g., Bastos et al., 2003; Valdujo et al., 2012), and its sister species, A. cochranae. The specific status of Aplastodiscus sp. 3 is supported by a smaller snout-vent length and longer advertisement call than those of A. perviridis. The uncorrected p-distances in 16S of Aplastodiscus sp. 3 are 4.6–5.5% with A. perviridis and 4.8% with A. cochranae (Table 1). The A. perviridis Group is distributed from the states of Minas Gerais and São Paulo, southward to northeastern Argentina and Rio Grande do Sul, and westward to reach the gallery forests in the Cerrado of central-eastern Brazil.

4.6. The Aplastodiscus albosignatus Group

Our results indicate that the *A. albosignatus* Group comprises seven described species (given the exclusion of *A. sibilatus* as discussed above and the inclusion of *A. musicus*), as well as three unnamed species—*viz.*, *Aplastodiscus* sp. 4, *Aplastodiscus* sp. 5, and *Aplastodiscus* sp. 6.

Cruz and Peixoto (1985) distinguished some species of this group by the presence of a white dermal ridge above the cloacal opening ("flap"). Faivovich et al. (2005) suggested that the combination of elaborate tubercles and ornamentation around the cloacal region is a putative morphological synapomorphy of this group. All characters related to the pericloacal region are discussed below in "Evolution of external morphology of the cloacal region." The presence of a white submandibular dermal fold is also a putative morphological synapomorphy of this group, because it is absent in all species of *Aplastodiscus* from the other three groups and outgroups studied so far.

Abrunhosa et al. (2005) studied nine call parameters of five species of the *Aplastodisus albosignatus* Group and *A. sibilatus* (then in the *A. albosignatus* Group). These authors proposed a phenetic grouping of species based on their observation that the most important parameter is the dominant frequency, which can be found in different harmonics. However, Zina and Haddad (2006b) reported that the dominant frequency varies, depending on social context for *A. leucopygius* and *A. arildae*; thus, it probably does not adequately characterize calls of *Aplastodiscus*.

The topology of the clade including exemplars of Aplastodiscus albosignatus and A. callipygius indicates that topotypes of the latter are nested within topotypes of the former. The 16S distances among exemplars of this clade vary from 0.35% to 0.70% (Appendix C). Aplastodiscus callipygius and A. albosignatus also are morphologically similar. Both have a supratympanic fold, calcar tubercle, and cloacal ornamentation. These species were diagnosed originally by snout shape (rounded in A. albosignatus and pointed in A. callipygius), size of vocal sac (medium in A. albosignatus and large in A. callipygius), and size of calcar tubercle (small in A. albosignatus and large in A. callipygius). However, these differences are not consistent among the many specimens available for study after the description of A. callipygius. Abrunhosa et al. (2005) described the calls of A. albosignatus and A. callipygius as differing somewhat from each other; however, the population on which the call descriptions were based for A. albosignatus is, in fact, Aplastodiscus sp. 5 (Ribeirão Branco, São Paulo, Brazil). Thus, we consider Aplastodiscus callipygius (Cruz and Peixoto, 1985) a junior synonym of *A. albosignatus* (Lutz and Lutz, 1938) based on the position of the topotypes of *A. albosignatus*, nested among the samples of *A. callipygius*, their morphological resemblance (Appendix F), and low genetic distances.

Our results reveal three previously unrecognized species in the A. albosignatus Group. Aplastodiscus sp. 4, the sister species of A. ibirapitanga, differs from that species by having a distinct advertisement call (Berneck, pers. obs.) and smaller size (Pimenta et al., 2014; Cruz et al., 2003). Furthermore, the 16S distances are 2.66-3.16%. Aplastodiscus sp. 5 was previously identified as A. albosignatus (e.g., Cruz and Peixoto, 1985; Abrunhosa et al., 2005), but our best hypotheses indicate that it is only distantly related to A. albosignatus. Furthermore, it differs in the morphology of the cloacal region. Aplastodiscus sp. 6, a species of the clade of A. leucopygius, was misidentified initially as A. leucopygius or A. cavicola. The vouchers are medium-sized and match both species. Aplastodiscus sp. 6 is diagnosed by morphology of the pericloacal region. and the 16S genetic distances are 3.89-4.78% with A. cavicola and 2.3–3.72% with A. leucopygius. The same clade includes the sample of Faivovich et al. (2005) from Domingos Martins (Brazil, Espírito Santo) identified by these authors as A. cavicola owing to proximity to the type locality. Samples of topotypes of A. cavicola were not available; therefore, we assigned the terminals belonging to this species on the basis of the vouchers and the holotype.

4.7. Evolution of external morphology of the cloacal region

The presence of calcar tubercles and dermal folds on the limbs (as in most species of *Aplastodiscus*) has been considered as mimetic and disruptive morphology, especially in resting position (<u>Duellman and Trueb, 1986</u>). However, little attention has been given to cloacal ornamentation in anurans and its possible role in disruptive morphology. Several groups of arboreal frogs (*e.g.*, Duellman, 1970; <u>Cisneros-Heredia and McDiarmid, 2007</u>; Faivovich, pers. obs.) have pericloacal ornamentation. Because the variation of pericloacal ornamentation in *Aplastodiscus* is taxonomically informative, it is well described for many species. Information available in the literature allowed us to study the evolution of some characters related to the morphology of the pericloacal region of *Aplastodiscus* and to standardize the terms suggested by different authors (Appendix D).

Our study revealed four hypotheses of character evolution for *Aplastodiscus* and outgroups (Fig. 2). Faivovich et al. (2005) suggested that the presence of ornamentation around the cloaca and elaborated tubercles are putative synapomorphies of this group. We redefined this character with the understanding that the tubercles in the subcloacal region are independent of the pericloacal ornamentation (optimizations in outgroups, character descriptions and figures in Appendix D). The presence of pericloacal ornamentation is a synapomorphy of the *A. albosignatus* Group (present in all species of this group including *A. musicus*, with one instance of homoplasy in *A. albofrenatus* plus *A. eugenioi*). The occurrence of an elliptical area of pericloacal ornamentation around the cloacal opening is a synapomorphy for the clade comprising *A. albosignatus*, *A. flumineus*, and *A.* sp. 5.

Our study indicates a putative morphological synapomorphy of the *A. albofrenatus* Group, the presence of iridophores in the outer cloacal epithelium (with an instance of homoplasy in *A.* sp. 6). The subcloacal dermal fold is a putative synapomorphy for the *A. sibilatus* Group.

The optimization of the characters from pericloacal morphology shows an interesting pattern of parallelisms and reversions, suggesting a level of complexity undocumented thus far (Appendix D). It is unclear why only *Aplastodiscus* among the Cophomantini has this diversity of external cloacal morphology. The morphology described in the *Hyloscirtus bogotensis* and *H. larinopygion* groups

Fig. 2. Optimizations of the four pericloacal characters studied. The characters are (a) Pericloacal ornamentation (yellow: present, restricted to the supracloacal region, blue: present and elliptical around the cloacal opening; black: absent). (b) Iridophores in the outer cloacal epithelium (blue: present; black: absent). (c) Concentration of heterogeneous granules below the cloacal opening (blue: present; black: absent). (d) Subcloacal dermal fold (blue: present; black: absent). See Appendix D for figures of characters and more details. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

possibly differs histologically and anatomically (Faivovich pers. obs.). Members of the *A. perviridis* Group have the same arboreal habits as their congeners; however, cloacal and tarsal ornamentation are absent in all three species, which brings more complexity to the evolution of characters of the cloacal region.

4.8. Reproductive biology

The reproductive biology of Aplastodiscus was first reported in detail for A. leucopygius (Haddad and Sawaya, 2000), although there were earlier anecdotal observations (e.g., Lutz and Lutz, 1938; Cochran, 1955; Cruz and Peixoto, 1985, 1987). In this species, the male excavates a burrow with an inconspicuous entrance in the mud near, or in, the stream edge. The male then finds a spot to call for females, usually perched on vegetation distant from the ground. When a female approaches a calling male, both exchange a complex sequence of tactile stimuli that includes contact of the hind limbs and snout with hands, snout with snout, and chin on head (Haddad and Sawaya, 2000; Hartmann et al., 2004; Haddad et al., 2005; Carvalho et al., 2006; Zina and Haddad, 2006a,b, 2007), where sexually dimorphic skin glands have recently been described in males (Brunetti et al., 2015). The transit from the calling and meeting point to the burrow can last from 40 min to 9 h (Hartmann et al., 2004; Zina and Haddad, 2007); during this period, the male emits a courtship call (similar to the advertisement call but less intense) while the female follows him to the burrow. Still, after inspection, the female may reject the burrow and leave (Hartmann et al., 2004; Zina and Haddad, 2007; Carvalho et al., 2006). Clutches of Aplastodiscus have about 230 unpigmented eggs, which are deposited in a floating layer inside the burrow where they spend the first stages of development (Haddad et al., 2005). After hatching, the exotrophic tadpoles complete metamorphosis in lotic water (Haddad and Prado, 2005).

Haddad et al. (2005) described the reproductive biology of *Aplastodiscus perviridis*. For the *A. albofrenatus* Group, data are available for *A. arildae* (Zina and Haddad, 2006a,b, 2007; <u>Carvalho et al., 2006</u>) and *A. eugenioi* (Hartmann et al., 2004). The descriptions are quite similar to that of *A. leucopygius*. In the *A. albosignatus* Group, data on reproductive biology have been reported for *A. albosignatus* (as *A. callipygius*; Gomes and Peixoto, 1997), *A. leucopygius* (Haddad and Sawaya, 2000; Zina and Haddad, 2006a,b,

2007), and A. cavicola (Cruz and Peixoto, 1985). Aplastodiscus cavicola commonly calls from inside the burrow (Cruz and Peixoto, 1985). Lutz and Lutz (1938) and Cochran (1955) reported the same behavior for a species identified as H. albosignata: it is likely that the species is the one called A. leucopygius today. Gomes and Peixoto (1997) and Carvalho et al. (2006) reported male A. albosignatus (as A. callipygius) and A. arildae, respectively, calling from rock crevices. Calling sites are intra- and interspecifically variable (Cruz et al., 2003); on one occasion we found on the same night and along the same stream, a male of A. ibirapitanga calling from inside a burrow, whereas others called from shrubs. Males probably call from inside the nest while excavating it and, after the construction is finished, climb the vegetation then used as a calling site (Haddad, pers. obs.). The reproductive biology of A. sibilatus is unknown. Cruz et al. (2003) reported that male A. sibilatus call from leaf litter, shrubs, and trees, along streams, always above the water level.

Despite occasional observations of males of other species of the *A. albosignatus* Group calling from inside burrows, *A. cavicola* is the only species in which this behavior is common (Cruz and Peixoto, 1985; Cruz et al., 2003; Berneck, pers. obs.). It is unknown if the courtship behavior described for other species of *Aplastodiscus* occurs in this species as well, or if the behavior is modified with respect to the females encountering males directly in the burrow, without the pair moving from an outside meeting point to the nest.

Hylid frogs usually do not call from burrows. Wells (2007) noted that calling from inside burrows, subterranean nests, and rock crevices can interfere with sound transmission, but in some species, the burrow facilitates resonance. In Aplastodiscus, only males of the A. albosignatus Group call from burrows, and these species have the lowest frequency of advertisement calls of all members of the genus (calls descriptions in Haddad and Sawaya, 2000; Garcia et al., 2001; Hartmann et al., 2004; Abrunhosa et al., 2005; Conte et al., 2005; Haddad et al., 2005;Orrico et al., 2006; Zina and Haddad, 2006b). Lower frequency advertisement calls usually are associated with sound propagation over long distances, and the call of A. cavicola has the lowest frequency of all species in the A. albosignatus group (Abrunhosa et al., 2005). The taxonomic distribution of calling from burrows may represent a synapomorphy for one of the internal clades of the A. albosignatus Group.

4.9. Chromosome evolution in Aplastodiscus

With few exceptions, the diploid number in the subfamily Hylinae is 24 chromosomes (Catroli and Kasahara, 2009; Catroli et al., 2011). So far, among hylids only *Aplastodiscus* has reductions in the diploid chromosome number involving the small-sized pairs (Bogart, 1973; Carvalho et al., 2009a,b; Gruber et al., 2012). Members of the *A. perviridis* Group (*A. cochranae* and *A. perviridis*) have a 2n = 24 complement, whereas those of the *A. albofrenatus* group have a 2n = 22 complement (known in *A. albofrenatus*, *A. arildae*, *A. ehrhardti*, and *A. eugenioi*), and those of the *A. albosignatus* Group have a 2n = 20 or 2n = 18 complement (*A. albosignatus* with 2n = 20; *A. leucopygius* with 2n = 18; Carvalho et al., 2009a,b; Gruber et al., 2012). The karyotype of *A. sibilatus* is unknown.

On the basis of the plesiomorphic 2n = 24 complement inferred for Hylini (Faivovich et al., 2005), Gruber et al. (2012) hypothesized homeologies for several chromosomes in *Aplastodiscus*, and suggested a plesiomorphic condition of 2n = 24 for the genus. These authors also suggested two independent events of fusion—one giving rise to large-sized pairs for species with karyotypes of 2n = 20and 2n = 18 (*A. albosignatus* Group) from small chromosomes (pairs 7–10), and another involving fusion of the small Pair 12 chromosomes and the large Pair 3 chromosomes in species of 2n = 22 (*A. albofrenatus* Group.)

Although our results support the occurrence of independent reductions in chromosome complements in the *Aplastodiscus albofrenatus* and *A. albosignatus* groups, our increased taxon sampling includes many species with unknown karyotypes; thus, there are several ambiguities regarding the nodes at which these chromosome reductions actually occurred in the *A. albosignatus* Group (Fig. 3). It is most parsimonious to infer that the fusion of pairs 12 and 3, leading to a 2n = 22 karyotype in four species of the *A. albofrenatus* Group (*A. albofrenatus*, *A. arildae*, *A. ehrhardti*, *A. eugenioi*) also occurred in *A. weygoldti* and *Aplastodiscus* sp. 2. The karyotype of *A. sibilatus* is unknown, but putative fusions of pairs 3 and 12 occur neither in the *A. perviridis* and *A. albosignatus* groups, nor

Fig. 3. Optimization of chromosome complement showing reductions in *Aplastodiscus*. Note that the synapomorphies are the events of fusion, which causes the reduction in chromosome number. Data are from Bogart (1973), Carvalho et al. (2009a,b), and Gruber et al. (2012). See text for more details.

in any other known clade of Cophomantini (e.g., <u>Catroli and</u> <u>Kasahara, 2009; Catroli et al., 2011</u>). It is more parsimonious to infer a 2n = 24 karyotype for *A. sibilatus* and to consider this fusion a synapomorphy of the *A. albofrenatus* Group. (Note that the synapomorphy is the fusion, with the reduction from 2n = 24 to 2n = 22 being a consequence of the fusion.)

Transformations in species of the Aplastodiscus albosignatus Group leading to the reductions to 2n = 20 and 2n = 18 are ambiguous, because karyotypes are known for only three of the nine species included in the group. In the context of our hypothesis, it is most parsimonious to interpret the rearrangement leading to the reduction to 2n = 20 in *A. albosignatus* to be a synapomorphy at least at the level of the common ancestor of A. albosignatus, A. cavicola, A. flumineus, A. leucopygius, Aplastodiscus sp. 5, and Aplastodiscus sp. 6. Thus far, the additional rearrangement leading to the 2n = 18 complement has been inferred only in *A. leucopygius*: given that the karvotype is unknown in the closely related A. cavicola and Aplastodiscus sp. 6, the node at which these rearrangements occurred is ambiguous. When the karyotype of A. ibirapitanga is determined, it will be possible to ascertain whether the chromosomal reduction events (*i.e.*, 2n = 24 to 2n = 20) are a synapomorphy (or synapomorphies if more than one event can be inferred) of the A. albosignatus Group (Fig. 3).

5. Final remarks

Our phylogenetic analyses yielded a stable phylogenetic hypothesis with high support for most nodes. We highlight four major clades of *Aplastodiscus* as named species groups, each of which contains at least one newly revealed species. Our phylogenetic results revise major hypotheses of morphological, behavioral, and chromosomal evolution in *Aplastodiscus*, and identify the data needed for critical testing of these hypotheses.

Acknowledgments

This work was part of the PhD of BVMB, who is indebted to many colleagues who helped collect samples and conduct field and laboratory work. We thank the following curators and persons who allowed access to the material included in this work: Felipe Leite (UFV), Hussam Zaher (MZUSP), José P. Pombal-Jr. (MNRJ), Miguel T.U. Rodrigues (MTR), Mirco Solé/Iuri Dias (MZUESC), Paulo C.A. Garcia (UFMGT), Renato N. Feio (UFV), and William R. Heyer (USNM). We thank the Centro de Estudos de Insetos Sociais (CEIS), UNESP, Rio Claro, Brazil, for allowing us to use its molecular facilities. We thank A.F. Sabbag, T. Grant, B. Blotto, and M. Pereyra for help with some of the analyses; R. Murta (A. sp. 4), L. Malagoli (A. sp. 5), C. Conte (A. ehrhardti), P. Peloso (A. weygoldti and A. sp. 6), and M. Segalla (all other spp.) kindly provided photos. T. Grant allowed the use of the Museu de Zoologia da Universidade de São Paulo's high performance computing cluster. The Instituto Chico Mendes de Conservação da Biodiversidade provided the license (#25033). For comments and suggestions that improved the manuscript, we thank two anonymous reviewers and A. Larson. BVMB particularly thanks M. Segalla for his support, as well as that of the CFBH and MACN staff from 2008 to 2015, especially V.G.D. Orrico and N. Pupin; H.R. da Silva; M. Martins (Labvert, USP); T. Grant; R. Heyer and the Smithsonian Institution for the STV award (2011); and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for Grants #2008/55235-4 and #2013/18807-8. CFBH thanks FAPESP for Grants #2008/50928-1 and #2013/50741-7 and CNPq for the financial support of a research fellowship. MLL thanks FAPESP for Grant #2010/50124-0 and CAPES for postdoctoral fellowships. JF is grateful to ANPCyT PICTs 2011-1895, 2013-404, CONICET PIP 1112008010 2422, and FAPESP

for Grants #2005/56756-0, #2006/52088-5, #2012/10000-5, #2013/50741-7, #2013/20423-3.

Appendices A–F. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ympev.2015.11. 014.

References

- Abrunhosa, P.A., Pimenta, B.V.S., Cruz, C.A., Haddad, C.F.B., 2005. Advertisement calls of species of the *Hyla albosignata* group (Amphibia, Anura, Hylidae) Arq. <u>Mus. Nac. Rio de Janeiro 63 (2), 275–282</u>.
- Bastos, R.P., Motta, J.A.O., Lima, L.P., Guimarães, L.D.A., 2003. Anfibios da Floresta Nacional de Silvânia. Estado de Goiás, Goiânia, Brazil.
- Blotto, B.L., Nunez, J.J., Basso, N.G., Ubeda, C.A., Wheeler, W.C., Faivovich, J., 2013.
 Phylogenetic relationships of a Patagonian frog radiation, the Alsodes+ Eupsophus clade (Anura: Alsodidae), with comments on the supposed paraphyly of Eupsophus. Cladistics 29 (2), 113–131.
 Bogart, J.P., 1973. Evolution of anuran karyotypes. In: Vial, J.L. (Ed.), Evolutionary
- Bogart, J.P., 1973. Evolution of anuran karyotypes. In: Vial, J.L. (Ed.), Evolutionary Biology of Anurans. University of Missouri Press, Columbia, pp. 337–349.
- Brunetti, Ä.E., Hermida, G.N., Luna, M.C., Barsotti, A.M.G., Jared, C., Antoniazzi, M.M., Rivera- Correa, M., Berneck, B.V.M., Faivovich, J., 2015. Diversity and evolution of sexually dimorphic mental and lateral glands in Cophomantini treefrogs (Amphibia: Anura: Hylidae). Biol. J. Linn. Soc. 114, 12–34.
- Carvalho, K.A., Garcia, P.C.A., Recco-Pimentel, S.M., 2009a. NOR Dispersion, telomeric sequence detection in centromeric regions and meiotic multivalent configurations in species of the *Aplastodiscus albofrenatus* Group (Anura, <u>Hylidae</u>). Cytogenet. Genome Res. 126, 359–367.
- Carvalho, K.A., Garcia, P.C.A., Recco-Pimentel, S.M., 2009b. Cytogenetic comparison of tree frogs of the genus *Aplastodiscus* and the *Hypsiboas* faber group (Anura, Hylidae). Genet. Mol. Res. 8, 1498–1508.
- Carvalho-e-Silva, A.M.P.T., Carvalho-e-Silva, S.P., 2005. New species of the *Hyla* albofrenata Group, from the States of Rio de Janeiro and São Paulo, Brasil (Anura, Hylidae). J. Herpetol. 39, 79–81.
- Carvalho Jr., R.R., Galdino, C.A.B., Nascimento, L.B., 2006. Notes on the courtship behavior of *Aplastodiscus arildae* (Cruz & Peixoto, 1985) at an urban forest fragment in southeastern Brazil (Amphibia, Anura, Hylidae). Arq. Mus. Nac. Rio de Janeiro 64, 247–254.
- Catroli, G.F., Kasahara, S., 2009. Cytogenetic data on species of the family Hylidae (Amphibia, Anura): results and perspectives. Publ. Cienc. Biol. Saúde 15, 67–86.
- Catroli, G.F., Faivovich, J., Haddad, C.F.B., Kasahara, S., 2011. Conserved karyotypes in Cophomantini: cytogenetic analysis of 12 species from 3 species groups of *Bokermannohyla* (Amphibia: Anura: Hylidae). J. Herpetol. 45, 120–128.
- Cisneros-Heredia, D.F., McDiarmid, R.W., 2007. Revision of the characters of Centrolenidae (Amphibia: Anura: Athespatanura), with comments on its taxonomy and the description of new taxa of glass frogs. Zootaxa 1572, 1–82.
- Cochran, D.M., 1955. Frogs of southeastern Brazil. US Natl. Mus. Bull. 206, 1–423. Conte, C.E., Lingnau, R., Kwet, A., 2005. Description of the advertisement call of *Hyla*
- ehrhardti Müller, 1924 and new distribution records (Anura: Hylidae). Salamandra 41 (3), 147–151.
- Cruz, C.A.G., Peixoto, O.L., 1985. "1984". Espécies verdes de Hyla: o complexo "albosignata" (Amphibia, Anura, Hylidae). Arq. Univ. Fed. Rur. Rio de J 7, 37–47. Cruz, C.A.G., Peixoto, O.L., 1987. "1985". Espécies verdes de Hyla: o complexo
- "albofrenata" (Amphibia, Anura, Hylidae). Arq. Univ. Fed. Rur. Rio de J 8, 59–70.
- Cruz, C.A.G., Pimenta, B.V., Silvano, D.L., 2003. Duas novas espécies pertencentes ao complexo de *Hyla albosignata* Lutz & Lutz, 1938, do leste do Brasil (Amphibia, Anura, Hylidae). Bol. Mus. Nac., Rio de Janeiro 503, 1–13.
- Duellman, W.E., 1970. The hylid frogs of Middle America. Monograph of the Museum of Natural History, University of Kansas, vol. 1–2, pp. 1–753.
- Duellman, W.E., Trueb, L., 1986. Biology of Amphibians. McGraw-Hill, New York (670 pp).
- Faivovich, J., Peixoto, O., Cruz, C.A.G., 2002. The identity of *Hyla ehrhardti* Müller, 1924 (Anura, Hylidae). J. Herpetol. 36 (2), 325–327.Faivovich, F., Haddad, C.F.B., Garcia, P.C.A., Frost, D.R., Campbell, J.A., Wheeler, W.C.,
- Faivovich, F., Haddad, C.F.B., Garcia, P.C.A., Frost, D.R., Campbell, J.A., Wheeler, W.C., 2005. Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bull. Am. Mus. Nat. Hist. 294, 240.
- Faivovich, J., McDiarmid, R.W., Myers, C.W., 2013. Two new species of *Myersiohyla* (Anura: Hylidae) from Cerro de la Neblina, Venezuela, with comments on other species of the genus. Am. Mus. Novit. 3792, 1–63.
- Farris, J.S., Albert, V.A., Källersjö, M., Lipscomb, D., Kluge, A.G., 1996. Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124.
- Frost, D.R., 2015. Amphibian Species of the World: an Online Reference. Version 6.0 (2015, May 29). American Museum of Natural History, New York, USA. Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/index.html.
- Garcia, P.C.A., Caramaschi, U., Kwet, A., 2001. O status taxonômico de *Hyla cochranae* e recaracterização de *Aplastodiscus* A. Lutz (Anura, Hylidae). Rev. Bras. Zool. 18, 1197–1218.
- Goloboff, P.A., 1999. Analyzing large datasets in reasonable times: solutions for composite optima. Cladistics 15, 415–428.

Goloboff, P.A., Farris, J.S., Nixon, K.C., 2008. TNT, a free program for phylogenetic analysis. Cladistics 24, 1-13.

- Gomes, M.R., Peixoto, O.L., 1997. Hyla callipygia: geographic distribution. Herpetol. Rev. 28 (3), 110-111.
- Gruber, S.L., Zina, J., Narimatsu, H., Haddad, C.F.B., Kasahara, S., 2012. Comparative karyotype analysis and chromosome evolution in the genus Aplastodiscus (Cophomantini, Hylinae, Hylidae). BMC Genet. 13, 28.
- Haddad, C.F.B., Sawaya, R.J., 2000. Reproductive modes of Atlantic Forest hylid frogs: a general overview and the description of a new mode. Biotropica 32, 862-871
- Haddad, C.F.B., Prado, C., 2005. Reproductive modes in frogs and their unexpected diversity in the Atlantic Forest of Brazil. Bioscience 55 (3), 207-217.
- Haddad, C.F.B., Faivovich, J., Garcia, P.C.A., 2005. The specialized reproductive mode of the treefrog Aplastodiscus perviridis (Anura: Hylidae). Amphibia-Reptilia 26, 87-92.
- Hartmann, M.T., Hartmann, P.A., Haddad, C.F.B., 2004. Visual signaling and reproductive biology in the nocturnal treefrog, genus Hyla. Anura: Hylidae). Amphibia-Reptilia 25, 395–406.
- Jungfer, K.H., Faivovich, J., Padial, J.M., Castroviejo-Fisher, S., Lyra, M.L., Berneck, B.V. M., Iglesias, P.P., Kok, P.J.R., MacCulloch, R.D., Rodrigues, M.T., Verdade, V.K., Torres Gastello, C.P., Chaparro, J.C., Valdujo, P.H., Reichle, S., Moravec, J., Gvoždík, V., Gagliardi-Urrutia, G., Ernst, R., De la Riva, I., Means, D.B., Lima, A.P., Señaris, J. C., Wheeler, W.C., Haddad, C.F.B., 2013. Systematics of spiny-backed treefrogs (Hylidae: Osteocephalus): an Amazonian puzzle. Zoolog. Scr. 42, 351-380.
- Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780.
- Skuk, G.O., Silva, M.C.C.D., 2006. Geographic distribution: M.G.D. Lima. Aplastodiscus (=Hyla) sibilatus. Herpetol. Rev. 37, 485.
- Lutz, B., 1949. Anfíbios anuros da coleção Adolpho Lutz. II. Espécies verdes do gênero Hyla do Leste-Meridional do Brasil. Mem. Inst. Oswaldo Cruz 46, 551-577 (1948).
- Lutz, B., 1950. Anfíbios anuros da coleção Adolpho Lutz do Instituto Oswaldo Cruz. V. Mem. Inst. Oswaldo Cruz. 48, 599-637.
- Lutz, A., Lutz, B., 1938. Two new hylae: H. albosignata n. sp. & H. pickeli. Anais da Academia Brasileira de Ciências. Rio de Janeiro, 10, pp. 175-194.
- Mercês, E.A., Juncá, F.A., 2010. Girinos de três espécies de Aplastodiscus Lutz, 1950 (Anura-Hylidae) ocorrentes no Estado da Bahia, Brasil. Biota Neotrop. 10, 167-172.
- Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, pp. 1-8.
- Nixon, K.C., 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407-414.
- Orrico, V.G.D., Carvalho-e-Silva, A.M.P.T., Carvalho-e-Silva, S.P., 2006. Redescription of advertisement call of Aplastodiscus arildae and description of the call of Aplastodiscus weygoldti with general notes about the genus in Southeastern Brazil (Anura, Hylidae), Rey, Bras, Zool, 23, 994–1001.
- Palumbi, S.R., Martin, A., McMillan, W.O., Stice, L., Grabowski, G., 1991. The Simple Fool's Guide to PCR, Version 2.0. http://palumbi.stanford.edu/ SimpleFoolsMaster.pdf>.
- Pimenta, B., Costa, D., Murta-Fonseca, R., Pezzuti, T., 2014. Anfíbios: Alvorada de Minas, Conceição do Mato Dentro, Dom Joaquim - Minas Gerais. Bicho do Mato Press, Belo Horizonte, Brazil (196 pp).
- Pol, D., 2004. Empirical problems of the hierarchical likelihood ratio test for model selection. Syst. Biol. 53, 949–962. Posada, D., 2008. JModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25,
- 1253-1256.
- Posada, D., Buckley, T.R., 2004. Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793-808.
- Pyron, R.A., 2014. Biogeographic analysis of amphibians reveals both ancient continental vicariance and recent oceanic dispersal. Syst. Biol. 63 (5), 779-797.

- Pyron, R.A., Wiens, J.J., 2011. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of advanced frogs, salamanders, and caecilians. Mol. Phyl. Evol. 61, 543-583.
- Rambaut, A., 2014. FigTree, ver. 1.4.2. <http://tree.bio.ed.ac.uk/software/figtree/> (Online 2015, May 29).
- Rambaut, A., Suchard, M.A., Xie, D., Drummond, A.J., 2014. Tracer v1.6 <http://beast. bio.ed.ac.uk/Tracer> (Online 2015, May 29).
- Rivera-Correa, M., Faivovich, J., 2013. A new species of Hyloscirtus (Anura: Hylidae) from Colombia with a rediagnosis of Hyloscirtus larinopygion (Duellman, 1973). Herpetologica 69, 298-313.
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L, Suchard, Marc A., Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61 (3), 539-542.
- Salles, R.O.L., Pontes, R.C., Silva-Soares, T., 2012. New records and geographic distribution of Aplastodiscus eugenioi (Anura: Hylidae) in southeastern Brazil. Herpetol. Notes 5, 431-433.
- Silva, G.R., Luna-Dias, C., Hepp, F.S.F.S., Carvalho-e-Silva, A.M.P.T., Carvalho-e-Silva, S.P., 2012. New record of Aplastodiscus weygoldti (Cruz & Peixoto, 1987) in the municipality of Mimoso do Sul, Espírito Santo State, southeastern Brazil (Anura, Hylidae). Herpetol. Notes 5, 371–373.
- Silva-Soares, T., Valadares, A.P., Koski, D.A., Ferreira, R.B., Cruz, C.A.G., 2011. New records and distribution of Aplastodiscus arildae (Cruz & Peixoto, 1985) (Amphibia, Anura, Hylidae) in the southeast of Brazil. Herpetol. Notes 4, 255 258.
- Smith, S.A., Arif, S.A., Nieto, M.O., Wiens, J.J., 2007. A phylogenetic hotspot for 1045 evolutionary novelty in Middle American treefrogs. Evolution 61, 2075-2085.
- Swofford, D.L., 2002. PAUP: Phylogenetic Analysis Using Parsimony, Version 4.0b10. Sinauer 1052 Associates, Sunderland, Massachusetts.
- Valdujo, P.H., Silvano, D.L., Colli, G., Martins, M., 2012. Anuran species composition and distribution patterns in Brazilian Cerrado, a Neotropical hotspot. South Am. J. Herpetol. 7, 63-78.
- Wells, K.D., 2007. The Ecology and Behavior of Amphibians. The University of Chicago Press, Chicago (1400 pp).
- Wheeler, W.C., 2003. Iterative pass optimization of sequence data. Cladistics 19, 254-260
- Wheeler, W.C., Aagesen, L., Arango, C., Faivovich, J., Grant, T., D'Haese, C., Janies, D., Smith, W.L., Varón, A., Giribet, G.2006. Dynamic Homology and Phylogenetic Systematics: A Unified Approach using POY. The American Museum of Natural History, New York.
- Wheeler, W.C., Lucaroni, N., Hong, L., Crowley, L.M., Varón, A., 2014. POY version 5: phylogenetic analysis using dynamic homologies under multiple optimality criteria. Cladistics 31, 189-196.
- Wilkinson, J.A., Matsui, M., Terachi, T., 1996. Geographic variation in a Japanese tree frog (Rhacophorus arboreus) revealed by PCR-aided restriction site analysis of mtDNA. J. Herpetol. 30, 418-423.
- Wiens, J.J., Fetzner, J.W., Parkinson, C.L., Reeder, T.W., 2005. Hylid frog phylogeny and sampling strategies for speciose clades. Syst. Biol. 54, 719-748.
- Wiens, J.J., Graham, C.H., Moen, D.S., Smith, S.A., Reeder, T.W., 2006. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. Am. Nat. 168, 1-27.
- Wiens, J.J., Kuczynski, C.A., Hua, Xia., Moen, D.S., 2010. An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data. Mol. Phyl. Evol. 55, 871-882.
- Zina, J., Haddad, C.F.B., 2006a. Ecology and reproductive biology of two species of Aplastodiscus (Anura: Hylidae) in the Atlantic forest, Brazil. J. Nat. Hist. 40, 1831-1840.
- Zina, J., Haddad, C.F.B., 2006b. Acoustic repertoire of Aplastodiscus arildae and A. leucopygius (Anura: Hylidae) in Serra do Japi, Brazil. South Am. J. Herpetol. 1, 227-236.
- Zina, J., Haddad, C.F.B., 2007. Courtship behavior of two treefrog species, Aplastodiscus arildae and A. leucopygius (Anura: Hylidae), from the Atlantic Rainforest, Southeastern Brazil. Herpetol. Rev. 38, 282-285.

Appendix A Vouchers, localities and GenBank accession numbers. In bold, sequences produced by the presente work; all others were produced by Faivovich et al. (2005, 2013).

make matrix Number Number </th <th>Species</th> <th>Voucher</th> <th>Updated taxonomy</th> <th>12s-tRNA val-16s</th> <th>Cytochrome oxidase I</th> <th>16s-tRNA leuND1</th> <th>Rhodopsin exon 1</th> <th>RAG-1</th> <th>Tyrosinase</th> <th>Seventh in Absentia</th> <th>Tensine 3</th> <th>Country: State, Municipality, Locality</th>	Species	Voucher	Updated taxonomy	12s-tRNA val-16s	Cytochrome oxidase I	16s-tRNA leuND1	Rhodopsin exon 1	RAG-1	Tyrosinase	Seventh in Absentia	Tensine 3	Country: State, Municipality, Locality
indensionationNotableNotabl	Aplastodiscus albofrenatus	CFBHT5051		KU184021	KU184058		KU184111	KU184083	KU184246	KU184149		Brazil: Rio de Janeiro, Rio de Janeiro, Tijuca
mining mining </td <td>Anlastodiscus albosignatus</td> <td>CFBH3184</td> <td>Anlastodiscus sp. 5</td> <td>AY843596</td> <td></td> <td></td> <td>AY844570</td> <td>AY844385</td> <td>AY844042</td> <td>AY844796</td> <td>KU184176</td> <td>Brazil: Santa Catarina, São Bento do Sul (Rio Vermelho)</td>	Anlastodiscus albosignatus	CFBH3184	Anlastodiscus sp. 5	AY843596			AY844570	AY844385	AY844042	AY844796	KU184176	Brazil: Santa Catarina, São Bento do Sul (Rio Vermelho)
Biomedian and Mark CHURD CHURD <td>Aplastodiscus albosignatus</td> <td>MZUSPfield1451</td> <td>··/···································</td> <td>KU184037</td> <td>KU184064</td> <td></td> <td>KU184117</td> <td>KU184086</td> <td>KU184252</td> <td>KU184155</td> <td>KU184198</td> <td>Brazil: São Paulo, Santo André, Paranapiacaba</td>	Aplastodiscus albosignatus	MZUSPfield1451	··/···································	KU184037	KU184064		KU184117	KU184086	KU184252	KU184155	KU184198	Brazil: São Paulo, Santo André, Paranapiacaba
marked CHUMP N1980	Aplastodiscus arildae	CFBH27353		KU184012	KU184062		KU184115	KU184084	KU184250	KU184153	KU184196	Brazil: Rio de Janeiro, Parque Estadual Desengano
production problemNUMBER<	Anlastodiscus arildae	CTMZ2973		KU184022	KU184052	KU184226	KU184105		KU184241	KU184143	KU184188	Brazil: São Paulo Bananal
And and an and the second s	Anlastodiscus arildae	MNR 153879		KU184028	KU184067		KU184122		KU184256		KU184202	Brazil: Rio de Janeiro, Nova Friburgo, Theodoro de Oliveira
	Anlastodiscus arildae	MNR 172451		KU184031	KU184070		KU184125		KU184258	KU184162	KU184205	Brazil: Rio de Janeiro, Teresónolis, Vale da Revolta
mathemating Control Control N11000 N110000 N110000 N110000 <t< td=""><td>Anlastodiscus arildae</td><td>MZUSPfield1354</td><td></td><td>KU184036</td><td>KU184063</td><td></td><td>KU184116</td><td>KU184085</td><td>KU184251</td><td>KU184154</td><td>KU184197</td><td>Brazil: São Paulo, Santo André, Parananiacaba</td></t<>	Anlastodiscus arildae	MZUSPfield1354		KU184036	KU184063		KU184116	KU184085	KU184251	KU184154	KU184197	Brazil: São Paulo, Santo André, Parananiacaba
Index configure CPUI 1/37 Journal on surgers K1 18400 K1 18400 K1 1	Aplastodiscus arildaa	USNM303022		A V843604	KU184042		AV8//578	A V844302	A V844049	AV844803	KU184173	Brazil: São Paulo, Near Salesónolis, Estação Biológica de Boracéja
Internationalization colleges CH111243 A 194123 A 194123 A 194124 A 194243 A 194243 A 194244 A 194444	Aplastodiscus callipyaius	CEBH15770	Anlastodiscus albosignatus	KU184006	KU184061		KU184114	A1644572	KU184240	KU184152	KU184195	Brazil: Minas Garais, Camanducaia, Monte Verde
	Aplastodiscus callipygius	CFBH3000	Aplastodiscus albosignatus	AV843614	KU104001	KU184221	AV8///502	AV844402	A V844058	AV844813	KU184175	Brazil: Minas Gerais, Camanducaia, Monte Verde
IndensityMarketNumberN	Aplastodiscus callipygius	CEPHT14205	Aplastodiscus albosignatus	KU184018		K0104221	KU184120	A1 044402	A1044058	KU184166	KU184209	Prazil: São Doulo: São Joso do Porrairo Posoino
Index controls NUMBER NUMBER <th< td=""><td>Aplaste discus campygius</td><td>AE0070</td><td>Aplasta discus anosignatus</td><td>A V942617</td><td></td><td>VU194315</td><td>AV844504</td><td>A X/9 / / / 05</td><td></td><td>AV944914</td><td>KU104207</td><td>Diazii. Sao Faulo. Sao Jose do Bartello, Bocalia</td></th<>	Aplaste discus campygius	AE0070	Aplasta discus anosignatus	A V942617		VU194315	AV844504	A X/9 / / / 05		AV944914	KU104207	Diazii. Sao Faulo. Sao Jose do Bartello, Bocalia
Open-Book NUMBER NUMBER NUMBER NUMBER NUMBE	Aplastodiscus cavicola	AF0070	Apiasiouiscus sp. 0	KU194022	V11194044	KU104215	KU194005	A 1 844403	L'11194222	KU194124	KU184178	Brazil: Mines Cornis, Congonhes
Open-Decision control VEUB200 XT95505 XT95505 XT94505 XT94505 XT94507 KT94479 KT94479 </td <td>Aplasioaiscus cavicola</td> <td>F5FL848</td> <td></td> <td>KU184025</td> <td>KU184044</td> <td></td> <td>KU104095</td> <td>1/11104000</td> <td>KU104252</td> <td>KU104154</td> <td>KU184179</td> <td>Diazii. Minas Gerais, Congonnas</td>	Aplasioaiscus cavicola	F5FL848		KU184025	KU184044		KU104095	1/11104000	KU104252	KU104154	KU184179	Diazii. Minas Gerais, Congonnas
opposite Control K11999 K11999 K11999 K11999 K1199	Aplastoaiscus cavicola	MNKJ63689		KU184029	1/11/0 /0 /2	1/110 (220	KU184121	KU184089	KU164255	KU184159	KU184201	Brazil: Rio de Janeiro, Duas Barras, Nascente de Rio
Substrate Calible K11840 K11	Aplastoaiscus cochranae	CFBH3001		A Y 845568	KU184045	KU184220	A Y 844542	A Y 844365	A Y 844024	AY844//0	KU1841/4	Brazil: Santa Catarina, Kancho Queimado
application standshift CH 1000 K 1000 K 1000 K 10000 K 100000 K 100000 K 100000	Aplastoaiscus cochranae	CFBH114968		KU184019		1/110/010	KU184150		KU184261	KU184167	KU184210	Brazil: Santa Catarina, Lauro Muller, Rio do Rastro
OpenAlization enternal CHUIL 10 N 11840	Aplastoaiscus enrnarati	CFBH20261		KU184009		KU184218	KU184097		KU184234	KU184136	KU184181	Brazil: Santa Catarina, Anitapolis
openalization with with with with with with with with	Aplastodiscus ehrhardti	CFBH111191		KU184017	KU184050	KU184225	KU184103		KU184239	KU184141	KU184186	Brazil, Parana, Sao Jose dos Pinhais
Appendix memory CHI 197 N. 19810 N. 19812 N. 19812 N. 198142 <	Aplastodiscus ehrhardti	MTR256/		KU184034	KU184053		KU184106			KU184144	KU184189	Brazil: Santa Catarina, Campo Alegre
op/decision segment CFR10914 A V38489 CFR10915 A V38489 CFR10915 CFR10915 </td <td>Aplastodiscus eugenioi</td> <td>CFBH17497</td> <td></td> <td>KU184007</td> <td>KU184051</td> <td></td> <td>KU184104</td> <td></td> <td>KU184240</td> <td>KU184142</td> <td>KU184187</td> <td>Brazil: São Paulo, São Sebastião, Ilha Bela</td>	Aplastodiscus eugenioi	CFBH17497		KU184007	KU184051		KU184104		KU184240	KU184142	KU184187	Brazil: São Paulo, São Sebastião, Ilha Bela
op/answer/second by/bits/995 K118489 K11849 K11849 K11849 K118499	Aplastodiscus eugenioi	CFBH5915		AY843669		KU184223	AY844660	AY844456		AY844875		Brazil: São Paulo, Ubatuba, Picinguaba
iphanosis confirminions CFR11032 K118403 K118407 K118403 K11840	Aplastodiscus eugenioi	MNRJ63936		KU184030	KU184066		KU184119	KU184088	KU184254	KU184157	KU184200	Brazil: Rio de Janeiro, Angra dos Reis, Ilha Grande
Appendix and appendix and appendix	Aplastodiscus flumineus	CFBH30832		KU184013	KU184072		KU184127	KU184092	KU184260	KU184164	KU184207	Brazil: Rio de Janeiro, Teresópolis
defactories througenes NNL15162 NL184228 NL184228 NL184228 NL184236 NL184136 NL184137 NL184136 NL184137 NL184136 NL184137 NL184136 NL184137 NL184136 NL184137 NL184137 NL184136 NL184137 NL18413	Aplastodiscus ibirapitanga	CFBH32533		KU184015			KU184132		KU184263	KU184169	KU184212	Brazil: Bahia, Ibirapitanga, Fazenda Pedra Formosa
Applanding lange la	Aplastodiscus ibirapitanga	MNRJ51863		KU184025	KU184046	KU184228	KU184099		KU184236	KU184138	KU184183	Brazil: Bahia, Amargosa, Serra do Timbó
ipplemaktional reace yranger C PHR13737 K U18409 K U18409 K U18407 K U18403 K U18403 <th< td=""><td>Aplastodiscus leucopygius</td><td>AUMC39</td><td></td><td>KU184002</td><td></td><td>KU184216</td><td>KU184096</td><td>KU184078</td><td>KU184233</td><td>KU184135</td><td>KU184180</td><td>Brazil: São Paulo, Mogi das Cruzes, Serra do Itapeti</td></th<>	Aplastodiscus leucopygius	AUMC39		KU184002		KU184216	KU184096	KU184078	KU184233	KU184135	KU184180	Brazil: São Paulo, Mogi das Cruzes, Serra do Itapeti
Aphanolise keroop CPIII 2022 KU18409 KU18409 <th< td=""><td>Aplastodiscus leucopygius</td><td>CFBH13757</td><td></td><td>KU184005</td><td>KU184059</td><td></td><td>KU184112</td><td></td><td>KU184247</td><td>KU184150</td><td>KU184193</td><td>Brazil: Minas Gerais, Poços de Caldas</td></th<>	Aplastodiscus leucopygius	CFBH13757		KU184005	KU184059		KU184112		KU184247	KU184150	KU184193	Brazil: Minas Gerais, Poços de Caldas
operational encourse operational encourse operational encourse operational encourse operational encourseNU18408NU18408NU18424NU184128NU184173Bunzi Sac Paulo, Santo André operational encourse operational encourse operational encourseoperational encourse operational encourseNU18408NU18408NU18422NU18408NU18423NU184173Bunzi Sac Paulo, Santo Andrée operational encourse operational encourse operational encourseoperational encourse operational encourseCPRI1720NU18408NU18408NU18423NU184124NU184123NU184173Bunzi Sac Paulo, Santo Andrée operational encourse operational encourseoperational encourse operational encourseNU18408NU18408NU18408NU184123NU184124NU	Aplastodiscus leucopygius	CFBH22022		KU184010	KU184048	KU184219	KU184101		KU184237	KU184140	KU184185	Brazil: Rio de Janeiro, Teresópolis
Applandinger upper USNN19038 AY8458 KE79106 AY84425 AY84402 AY84403 AY84403 KU18107 Brail: Sto Pallo, Shoc & Barreiro, Bengios B	Aplastodiscus leucopygius	MTR-StoAn53		KU184033	KU184055		KU184108	KU184080	KU184243	KU184146	KU184190	Brazil: São Paulo, Santo André
deplandinges gerviral optimultices gerviral op	Aplastodiscus leucopygius	USNM303038		AY843638		KF794106	AY844622	AY844425	AY844084	AY844840	KU184172	Brazil: São Paulo: Near Salesópolis, Estação Biológica de Boracéia
Aplandscare priviteCFBB (17)5KU 18409KU 18409KU 18409KU 18409KU 18403KU 18413KU 18403KU 18413KU 18413 </td <td>Aplastodiscus perviridis</td> <td>CFBH18119</td> <td></td> <td>KU184008</td> <td>KU184045</td> <td></td> <td>KU184098</td> <td></td> <td>KU184235</td> <td>KU184137</td> <td>KU184182</td> <td>Brazil: São Paulo, São José do Barreiro, Bocaina</td>	Aplastodiscus perviridis	CFBH18119		KU184008	KU184045		KU184098		KU184235	KU184137	KU184182	Brazil: São Paulo, São José do Barreiro, Bocaina
Applandscare privintie CEBIT 270 KU18407 KU18407 KU18418 KU18418 KU18419 Ru13: Sam2 (same, fautame, site) benis do Sal, Ro Vermelho Applandscare privintie CEBIT 3258 KU18404 KU18407 KV18405 KV18405 KV18405 KV18405 KV18405 KV18407 KV18408 Ru18418 Ru18418 Ru18418 Ru18418 Ru18418 Ru18408 Ru18408 Ru18407 KV18407 KV18407 KV18407 KV18407 KV18407 KV18407 KV18407 KV18408 Ru18408	Aplastodiscus perviridis	CFBH7195		KU184016	KU184049	KU184224	KU184102		KU184238			Brazil: São Paulo, Santo Antônio do Pinhal
Applandices privinds MACN 7791 MARD 7801 Material Scale and Sc	Aplastodiscus perviridis	CFBHT270		KU184020	KU184057		KU184110	KU184082	KU184245	KU184148	KU184192	Brazil: Santa Catarina, São Bento do Sul, Rio Vermelho
Implementationane similationane similatione similati sinteres similationane similationane similat	Aplastodiscus perviridis	MACN37791		AY843569	KU184041	KF794107	AY844543	AY844366	AY844025	AY844771	KU184171	Argentina: Misiones, Guarani, San Vicente, Campo anexo INTa "Cuartel Rio Victoria"
Image: Application of the application o	Aplastodiscus sibilatus	CFBH32528		KU184014			KU184133	KU184094	KU184264	KU184170	KU184213	Brazil: Bahia, Ibirapitanga, Fazenda Pedra Formosa
plantodices p. 2 MNRD3754 KU18402 KU18402 KU18403 K	Aplastodiscus sp. 1	MNRJ50124		KU184024	KU184047	KU184227	KU184100	KU184079		KU184139	KU184184	Brazil: Alagoas, Murici, Fazenda Bananeira
Implementation MUR7308	Aplastodiscus sp. 2	MNRJ53754		KU184027			KU184120			KU184158		Brazil: Rio de Janeiro, Cahoeiras de Macacu, Serra dos Gaviões Silva Jardim
plastolics: 9.1 N184063 KU184064 KU184073 KU18407 KU184107 KU184107 KU18408 Real: Distrib Fockel, Brain, Parend, Algen, Linga oplastolics::::::::::::::::::::::::::::::::::::	Aplastodiscus sp. 2	MNRJ73089		KU184032	KU184068		KU184123			KU184160	KU184203	Brazil: Rio de Janeiro, Maricá, Espraiado
Image: Production of productin of production of production of production of product	Aplastodiscus sp. 3	BB49		KU184003	KU184054	KU184217	KU184107		KU184242	KU184145		Brazil: Distrito Federal, Brasilia, Fazenda Água Limpa
Applaxodiscus op. 4 UFMCT 1901 KU18403 KU18413 KU18413 <thku8403< th=""> KU18413 K</thku8403<>	Aplastodiscus sp. 4	PCAGS/N		KU184038	KU184073		KU184128			KU184165	KU184208	Brazil: Minas Gerais, Santana do Riacho, Serra do Cipó
Implication of parts KU18400 KU18410 KU18410 KU184104 KU18407 KU184105 KU184105 KU184105 KU18406 KU18406 KU18407 KU18407 <thku18407< th=""> KU18407 <thku18407< t<="" td=""><td>Anlastodiscus sp. 4</td><td>UFMGT1901</td><td></td><td>KU184039</td><td>KU184074</td><td></td><td>KU184131</td><td>KU184093</td><td>KU184262</td><td>KU184168</td><td>KU184211</td><td>Brazil: Minas Gerais Santana do Riacho Fazenda do Chiquito</td></thku18407<></thku18407<>	Anlastodiscus sp. 4	UFMGT1901		KU184039	KU184074		KU184131	KU184093	KU184262	KU184168	KU184211	Brazil: Minas Gerais Santana do Riacho Fazenda do Chiquito
Aplastadúscus sp. 6 CEBH27269 KU184011 KU18405 KU184108 KU18407 KU18407 KU184128 KU184126 KU184126 Brazil: Minas Genis, Canagola Aplastodiscus sp. 6 UFVCT2204 KU184040 KU184071 KU184126 KU184127 KU184126 KU184126 KU184126 KU184126 KU184126 KU184127 KU184126 KU184126 KU184127 KU184128 KU184126 KU184127 KU184128 KU184126 KU184126 KU184126 KU184127 KU184127 KU184128 KU184128 </td <td>Anlastodiscus sp. 5</td> <td>CFBH11183</td> <td></td> <td>KU184004</td> <td>KU184060</td> <td></td> <td>KU184113</td> <td></td> <td>KU184248</td> <td>KU184151</td> <td>KU184194</td> <td>Brazil: São Paulo São Paulo Parque Estadual da Serra do Mar-Curucutu</td>	Anlastodiscus sp. 5	CFBH11183		KU184004	KU184060		KU184113		KU184248	KU184151	KU184194	Brazil: São Paulo São Paulo Parque Estadual da Serra do Mar-Curucutu
Aplastodiscus sp. 6UFVCT2204KU18400KU18407KU184126KU18425KU184163KU18426Brazil: Minas Gerais, Serra do BrigadeiroAplastodiscus vergolditAF0068Aplastodiscus ariidaAY844685KU184026AY84467AY84487KU184107Brazil: Espirito Santo, Domingos Martíns: São Paulo do AracãAplastodiscus vergolditMXB151867KU184005KU184026KU184124KU184107KU184107Brazil: Espirito Santo, Domingos Martíns: São Paulo do AracãAplastodiscus vergolditMZUESC3474KU184035KU184056KU18409KU184247KU184107KU184107Brazil: Espirito Santo, Domingos Martíns: São Paulo do AracãBolermannohy InvártusSNN303036AY54933KU184256KU184124KU184107KU184107KU184107Bolermannohy InvártusSNN30305AY84361AY84467AY84467AY84448Brazil: Baina, Lençois, Rian BarbaraBolermannohy InvártusAF14AY84561AY84457AY84467AY84448Brazil: Minas Gerais, Santa BarbaraBolermannohy InvártusSIUCH-6924AY84366Y84467AY84449Y844897Barazil: Maina Gerais, Santa BarbaraHybsicriuts aplaneriSUCH-6924AY84360Y784457AY84459AY84449Brazil: Maina Gerais, Santa BarbaraHybsicriuts aplaneriSUCH-6924AY84360Y784477AY84459AY844484Brazil: Baina, Lençois, Rio GrisanteHybsicriuts aplaneriSUCH-6924AY84360AY84458AY84459Brazil: Baina, Lençois, Rio GrisanteHybsicriuts aplaner	Anlastodiscus sp. 6	CFBH27269		KU184011	KU184065		KU184118	KU184087	KU184253	KU184156	KU184199	Brazil: Minas Gerais Carangola
Aplastodiscus wegolditAF0068Aplastodiscus arildaeAY843685KUI84124AY844678AY844467AY844867KUI84177Brazil: Espirito Santo; Domingo Martins: São Paulo do AracãAplastodiscus wegolditMXUESC344KUI84026KUI84096KUI84104KUI8409KUI84257KUI84109KUI8427KUI84104Brazil: Espirito Santo; Santo,	Anlastodiscus sp. 6	UFVCT2204		KU184040	KU184071		KU184126	KU184091	KU184259	KU184163	KU184206	Brazil: Minas Gerais, Serra do Brigadeiro
Aplastodicsus wegolditi Aplastodicsus wegolditi Aplastodicsus wegolditi MNRJ51867KU184026KU184069KU184124KU184090KU184244KU184161KU184244KU184161KU184244KU184170Brazil: Espiritio Santo, Santa Teresa, Santa Lucia Aplastodicsus wegolditi MZUESC3474KU184035KU184056KU18405KU184104KU184104KU184174KU184171KU184191Brazil: Espiritio Santo, Santa Teresa, Santa Lucia AtlaBokermannohyl matrinis Bokermannohyl matrinisAF414AY843641AY84466AY8444714AY844777AY84463Brazil: Minas Gernis, Santa BarbaraBokermannohyl matrinis Hyloscirtus armanis Hyloscirtus armanisAMNIA-165163AY549321KU794111AY84457AY844481AY84479Brazil: Minas Gernis, Santa BarbaraBokernannohyl matrinis Hyloscirtus armanis Lyloscirtus palmeriSIUCH-0924AY84350AY84457AY844493AY84405AY8448479Brazil: Minas Gernis, Santa Teresa, Canton San Juan, Amboro National ParkHyloscirtus palmeri Hyloscirtus palmeriSIUCH-0924AY84350AY84457AY844452AY844452AY84454Paraue: Nacional 'Omar Torrijos''Hyloscirtus Hypsiboas abopunctus Hypsiboas abopunctusZUEC10253AY549317KF794117AY84456AY84449AY84475Brazil: Sion Paulo, CampinasHypsiboas palmeri Hypsiboas palmeriSUSM302335AY549347KU184075KF79417AY84456AY84497Eraudira, Yila Pacarina, Yila Pacarina, Sia Vicente, Campo anexo INTa ''Cuartel Rio CH1127825Hypsiboas palmeri Hypsiboas prasinus <td>Anlastodiscus wevgoldti</td> <td>AF0068</td> <td>Anlastodiscus arildae</td> <td>AY843685</td> <td></td> <td>KU184214</td> <td>AY844678</td> <td>AY844467</td> <td></td> <td>AY844887</td> <td>KU184177</td> <td>Brazil: Espírito Santo: Domingos Martins: São Paulo do Araçã</td>	Anlastodiscus wevgoldti	AF0068	Anlastodiscus arildae	AY843685		KU184214	AY844678	AY844467		AY844887	KU184177	Brazil: Espírito Santo: Domingos Martins: São Paulo do Araçã
ApproximationNZUESC374AKU184035KU184056KU18409KU18409KU184081KU184147KU184119Brazil: Bahia: Camacan, Serra BonitaBokermannolyl hylaxUSNM03036AY549338AY84356AY84461AY84467AY84467AY84467Brazil: Sab Paulo: Near Salesopolis, Estação Biológica de BoracéiaBokermannolyl nortinsAF414AY843641AY84456AY844667AY84466AY84470Brazil: Sab Paulo: Near Salesopolis, Estação Biológica de BoracéiaBokermannolyl oxenteCFBH5642AY843676KU184222AY844667AY84460AY84479Brazil: Bahia, Lençois, Rio GrisanteHyloscirtus grandneiSUCH-6924AY843650AY844363AY84430AY84450AY84454Panam: El Copê Parue Nacional "Omar Torrijos"Hypsicoirtus tapichalicaQCZA16704AY565625KF794114AY844672AY84430AY844795Brazil: Sao Paulo, Carnon San Juan, Amboro National ParkHypsicoirtus tapichalicaQCXA16704AY565625KF794117AY844569AY844105AY844795Brazil: Sao Paulo, Carnon San Juan, Amboro National ParkHypsiboas albopunctatusZUEC12053AY54934KU184075KF794117AY844569AY844705AY844705Brazil: Bahia: CamarunHypsiboas faberCFBH1502AY54934KU184075KF794117AY844569AY844705AY844705Brazil: Bang Carnon San Juan, Amboro National ParkHypsiboas faberUSNM302435AY54934KU184075KF794117AY844569AY844705AY844705Brazil: Sao Paulo, Camp ano Park	Anlastodiscus weygoldti	MNR 151867	nprastouiseus ar nude	KU184026	KU184069		KU184124	KU184090	KU184257	KU184161	KU184204	Brazil: Espírito Santo, Sonta Teresa, Santa Lucia
Approximation Microscole	Anlastodiscus weygoldti	MZUESC3474		KU184035	KU184056		KU184109	KU184081	KU184244	KU184147	KU184191	Brazil: Babia: Camacan Serra Bonita
John Markov Bokermannohyl markinsAF41AY84501AY84461AY84461AY84461AY84462Brazil: Minas Gerais, Santa BarbaraBokermannohyl oxeneCFBH5642AY843661KU184222AY844667AY844060AY844118AY844879Brazil: Bahia, Lençois, Rio GrisanteBokermannohyl oxeneCFBH5642AY843630AY84453AY844636AY844300AY844070Bolivi: Santa Cruz, Caballero, Canno San Juan, Amboro National ParkHyloscirtus palmeriSIUCH-6924AY843650AY844636AY844393AY844095AY844804Bolivi: Santa Cruz, Caballero, Canno San Juan, Amboro National ParkHyloscirtus tapichalacaQCAZ16704AY843650AY844672AY84407AY84407Ecuador: Zamora-Chinchipe, Reserva TapichalacaHypsiboas beniteziUSNM302435AY843066KF794117AY844583AY844396AY844396Brazil: Son Paulo, CampinasHypsiboas faberMACN37000/ CFBH127825AY549334KU184075KF794117AY844583AY844396AY844825Argentina: Misiones, Guarani, San Vicente, Campo anexo INTa ''Cuartel Rio Victori' Brazil: Baria, Camina, San Vicente, Campo anexo INTa ''Cuartel Rio Victori' Brazil: Baria, Camina, São Bento do Sul, Rio VernelhoHypsiboas prasinusCFBH388AY549337KU184077KF794124AY84462AY844108AY84480Hypsiboas prasinusCFBH388AY549337KU184077KF794139AY84465AY844453AY844108Brazil: Sinta Catarina, São Bento do Sul, Rio VernelhoHypsiboas prasinusCFBH388AY549337KU184077KF7941	Rokermannohyl hylar	USNM303036		AV549338	1101000		AV844614	AV844419	AV844077	AV844832		Brazil: São Paulo: Near Salesónolis, Estação Biológica de Boracéja
botchmannoly landingInterverInterverInterverInterverbokermannoly landingATRAATRAATRAInterverHyloscirtus armatusAMNHA-165163AY54931KF794111AY84457AY84405AY84405AY84404Hyloscirtus armatusGQZA16704AY563625KF794114AY84466AY84413AY84495Brazi: Bahia, Lençois, Rio GrisanteHyloscirtus tapichalacaQCZL16704AY563625KF794114AY84456AY84405AY84405Brazi: Sao Paulo, Camton San Juan, anboro National ParkHypsiboas albopunctatusZUEC12053AY549317KF794114AY84456AY84407AY84405Brazi: Sao Paulo, CampinasHypsiboas benite:USNM302435AY549317KF794117AY84456AY84430AY844795Brazi: São Paulo, CampinasHypsiboas faberMACN37000/ CFBH27825AY549334KU184075KF794124AY84467AY84430AY84425Marati: Saino Sciurani, San Vicente, Campo anexo INTa "Cuartel Rio Victoria"/Brazil: Bahia, CamanuHypsiboas pellucensKU202734AY54934KU184075KF794124AY84467AY844825Cictoria"/Brazil: Bahia, CamanuHypsiboas pellucensMACN37792AY54933KU184077KF794134AY84467AY84410AY844851Brazil: Bahia, CamanuHypsiboas semilineatusGCFBH524AY549347KU184075AY84467AY84467AY844795Brazil: Roita Camina, Sai Otto Augurati, Sai Otto Augurati	Bokermannohyl martinsi	ΔF414		AV843641			A V 844626	11104441)	AV844086	AV844844		Brazil: Minas Gerais Santa Barbara
Dote manifestive Thysicitus armatusAMNHA-165163AY549321KT04722AY84407AY844093AY84404Bolivia: Santa Curyots, Not of name, Curyots, Not, Not, Not, Not, Not, Not, Not, Not	Bokermannohyl ovente	CFBH5642		AV843676		KU184222	AV844667	AV844460	AV844118	ΔV844879		Brazil: Bahia Lencois Rio Grisante
Phytochnik almalinisAlfWrite 1000AT 5421KT 94111AT 644573AT 644573AT 644573Dorival 5 and Cita, Calada Cito, Cando Tonar Juan, Andrean Juan, Andrea	Hyloscirtus armatus	AMNHA 165163		AV540321		KE704111	AV8//570	A V844303	AV844050	A V 8// 80/		Bolivia: Santa Cruz Caballero, Canton San Juan, Amboro National Park
Typoschnis pulmentFileFileFileFileFileFileFileFileFileFileHyposchnis pulmentQCA2QCA2QY563625KF794114AY844672AY844121Ecador: Zamora-Chinchipe, Reserva Tap ichilacaHypsiboas albopunctatusZUEC12053AY549317KF794117AY844569AY84407AY844795Brazil: São Paulo, CampinasHypsiboas beniteziUSNM302435AY84306KF794117AY844583AY844396Brazil: San Cianina, Sul Vicente, Campo anexo INTa "Cuartel Rio Victoria"/Brazil: Bahia, CamamuHypsiboas faberMACN37000/ CFBH27825AY54934KU184075KF794124AY84607AY84425Argentina: Misiones, Guarani, San Vicente, Campo anexo INTa "Cuartel Rio Victoria"/Brazil: Bahia, CamamuHypsiboas pellucensKU202734AY254058AY549347KU184075AY84462AY844100AY84480Brazil: Santa Catarina, São Bento do Sul, Rio VermelhoHypsiboas punctatusMACN37792AY54933KU184077KF794139AY84465Y844100AY844800Brazil: Santa Catarina, São Bento do Sul, Rio VermelhoHypsiboas semilineatusCFBH5424AY843778 and AY843778AY84456AY84453AY844108AY84471Brazil: Rio de Janeiro: Duque de CaxiasMyersiohyla kanaimaROM39582AY84363AY84617AY84412AY844709AY844855Guyana: Mount Ayanganna	Hyloscirtus nalmari	SILICH 6024		A V8/3650		KI / 94111	A V 8//636	A V8////30	AV844095	A V 8// 85/		Panama: El Coné Parque Nacional "Omar Torrijos"
Pypositonal dipolandadaCCA210704A 1593023K 1794114A 1694072A 1694072A 1694072A 1694072Brazil: Sao Paulo CampinasHypsiboas dibopunctatusZUEC12053A Y549317K 1794117A Y844583A Y84404A Y844795Brazil: Sao Paulo CampinasHypsiboas beniteziUSNM302435A Y843606K F794117A Y844583A Y844396Brazil: Sao Paulo CampinasHypsiboas faberMACN37000/ CFBH127825A Y549334KU184075K F794114A Y844607A Y844525Argentina: Misiones, Guarani, San Vicente, Campo anexo INTa "Cuartel Rio Victoria"/Brazil: Bahia, CamamuHypsiboas pellucensKU202734A Y326058Eucuador: Pichincha, 1.8kmSSE, San JuanHypsiboas prasinusCFBH1388A Y549337KU18407K F794139A Y844642A Y844400A Y844860Brazil: Santa Catarina, São Bento do Sul, Rio VermelhoHypsiboas semilineatusMACN37792A Y549333KU184077K F794139A Y84465A Y844451A Y844871Brazil: Rio de Janeiro: Duque de CaxiasHypsiboas semilineatusCFBH5424A Y843779A Y84465A Y844453A Y84479A Y844871Brazil: Rio de Janeiro: Duque de CaxiasMyersiohyla kanaimaROM39582A Y843634C GQ366307A Y844617A Y84422A Y844079A Y844835Guyana: Mount Ayanganna	Hyloscintus taniahalaaa	0CA716704		A V562625		VE704114	A V 944672	A1044457	AV844075	A1044034		Fauldar: Zamora Chinahina, Pasarta Tanjahalaan
Physibolas datoplanticatusCPG 1203AT 39471KF 94117AT 84495AT 8444973Bfazil: Soal Paulo, CanjintasHypsibolas beniteriaUSN02435AY84360KF 94117AT 844583AY844360Brazil: Soal Paulo, CanjintasHypsibolas beniteriaUSN02435AY84360KF 794117AY 844583AY 844360Argentina: Misiones, Guarani, San Vicente, Campo anexo INTa "Cuartel Rio Victoria" (Brazil: Baha, CamamuHypsiboas faberMACN37000/ CFBH127825AY 549347KU184075KF 794124AY 844607AY 844825Argentina: Misiones, Guarani, San Vicente, Campo anexo INTa "Cuartel Rio Victoria" (Brazil: Baha, CamamuHypsiboas prainusCFBH1388AY 549347KU184076AY 84462AY 844100AY 844800Brazil: Santa Catarina, São Bento do Sul, Rio VermelhoHypsiboas prunctatusMACN37792AY 549333KU184077KF 794139AY 84465AY 844108AY 844108AY 844108AY 844108Hypsiboas semilineatusCFBH524AY 843778AY 843779AY 84455AY 844108AY 844871Brazil: Rio de Janeiro: Duque de CaxiasMyersiohyla kanaimaROM 39582AY 843634C 6Q 366307AY 844617AY 844422AY 844079AY 844835Guyana: Mount Ayanganna	Hydosetrius iupienaiaea	QUAL10704		A 1 505025		KF704117	A 1 044072		A1044121	A V 944705		Brasil São Deula Compines
Hypsiboas benicerOSNM 5024:55A Y8 4506K F /9411A Y8 4455A Y8 44596Brazil: Noticatina, X0 licente, Campo anexo INTa "Cuartel Rio Victoria"/Brazil: Bahia, CamamuHypsiboas faberMACN37000/ CFBH27825AY36034K U184075K F /94124A Y844607A Y84425A Y84425Argentina: Misiones, Guarani, SaN Vicente, Campo anexo INTa "Cuartel Rio Victoria"/Brazil: Bahia, CamamuHypsiboas pellucensK U20274A Y32605Ecuador: Pichinch, 1.8kmSSE, San JuanHypsiboas punctatusNGN37792A Y549347KU184076A Y84465A Y84400Hypsiboas semilineatusCFBH5424A Y84378 andA Y84473A Y84465A Y844453Hypsiboas semilineatusROM39582A Y84363A Y843637A Y844617A Y84422A Y84407A Y844851Myersiohyla kanaimaROM39582A Y843634G Q366307A Y844617A Y844422A Y84407A Y844855Guyana: Mount Ayanganna	Hypsiboas albopunctatus	ZUEC12055		A 1 349317		KF704117	A 1 844309	43/044207	A 1 844041	A 1 844/95		Brazii. Sao Paulo, Campinas
Hypsiboas faber AYS 49334 KU184075 KF794124 AY844607 AY844825 Argentina: Misiones, Guarani, San Viente, Campo anexo INTa Cuardel Rio Viciorii'/Brazil: Bahia, Camamu Hypsiboas pellucens KU202734 AY326058 Ecuador: Pichincha, 1.8kmSSE, San Juan Hypsiboas prasinus CFBH3388 AY549337 KU184076 AY84462 AY84400 AY844800 Brazil: Santa Catarina, São Bento do Sul, Rio Vermelho Hypsiboas punctatus MACN37792 AY549333 KU184077 KF794139 AY84465 AY84465 Argentina: Chaco: Resistencia: Camino a Isla del Cerrito Hypsiboas semilineatus CFBH524 AY843778 and AY843779 AY84465 AY84465 AY84473 AY84471 Brazil: Rio de Janeiro: Duque de Caxias Myersiohyla kanaima ROM39582 AY84363 AY84467 AY844422 AY84407 AY844835 Guyana: Mount Ayanganna	Hypsibous benuezi	USINIM302455		A I 843000		КГ/9411/	A 1 844385	A 1 844390				brazil. Koralina, vina Pacaralina
Hypsiboas pellucens KU202734 AY326058 Ecuador: Pichincha, 1.8kmSSE, San Juan Hypsiboas prasinus CFBH3388 AY549373 KU184076 AY844642 AY84460 Brazil: Santa Catarina, São Bento do Sul, Rio Vermelho Hypsiboas punctatus MACN37792 AY549353 KU184077 KF794139 AY844645 AY84470 Argentina: Chaco: Resistencia: Camino a Isla del Cerrito Hypsiboas semilineatus CFBH524 AY843778 and AY843779 AY844656 AY84465 AY84473 AY844871 Brazil: Rio de Janeiro: Duque de Caxias Myersiohyla kanaima ROM39582 AY84363 GQ366307 AY844617 AY84422 AY844079 AY844835 Guyana: Mount Ayanganna	Hypsiboas faber	MACN3/000/ CFBH27825		AY549334	KU184075	KF794124	AY844607			AY844825		Argentina: Misiones, Guarani, San Vicente, Campo anexo INTa "Cuartel Rio Victoria"/Brazil: Bahia, Camamu
Hypsiboas prasinusCFBH3388AY549347KU184076AY84462AY84462AY844860Brazil: Santa Catarina, São Bento do Sul, Rio VermelhoHypsiboas punctatusMACN37792AY54933KU184077KF794139AY84465AY84465Argentina: Chaco: Resistencia: Camino a Isla del CerritoHypsiboas semilineatusCFBH542GFB452AY843778 and AY843779AY84365AY84453AY84471Brazil: Rio de Janeiro: Duque de CaxiasMyersiohyla kanaimaROM39582AY84363AY84364AY844617AY844422AY844079AY844855Guyana: Mount Ayanganna	Hypsiboas pellucens	KU202734		AY326058								Ecuador: Pichincha, 1.8kmSSE, San Juan
Hypsiboas punctatus MACN37792 AY54933 KU184077 KF794139 AY844645 Argentina: Chaco: Resistencia: Camino a Isla del Cerrito Hypsiboas semilineatus CFBH5424 AY843778 and XY843779 AY84455 AY84456 AY84456 AY84457 Brazil: Rio de Janeiro: Duque de Caxias Myersiohyla kanaima ROM39582 AY843634 GQ366307 AY844617 AY84422 AY844079 AY844835 Guyana: Mount Ayanganna	Hypsiboas prasinus	CFBH3388		AY549347	KU184076		AY844642		AY844100	AY844860		Brazil: Santa Catarina, São Bento do Sul, Rio Vermelho
Hypsiboas semilineatus CFBH5424 AY843778 and AY843779 AY84455 AY84455 AY84456 AY84457 Brazil: Rio de Janeiro: Duque de Caxias Myersiohyla kanaima ROM39582 AY843634 GQ366307 AY844617 AY844079 AY844835 Guyana: Mount Ayanganna	Hypsiboas punctatus	MACN37792		AY549353	KU184077	KF794139	AY844645					Argentina: Chaco: Resistencia: Camino a Isla del Cerrito
Myersiohyla kanaima ROM39582 AY843634 GQ366307 AY844617 AY844422 AY844079 AY844835 Guyana: Mount Ayanganna	Hypsiboas semilineatus	CFBH5424		AY843778 and AY843779			AY844656	AY844453	AY844108	AY844871		Brazil: Rio de Janeiro: Duque de Caxias
	Myersiohyla kanaima	ROM39582		AY843634		GQ366307	AY844617	AY844422	AY844079	AY844835		Guyana: Mount Ayanganna

A Most Parsimonious Tree recovered by parsimony analysis in T.N.T, using the static alignment. Four MPT were recovered with 11656 steps each. An asterisk (*) around nodes indicates 100% Parsimony Jackknife absolute frequency (estimated using T.N.T.); black dots shows nodes collapsed in strict consensus. Samples followed by a # were employed in Faivovich *et al.* (2005), in some cases using different names, see Appendix A for details.

Result of the Bayesian analysis. Bayesian supports are shown around nodes. The asterisks (*) indicates posterior probability values of 1. Samples followed by a # were employed in Faivovich et al. (2005), in some cases using different names, see Appendix A for details.

Uncorrected pairwise sequence distances (p-distances) of the final 16s fragment.	
See Appendix A for complete name of localities and voucher number. Values in percentage	

Species / Locality	1	2	3	4	5	6	7	8	9	10	0 11	1 1	2 1	3	14 1	5	16	17	18	19	20 2	1 2	2 23	24	4 25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1 A. cavicola CongoMG	-																																												
2 A. leucopygius MogiSP	4,42%	-																																											
3 A. ehrhardti AnitapoSC	12,17%	12,53% -																																											
4 A. ibirapitanga AmargosaBA	5,85%	4,10% 1	2,55% -																																										
5 A. sp. 1 MuriciAL	12,24%	13,69% 1	2,17% 1	2,44% -																																									-
6 A. leucopygius TeresoRJ	4,95%	1,24% 1	2,71%	4,99% 1	3.86%	-																																							
7 A. perviridis PinhalSP	7,63%	6,22% 1	2,22%	7,11% 1	4,07%	6,21%	-																																						
8 A. ehrhardti SJPinhaisPR	12,37%	12,01%	2,90% 1	2,75% 1	2,17%	12,20%	12,41%	-																																					
9 A. eugenioi SaoSebastiaoSP	11,23%	10,32%	8,82% 1	0,72% 1	0,18%	10,51%	11,48%	8,45%	-																																				
10 A. arildae BananalSP	12,70%	11,43%	9,39% 1	2,22% 1	2,71%	11,62%	12,23%	9,76%	6,25%	-																																			
11 A. ehrhardti CamAlegreSC	12,35%	12,00%	2,71% 1	2,73% 1	1,43%	12,18%	12,77%	0,91%	7,89%	9,21%	6 -																																		
12 A. sp. 3 BrasiliaDF	8,87%	7,10% 1	2,75%	7,99% 1	4,42%	7,11%	5,14%	12,39%	11,85%	13,31%	6 12,21%	6 -																																	
13 A. leucopygius SanAndreSP	4,42%	0,00% 1	2,53%	4,10% 1	3,69%	1,24%	6,22%	12,01%	10,32%	11,43%	6 12,00%	6 7,109	6 -																																
14 A. perviridis SBdoSulSC	6,03%	6,04% 1	2,39%	6,58% 1	3,18%	6,04%	2,31%	12,22%	11,48%	12,58%	6 12,58%	6 4,619	6,04	6 -																															
15 A. albofrenatus TijucaRJ	11,37%	11,05%	8,77% 1	1,25% 1	0,17%	11,23%	11,28%	8,96%	2,40%	6,57%	6 8,40%	6 12,369	6 11,05	6 11,46	% -																														
16 A. leucopygius PocosdeCalMG	4,60%	0,18% 1	2,71%	4,28% 1	3,69%	1,41%	6,40%	12,20%	10,13%	11,25%	6 12,18%	6 7,289	6 0,18	6,22	% 10,879	6 -																													
17 A. sp. 5 SaoPauloSP	4,96%	3,20% 1	2,01%	3,92% 1	2,21%	3,55%	5,86%	11,47%	9,41%	10,73%	6 11,46%	6,049	6 3,20	6 5,33	% 10,149	6 3,37	7% -																												
18 A. callipygius CamanducaMG	4,78%	3,36% 1	2,49%	4.97% 1	2,74%	3.37%	6,91%	12,16%	10,09%	11,60%	6 12,14%	6 7,099	6 3.36	6.21	% 11,179	6 3.19	9% 2,83	% -																											
19 A. arildae StaMaMadaRJ	12,31%	11,23%	8,38% 1	2,17% 1	2,68%	11,42%	12,36%	8,74%	5,88%	0,37%	6 8,18%	6 13,269	6 11,23	6 12,72	% 6.339	6 11.04	4% 10,68	% 11.54	4% -																										
20 A. arildae SanAndreSP	13,04%	11,96%	8,92% 1	2,18% 1	2,68%	12,15%	13,09%	9,11%	6,25%	0,73%	6 8,55%	6 13,999	6 11.96	6 13,45	% 6.699	6 11.77	7% 11.41	% 11.90	0% 0,72	% -																									
21 A. albosignatus SanAndreSP	4,78%	3,37% 1	1,93%	4,97% 1	2,74%	3,37%	6,38%	11,98%	9,54%	11,06%	6 11,96%	6 7,099	6 3,37	6,21	% 10,459	6 3,19	9% 2,65	% 0,70	0% 10,83	% 11,5	5% -																								
22 A. cavicola CarangoMG	4,78%	2,83% 1	2,52%	4,44% 1	3,13%	3,54%	7,27%	12,20%	10,50%	11,99%	6 12,55%	6 7,45%	6 2,83	6,74	% 11,229	6 3,01	1% 3,55	% 3,88	8% 11,58	% 12,3	3,88%	<u>6</u> -																							
23 A. eugenioi AngraRJ	11,44%	10,35%	9,59% 1	0,38% 1	0,01%	10,54%	11,88%	9,04%	1,48%	6,64%	6 8,48%	6 12,089	6 10,35	6 11,71	% 3,309	6 10,15	5% 9,61	% 10,32	2% 6,26	% 6,4	5% 10,12%	6 10,729	% -																						
24 A. sp. 2 CachoMacaRJ	11,27%	10,35%	9,31% 1	0,73% 1	1,45%	10,91%	10,91%	9,30%	6,25%	6,01%	6 9,29%	6 11,819	6 10,35	6 11,08	% 6,899	6 10,16	5% 9,98	% 10,61	7% 6,32	% 7,0	1% 10,49%	6 10,359	% 6,29%	-																					
25 A. cavicola DuasBarrasRJ	5,12%	4,07% 1	2,68%	5,86% 1	3,48%	4,24%	7,27%	13,44%	11,23%	12,32%	6 13,05%	6 7,289	6 4,07	6,57	% 11,779	6 4,24	4% 5,14	% 4,73	7% 11,75	% 12,4	3% 4,779	6 4,069	% 11,26%	11,06%	ó -																				
26 A. arildae NovFriburgoRJ	12,49%	11,41%	8,56% 1	2,35% 1	2,86%	11,60%	12,18%	8,74%	6,06%	0,55%	6 8,37%	6 13,449	6 11,41	6 12,54	% 6,519	6 11,22	2% 10,86	% 11,72	2% 0,18	% 0,9	0% 11,01%	6 11,75%	% 6,44%	6,50%	6 11,93%	-																			
27 A. sp. 2 MaricaRJ	11,27%	10,35%	9,12% 1	0,73% 1	1,63%	10,91%	10,91%	9,12%	6,07%	5,83%	6 9,11%	6 11,819	6 10,35	6 11,08	% 6,719	6 10,17	7% 9,98	% 10,61	7% 6,14	% 6,8	5% 10,50%	6 10,359	% 6,29%	0,18%	6 11,06%	6,32%	-																		
28 A. weygoldti SantaTereES	12,32%	11,42% 1	0,06% 1	1,25% 1	1,43%	11,42%	12,47%	10,24%	7,20%	6,56%	6 9,86%	6 13,579	6 11,42	6 12,48	% 7,519	6 11,24	4% 11,20	% 11,53	3% 6,57	% 6,7	5% 11,179	6 11,589	% 7,03%	7,14%	6 11,58%	6,75%	6,95%	-																	
29 A. arildae TeresoRJ	12,31%	11,23%	8,38% 1	2,17% 1	2,68%	11,42%	12,36%	8,74%	5,88%	0,37%	6 8,18%	6 13,269	6 11,23	6 12,72	% 6,339	6 11,04	4% 10,68	% 11,54	4% 0,00	% 0,7	2% 10,83%	6 11,589	% 6,26%	6,32%	6 11,75%	0,18%	6,14%	6,57%	-																
30 A. sp. 6 SdoBrigdeMG	4,60%	3,02% 1	2,33%	4,44% 1	3,13%	3,72%	7,45%	12,01%	10,86%	11,99%	6 12,36%	6,929	6 3,02	6.57	% 11,589	6 3.20	0% 3,73	% 3,71	1% 11,58	% 12,3	3,719	6 0,539	% 11,08%	10,71%	6 4,24%	11.76%	10,71%	11,95%	11,58%	-															
31 A. flumineus TeresoRJ	5,48%	3,72% 1	2,48%	4,43% 1	2,75%	3.90%	7,09%	12,34%	10,47%	11,96%	6 12,32%	6,219	6 3,72	6.39	% 11,719	6 3.90	0% 2,83	% 2,64	4% 11,91	% 12,6	3% 2,64%	6 4,239	% 10,30%	11.03%	5,66%	12,08%	11,03%	12,27%	11,91%	3,71%	-														
32 A. sp. 4 SdoCipoMG	6,39%	5,16% 1	2,73%	2,66% 1	2,97%	5,70%	8,35%	13,11%	11,08%	12,94%	6 13,09%	6 9,06%	6 5,16	6 7,47	% 11,239	6 5.34	4% 4,80	% 4,79	9% 12,70	% 13,0	7% 5,14%	6 5,519	% 11,11%	11.26%	6,21%	12,88%	11,26%	11,42%	12,70%	5,16%	5,49%														
33 A. callipygius BocainaSP	4,78%	3,36% 1	2,31%	4,97% 1	3,12%	3,36%	6,73%	12,36%	9,92%	11,43%	6 12,34%	6 7,099	6 3,36	6,21	% 10,839	6 3,19	9% 2,66	% 0,71	1% 11,20	% 11,9	2% 0,35%	6 3,889	% 10,31%	10,69%	6 4,77%	11,38%	10,69%	11,55%	11,20%	3,70%	2,29%	5,15% -													
34 A. cochranae LauMullerSC	7,27%	6,57% 1	2,77%	7,11% 1	3,36%	6,22%	3,01%	12,23%	11,30%	12,77%	6 12,59%	6 4,089	6,57	6 2,13	% 11,459	6,39	9% 5,33	% 5,6	7% 12,90	% 13,6	3% 5,67%	6,929	% 11,53%	11,27%	6 7,28%	12,73%	11,27%	12,85%	12,90%	6,74%	5,50%	8,00%	5,67% -												
35 A. sp. 4 StnadoRiachoMG	6,39%	5,16% 1	2,73%	2,66% 1	2,97%	5,70%	8,35%	13,11%	11,08%	12,94%	6 13,09%	6 9,069	6 5,16	6 7,47	% 11,239	6 5,34	4% 4,80	% 4,79	9% 12,70	% 13,0	7% 5,14%	6 5,519	% 11,11%	11,26%	6,21%	12,88%	11,26%	11,42%	12,70%	5,16%	5,49%	0,00%	5,15%	8,00% -								_	_		
36 A. ibirapitanga IbirapitanBA	6,33%	5,79% 1	2,99%	2,60% 1	2,86%	6,36%	8,38%	13,58%	11,42%	12,25%	6 13,56%	6 9,519	6 5,79	6 7,83	% 11,799	6 5,79	9% 4,86	% 5,21	1% 12,20	% 12,2	0% 5,02%	6,149	% 11,44%	12,05%	6,51%	12,38%	11,86%	11,63%	12,20%	5,77%	5,56%	3,16%	5,39%	8,40%	3,16% -	·						_			
37 A. sibilatus IbirapitanBA	12,57%	14,19% 1	2,31% 1	2,77%	3,18%	14,37%	14,04%	12,12%	11,05%	13,21%	6 11,92%	6 14,219	6 14,19	6 13,12	% 10,849	6 14,19	9% 12,71	% 13,24	4% 13,17	% 13,1	3% 13,25%	6 13,639	% 11,07%	11,21%	6 13,98%	13,35%	11,39%	12,46%	13,17%	13,63%	13,60%	13,48% 1	3,62% 1	2,97% 1	3,48%	13,39% -	-								
38 A. sp. 5 (albosignatus Faivo05)	5,65%	4,25% 1	1,79%	4,25% 1	2,57%	4,43%	6,03%	11,62%	10,49%	12,16%	6 11,79%	6,389	6 4,25	6,03	% 11,219	6 4,43	3% 2,65	% 3,88	8% 12,10	% 12,8	3% 3,70%	6 4,60%	% 10,15%	10,49%	6,01%	11,92%	10,49%	11,54%	12,10%	4,77%	3,35%	5,49%	3,71%	5,85%	5,49%	5,20%	13,07%	-							
39 A. arildae SalesopolisSP	13,23%	12,14%	9,11% 1	2,36% 1	2,87%	12,33%	13,28%	9,29%	6,43%	0,91%	6 8,73%	6 14,179	6 12,14	6 13,63	% 6,879	6 11,96	5% 11,59	% 12,08	8% 0,90	% 0,1	3% 11,73%	6 12,499	% 6,64%	7,22%	6 12,66%	1,08%	7,04%	6,94%	0,90%	12,49%	12,81%	13,25% 1	2,11% 1	3,82% 1	3,25%	12,40%	13,36%	13,01%	-						
40 A. callipygius* CamanducaMG	4,60%	3,19% 1	2,30%	4,79% 1	2,92%	3,19%	6,74%	12,35%	9,91%	11,42%	6 12,33%	6,919	6 3,19	6,03	% 10,999	6 3,01	1% 2,65	% 0,18	8% 11,36	% 12,0	3% 0,53%	6 3,719	% 10,30%	10,49%	4,59%	11,54%	10,49%	11,54%	11,36%	3,53%	2,47%	4,61%	0,53%	5,50%	4,61%	5,02%	13,42%	3,70%	12,27%						
41 A. sp. 6* (=cavicola) DomMarES	4,78%	2,30% 1	2,15%	4,26% 1	3,31%	3,01%	7,27%	12,20%	10,69%	11,81%	6 12,18%	6,749	6 2,30	6 7,10	% 11,409	6 2,48	8% 3,37	% 3,53	3% 11,40	% 12,1	3% 3,53%	6 1,249	% 10,90%	11,07%	6 3,89%	11,58%	11,07%	11,76%	11,40%	1,06%	3,53%	5,33%	3,53%	6,92%	5,33%	5,96%	13,81%	3,89%	12,31%	3,35% -					
42 A. cochranae* RanQueSC	6,92%	6,21% 1	2,59%	6.76% 1	3,18%	5,86%	3,01%	12,05%	11,11%	12,59%	6 12,40%	6 4,089	6,21	6 2.13	% 11,279	6.04	4% 4.97	% 5.32	2% 12,72	% 13,4	5% 5,329	6.579	% 11.34%	11.09%	6 7.28%	12,54%	11,09%	12,68%	12,72%	6,39%	5,14%	7,64%	5.32%	0,36%	7.64%	8,02%	13,15%	5,49%	13,63%	5,14%	6,56% -	_			
43 A. eugenioi* UbatubaSP	11,41%	10,50%	9,19% 1	0,53% 1	0,18%	10,69%	11,67%	8,82%	0,74%	6,07%	6 8,26%	6 11,489	6 10,50	6 11.67	% 2,579	6 10.31	1% 9,59	% 10.40	5% 5,70	% 6.0	5% 9,90%	6 10,689	% 1,11%	6,25%	6 11,41%	5.88%	6,07%	7,20%	5,70%	11,05%	10,46%	11,26% 1	0,28% 1	1,49% 1	1,26%	11,21%	11,05%	10,30%	6,25%	10,27% 1	0.87% 11.3	30% -			
44 A. leucopygius* SalesoSP	4,42%	0,00% 1	2,53%	4,10% 1	3,69%	1,24%	6,22%	12,01%	10,32%	11,43%	6 12,00%	6 7,109	6 0,00	6,04	% 11,059	6 0,18	8% 3,20	% 3,30	5% 11,23	% 11,9	5% 3,37%	6 2,839	% 10,35%	10,35%	4,07%	11,41%	10,35%	11,42%	11,23%	3,02%	3,72%	5,16%	3,36%	6,57%	5,16%	5,79%	14,19%	4,25%	12,14%	3,19%	2,30% 6,2	21% 10,	50% -		
45 A. perviridis* MisioArgentina	6,21%	6,22% 1	2,94%	7,11% 1	3,72%	6,22%	2,84%	12,77%	11,85%	12,75%	6 13,12%	6 5,50%	6,22	6 0,89	% 11,829	6,40	0% 5,87	% 6,74	4% 12,89	% 13,6	2% 6,74%	6 7,289	% 12,07%	11,62%	6,75%	12,71%	11,62%	12,67%	12,89%	7,10%	6,92%	8,00%	5,74%	3,02%	8,00%	8,02%	13,66%	6,92%	13,80%	6,56%	7,63% 3,0)1% 12,	03% 6,	.22% -	
46 A. arildae* (=weygoldti)	13,40%	12,14%	9,93% 1	2,74% 1	3,60%	12,32%	13,10%	10,49%	6,80%	2,35%	6 9,93%	6 14,189	6 12,14	6 13,28	% 6,939	6 11,95	5% 11,62	% 12,30	2,37	% 2,3	11,94%	6 12,699	% 7,01%	7,48%	6 13,01%	2,55%	7,29%	7,67%	2,37%	12,70%	12,85%	13,46% 1	2,13% 1	3,47% 1	3,46%	12,59%	14,10%	12,50%	2,55%	12,12% 1	2,51% 13,3	28% 6,	30% 12,	,14% 13	.,46%

Uncorrected pairwise sequence distances (p-distances) of the Cytochrome c oxidase subunit 1. With an asterisk (*) terminals of Faivovich et al. 2005. See Appendix A for complete name of localities and voucher number. Values in percentage.

Species / Locality	1	2	3	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1 A. cavicola CongoMG	-																																	
2 A. perviridis BocainaSP	15,59%	-																																
3 A.cochranae LauMullerSC	12,68%	9,94%	-																															
5 A. ibirapitanga AmargosaBA	14,44%	17,89%	16,50%	-																														
6 A. sp. 1 MuriciAL	20,80%	20,58%	20,31%	20,18%	-																													
7 A. leucopygius TeresoRJ	9,83%	16,40%	15,25%	12,90%	20,35%	-																												
8 A. perviridis PinhalSP	15,21%	5,54%	10,39%	16,59%	20,16%	15,05%	-																											
9 A. ehrhardti CamAlegreSC	18,13%	19,07%	19,94%	19,82%	22,51%	19,97%	19,36%	-																										
10 A. eugenioi SaoSebastiaoSP	20,74%	20,80%	20,72%	21,05%	21,95%	20,43%	20,28%	15,98%	-																									
11 A. arildae BananalSP	19,51%	20,21%	18,81%	19,05%	21,22%	17,97%	18,74%	14,75%	13,52%	-																								
12 A. ehrhardti CamAlegreSC	18,59%	19,96%	20,42%	19,82%	22,74%	19,51%	20,43%	2,46%	16,44%	14,75%	-																							
13 A. sp. 3 BrasiliaDF	13,83%	10,43%	9,41%	16,13%	21,21%	14,59%	9,68%	18,43%	19,97%	17,97%	19,05%	-																						
14 A. leucopygius SanAndreSP	8,30%	14,90%	13,95%	13,06%	20,51%	5,07%	14,29%	19,51%	19,36%	18,28%	18,89%	13,36%	-																					
15 A. weygoldti CamacanBA	19,97%	18,71%	18,41%	18,28%	23,46%	18,89%	19,36%	17,05%	14,75%	14,13%	16,90%	19,05%	18,13%	-																				
16 A. perviridis SBdoSulSC	14,29%	6,41%	9,94%	15,52%	21,65%	14,90%	6,45%	18,13%	19,20%	18,43%	19,51%	9,06%	13,52%	17,97%	-																			
17 A. albofrenatus TijucaRJ	19,97%	20,99%	20,98%	19,97%	22,11%	19,51%	20,12%	16,90%	7,83%	12,14%	16,44%	20,12%	19,05%	14,29%	19,05%	-																		
18 A. leucopygius PocosdeCalMG	8,31%	14,91%	13,73%	13,69%	20,31%	4,46%	14,31%	19,85%	19,38%	18,00%	18,92%	13,38%	1,23%	17,54%	13,54%	19,38%	-																	
19 A. sp. 5 SaoPauloSP	12,44%	16,20%	13,75%	14,59%	21,89%	13,52%	15,98%	19,51%	19,20%	18,89%	19,20%	15,67%	12,14%	18,74%	14,44%	20,28%	11,84%	-																
20 A. callipygius CamanducaMG	12,65%	16,55%	14,62%	13,12%	20,78%	11,42%	14,97%	19,76%	19,59%	19,75%	19,75%	15,89%	11,41%	18,36%	13,89%	19,75%	10,49%	11,26%																
21 A. arildae StaMaMadaRJ	19,51%	19,36%	18,17%	18,13%	21,25%	18,43%	17,97%	15,05%	13,36%	1,54%	15,05%	17,51%	18,28%	13,52%	17,97%	12,29%	18,00%	18,59%	19,13%	-														
22 A. arildae SanAndreSP	19,66%	19,18%	17,75%	19,05%	21,39%	19,20%	17,82%	15,36%	13,52%	2,46%	15,67%	17,67%	19,05%	13,98%	17,51%	12,29%	18,77%	19,05%	20,21%	2,15%	-													
23 A. albosignatus SanAndreSP	11,83%	17,14%	14,65%	13,83%	21,06%	11,83%	15,36%	19,82%	19,36%	19,20%	20,12%	16,13%	11,52%	18,13%	14,13%	19,36%	10,92%	11,06%	3,24%	18,74%	19,51%	-												
24 A. cavicola CarangoMG	9,83%	13,91%	11,86%	13,21%	20,98%	7,07%	13,67%	19,66%	19,51%	18,13%	20,12%	13,06%	6,91%	18,59%	12,75%	19,05%	6,00%	11,37%	9,87%	18,13%	18,28%	10,60%	-											
25 A. eugenioi AngraRJ	20,46%	20,65%	20,95%	19,80%	22,35%	20,46%	19,67%	15,49%	3,23%	12,25%	15,99%	19,64%	19,48%	13,39%	18,69%	7,58%	19,54%	18,85%	19,62%	11,76%	11,93%	19,05%	19,82%	-										
26 A. arildae NovFriburgoRJ	19,66%	19,91%	18,18%	18,28%	21,08%	18,89%	18,43%	15,21%	13,52%	1,69%	15,21%	17,97%	18,74%	13,98%	18,43%	12,14%	18,46%	18,89%	19,44%	0,46%	2,30%	19,05%	18,59%	11,93%	-									
27 A. sp. 2 MaricaRJ	18,74%	19,92%	19,66%	19,05%	20,86%	19,36%	19,36%	15,67%	12,75%	12,90%	15,82%	19,66%	18,89%	14,59%	18,59%	11,98%	18,62%	17,97%	19,14%	12,75%	12,14%	18,43%	19,05%	11,43%	12,60%	-								
28 A. weygoldti SantaTereES	20,29%	19,27%	17,95%	18,29%	21,99%	19,48%	18,50%	17,10%	13,69%	12,70%	17,43%	18,44%	18,96%	13,23%	17,65%	14,19%	19,14%	19,29%	18,60%	12,04%	12,70%	19,11%	19,48%	12,36%	12,38%	15,68%	-							
29 A. arildae TeresoRJ	19,66%	19,36%	18,18%	18,59%	21,07%	18,59%	17,97%	14,59%	13,52%	1,38%	14,90%	17,51%	18,13%	13,98%	17,67%	12,44%	17,84%	19,05%	19,59%	0,77%	2,00%	19,20%	18,28%	11,93%	0,92%	12,90%	12,21%	-						
30 A. sp. 6 SdoBrigdeMG	9,87%	13,77%	11,86%	13,01%	20,94%	6.93%	13,87%	19,33%	18,25%	18,24%	19,87%	12,98%	7,26%	18,44%	12,68%	18,92%	6,27%	11,67%	9,77%	18,26%	18,43%	11,05%	0.99%	19,58%	18,76%	18,91%	19,53%	18,43%	-					
31 A. flumineus TeresoRJ	11,91%	16,89%	15,69%	13,16%	19,51%	10,83%	15,63%	19,97%	21,06%	20,28%	19,67%	15,94%	11,45%	18,72%	14,24%	20,29%	10,21%	10,52%	4,03%	19,66%	20,74%	5,10%	10,06%	20,62%	19.97%	18,58%	19,06%	20,12%	10,21%	-				
32 A. sp. 4 SdoCipoMG	15,25%	17,10%	15,88%	10,44%	21,67%	14,79%	17,34%	20,24%	20,73%	20,03%	20,84%	17,03%	14,57%	20,20%	16,75%	21,80%	14,76%	13,51%	14,99%	19,52%	19,53%	15,35%	13,49%	21,28%	20,07%	20,70%	19,60%	19,34%	14,25%	14,42%	-			
33 A. sp. 4 StnadoRiachoMG	13,00%	15,44%	14,32%	9,13%	20,35%	14,06%	15,44%	18,76%	19,16%	18,30%	19,30%	15,48%	12,85%	18,46%	14,89%	19,84%	13,20%	12,38%	13,27%	17,64%	18,14%	13,74%	12,53%	19,68%	18,15%	18,97%	17,42%	17,47%	13,06%	12,87%	2,89%			
34 A. arildae* SalesSP	19,51%	18,98%	17,53%	18,89%	21,55%	19,05%	17,97%	15,21%	13,36%	2,61%	15,52%	17,82%	18,89%	13,83%	17,36%	12,44%	18,61%	18,89%	20,37%	2,30%	0,15%	19,66%	18,13%	11,77%	2,46%	11,98%	12,87%	2,15%	18,26%	20,89%	19,34%	17,97%		
35 A. cochranae* RanQueSC	13,52%	9,65%	1,06%	16,28%	21,31%	14,44%	9,99%	19,97%	20,43%	18,74%	20,28%	9,06%	13,52%	18,13%	8,91%	21,20%	13,23%	13,67%	14,81%	18,28%	18,28%	14,75%	11,98%	20,47%	18,43%	19,51%	18,96%	18,28%	12,35%	14,85%	16,38%	15,05%	18,13% -	
36 A. perviridis* MisioArgentina	13,83%	5,15%	9,07%	14,59%	20,98%	14,44%	5,53%	18,59%	19,05%	18,89%	19,97%	9,22%	13,06%	17,51%	3,07%	20,28%	13,08%	14,75%	13,27%	18,13%	17,97%	13,52%	12,44%	18,36%	18,59%	18,28%	17,00%	18,13%	12,51%	13,62%	15,10%	13,35% 1	17,82%	8,60%

Appendix D

Cloacal characters.

In the sub cloacal region of some hylids the granules are of heterogeneous size and can be concentrated bellow the cloacal opening (Figure D.1 and D. 2). Lutz and Lutz (1938), when describing the former *Hyla albosignata* (= *Aplastodiscus albosignatus*) named the species based on the presence of a white glandular agglomerate of tubercles bellow the cloacal opening. The authors called these granules "*milium*", a term commonly used in dermatology for white dermic cysts. Taxonomic studies on the *A. albosignatus* group followed this terminology and studied the variation of the *milium* and other structures around the cloacal opening, diagnosing species by the combination of characters of the pericloacal ornamentation (see Cruz and Peixoto, 1985; Cruz *et al.*, 2003). Faivovich *et al.* (2005) suggested presence of elaborate tubercles and ornamentation around the cloaca as a putative synapomorphy of this group.

Cruz and Peixoto (1987) and Carvalho-e-Silva and Carvalho-e-Silva (2005) reported an "upper-cloacal fold" and tubercles above the cloacal opening in some species of the *A. albofrenatus* group. However, these structures are rarely whitish as in the *A. albosignatus* group, a possible reason why they have not been referred to by the same names. In *A. cochranae (A. perviridis* group) a white line is present above the vent (Garcia *et al.*, 2001), and a dermal fold just below the vent opening has been reported for *A. sibilatus* (Cruz *et al.*, 2003). It is likely that in many instances these characters are homologous and/or represent more than one character state.

Among the outgroups, the cloacal morphology has been well reported in species of the *Hyloscirtus larinopygion* group, which have a swollen cloacal region with a series of large, flat tubercles around the cloacal opening (Rivera-Correa and Faivovich, 2013), that, at least in some species, is involved in a stereotypic antipredator posture (Kizirian *et al.*, 2003). The few available records of antipredator postures in species of *Aplastodiscus* do not suggest any role of the cloacal region (Toledo *et al.*, 2011; Ferrante *et al.*, 2014). *Aplastodiscus* and the *Hyloscirtus bogotensis* group share green coloration, green bones due to biliverdin impregnation, reproduction in streams and cloacal ornamentation. Note that some of these occur in other Cophomantini as well (e.g., Barrio, 1965; Faivovich et al., 2006; Faivovich and De la Riva, 2006; Garcia et al., 2007).

There are many instances of the occurrence of sub cloacal tubercles and folds among arboreal anurans such as in many centrolenids and, among hylids, in some species of *Hypsiboas* of the *H. albopunctatus*, *H. faber* and *H. punctatus* groups, *Itapothyla*, and *Sphaenorhynchus* (see Figure D.2 for some examples, see also Myers and Donnelly, 2008, and Barrio-Amorós *et al.*, 2011, for cloacal tubercles in *Hypsiboas*). Our study of cloacal morphology in *Aplastodiscus* indicates that a structure comparable to a *milium* is also present in the *A. albofrenatus* group (Figure D.1 "c").

Figure 2 shows the optimization of four characters of cloacal ornamentation in *Aplastodiscus*. Bellow is the list of the characters studied (see also Table 1 for data matrix).

(1) Pericloacal ornamentation (=flap, glandular line, upper cloacal fold): In some species of *Aplastodiscus* the upper cloacal region shows a number of modifications independent of the presence of pigmentation (see Figure D.1).

0. Absent.

- 1. Present, restricted to the supra cloacal region
- 2. Present and elliptical, delimiting the cloacal opening

(2) Iridophores in the outer cloacal epithelium: When the cloacal ornamentation shows an elliptical pattern, the area of outer cloacal epithelium is unpigmented.

- 0. Absent.
- 1. Present
- (3) Concentration of heterogeneous granules bellow the cloacal opening.
 - 0. Absent.
 - 1. Present

(3) Sub cloacal dermal fold: *A. sibilatus* is the only species of *Aplastodiscus* that shows a sub cloacal dermal fold (Figure D.1 "d"). We considered the possibility that this fold might be homologous with "*milium*" granule, however, the position and complete absence of granules in the cloacal region of *A. sibilatus* suggests that they are independent characters.

- 0. Absent
- 1. Present

Figure D.1: Cloacal ornamentation in some species of *Aplastodiscus*. Arrows indicate: character I, state one in "(a)" state two in "(h)"; presence of character II and III in "(c)"; and presence of character IV in "(d)". (a) *Aplastodiscus albofrenatus* EI7546. (b) *A. arildae* MNRJ30972. (c) *A. ehrhardti* CFBH5550. (d). *A. sibilatus* CFBH32528. (e) *A. cochranae* CFBH2990. (f) *A. musicus* EI7527. (g) *A. callipygius* CFBH18109. (h) *A. flumineus* CFBH30833. (i) *A. ibirapitanga* CFBH32533. (j) *A. cavicola* holotype. (k) *Aplastodiscus* sp.5 CFBH1824 (l) *A. cavicola* UFV790. Scale: 2.5mm.

Figure D.2. Cloacal ornamentation in some hylids. (a) *Hyloscirtus alytolylax* USNM285866. (b) *Hypsiboas albomarginatus* CFBH37050. (c) *H. punctatus* CFBH23494. (d) *H. pardalis* CFBH33168. (e) *Sphaenorhyncus lacteus* CFBH15726. (f) *Itapotihyla langsdorffii* CFBH35131. Scale: 2.5mm.

Table D.1: Data matrix for cloacal characters.

Terminal	1	2	3	4
A. albofrenatus	2	1	1	0
A. albosignatus	1	0	1	0
A. arildae	0	1	1	0
A. callipygius	1	0	1	0
A. cavicola	2	0	1	0
A. cochranae	0	0	0	0
A. ehrhardti	0	1	1	0
A. eugenioi	1	0	1	0
A. flumineus	1	0	1	0
A. ibirapitanga	2	0	1	0
A. leucopygius	2	0	1	0
A. perviridis	0	0	0	0
A. sibilatus	0	0	0	1
A. weygoldti	0	1	1	0
A. sp. 1	0	0	0	1
A. sp. 2	?	?	?	?
A. sp. 3	0	0	0	0
A. sp. 4	2	0	1	0
A. sp. 5	1	0	1	0
A. sp. 6	2	1	1	0
Bokermannohyla martinsi	0	?	0	0
Bokermannohyla hylax	0	0	0	0
Bokermannohyla oxente	0	?	?	0
Hypsiboas pellucens	?	?	?	0
Hypsiboas albopunctatus	0	0	?	0
Hypsiboas prasinus	0	0	?	0
Hypsiboas faber	0	0	?	0
Hypsiboas semilineatus	0	0	?	0
Hypsiboas punctatus	0	1	0	0
Hypsiboas lemai	?	?	?	0
Hyloscirtus tapichalaca	?	?	?	0
Hyloscirtus armatus	?	?	?	0
Hyloscirtus palmeri	2	0	0	0
Myersiohyla kanaima	?	?	?	0

Additional references

Barrio, A. (1965). Cloricia fisiologica en batracios anuros. Physis. 69, 137-142.

Barrio-Amorós, C. L., Señaris, J. C., MacCulloch, R. D., Lathrop A. Guayasamin, J. M.,

Duellman W. (2011). Distribution, vocalization and taxonomic status of

Hypsiboas roraima and *H. angelicus* (Amphibia: Anura: Hylidae). *Papéis Avulsos de Zoologia*. **51**, 21–28.

- Faivovich, J., De la Riva, I. (2006). On "*Hyla*" chlorostea Reynolds and Foster, 1992, a hylid of uncertain relationships, with some comments on *Hyloscirtus* (Anura: Hylidae) Copeia. 4, 785–791.
- Faivovich, J., Moravec, I., Cisneros-Heredia, D. F., Köhler, J. (2006). A new species of the *Hypsiboas benitezi* group from the western amazon basin (Amphibia: Anura: Hylidae). *Herpetologica*. 62, 96–108.
- Ferrante, L., Sacramento, M., Angulo, A. (2014). Defensive behaviour in *Aplastodiscus leucopygius* (Cruz and Peixoto, 1985) (Anura: Hylidae). *Herpetology Notes*. 7, 135–138.
- Garcia, P. C. A., Faivovich, J., Haddad, C. F. B. (2007). Redescription of *Hypsiboas* semiguttatus, with the description of a new species of the *Hypsiboas pulchellus* species group. *Copeia*. 2007, 933–951.
- Kizirian, D., Coloma, L. A., Paredes-Recalde, A. (2003). A new treefrog (Hylidae: *Hyla*) from southern Ecuador and a description of its antipredator behavior. *Herpetologica*. **59**, 3, 339–349.
- Myers, C. W. and Donnelly, M. A. The Summit Herpetofauna of Auyantepui,
 Venezuela: Report from the Robert G. Goelet American Museum–Terramar
 Expedition. Bulletin of the American Museum of Natural History. 308, 1–147.
- Toledo, L.F., Sazima, I. Haddad, C.F.B. (2011). Behavioural defences of anurans: an overview. *Ethology Ecology & Evolution*. 23, 1–25.

Appendix E

Additional specimens studied

Collection Célio Fernando Baptista Haddad (CFBH): CFBH 5550 (*A. ehrhardti*); CFBH 13764, CFBH22815, CFBH 30828–29, CFBH22020, CFBH 25547, CFBH 10842 (*A. arildae*), CFBH 12822, CFBH 6645, CFBH 23205, CFBH 25647, CFBH 4055, CFBH 5916 (*A. eugenioi*) CFBH 32528 (*A. sibilatus*) CFBH2990 (*A. cochranae*) BB 338, MZUSPfield 1451, CFBH 14188, CFBH 17570, CFBH 19264–66, CFBH 4940, CFBH 4942–43, CFBH 7714, CFBH 18109; (*A. callipygius/A. albosignatus*); CFBH30833 (*A. flumineus*) CFBH32533 (*A. ibirapitanga*) CFBH1824 (*Aplastodiscus* sp.5); CFBH37050 (*Hypsiboas albomarginatus*); CFBH23494 (*H. punctatus*); CFBH33168 (*H. pardalis*); CFBH15726 (*Sphaenorhyncus lacteus*); CFBH35131 (*Itapotihyla langsdorffii*).

Collection Eugenio Izecksohn (EI): EI 7529–30; 7531; 7533; 7527–28 (*Aplastodiscus musicus*); EI 7546 (*Aplastodiscus albofrenatus*) *A. cavicola* holotype.

Museu de Zoologia da Universidade de São Paulo (MZUSP): MZUSP 106789 (*Aplastodiscus musicus*).

Museu Nacional do Rio de Janeiro (MNRJ): MNRJ30972 (*A. arildae*)

United States National Museum (USNM): USNM 303022 and 208734 (*A. arildae*); USNM285866 (*Hyloscirtus alytolylax*).

Universidade Federal de Viçosa (UFV): UFV790 (*A. cavicola*).

Appendix F

Morphological variation of diagnostic characters of A. albosignatus and A. callipygius.

We consider *A. callipygius* (Cruz and Peixoto, 1985) a junior synonym of *A. albosignatus* (Lutz and Lutz, 1938) based on our topology and low genetic distances. In addition, we studied the morphology of several specimens that were not available at the time of the description of *A. callipygius*. These species were differentiated by Cruz and Peixoto (1985) on the basis of three characters: shape of snout in dorsal view, size of calcar tubercle, and size of vocal sac.

Figure F. 1 shows that calcar tubercle (small in *A. albosignatus* and large in *A. callipygius*) is highly variable even in the same population. The snout in dorsal view (pointed in *A. albosignatus* and in *A. callipygius*) is also variable within the same population (Figure F. 2), as is the size of vocal sac ("medium" in *A. albosignatus* and "large" in *A. callipygius*). Also, for both species are reported small granules in cloacal region, except in an elliptical "area" near the cloacal opening. In *A. albosignatus* this area without granules and the granules are "small" and in *A. callipygius* is "large": Figure F. 3 shows variation found of this character.

Figure F. 1: Intraspecific variation of calcar tubercle in *A. albosignatus*. Note that (a) (="small") and (e) (="large") are from the locality: Monte Verde, Camanducaia, State of Minas Gerais . (c) and (f) are from São José do Barreiro, State of São Paulo (type locality of *A. callipygius*); (b) is from São Luis de Paraitinga, State of São Paulo; (d) topotype of *A. albosignatus*. All localities in Brazil. (a) CFBH 14188 (b) CFBH 7714 (c) CFBH 19266 (d) BB 338 (e) CFBH 4942 (f) CFBH 19264. Scale 1mm. See text.

Figure F. 2: Intraspecific variation of *A. albosignatus* in snout in dorsal view. (a) is considered as "pointed" and (c) as "rounded". (b) is from the same locality as (c) and could be considered as nearly pointed/rounded. (a) CFBH18109 from São José do Barreiro, State of São Paulo (type-locality of *A. callipygius*); (b) and (c) are topotypes of *A. albosignatus* (BB 338 and MZUSPfield 1451). Scale 2mm. See text.

Figure F. 3: Intraspecific variation of granules around cloacal opening in *A. albosignatus*. Note that (a), (b), and (c) are from the same locality: Monte Verde, Camanducaia, State of Minas Gerais; (d) is from São José do Barreiro, State of São Paulo (type locality of *A. callipygius*); (e) and (f) are topotypes of *A. albosignatus*. All localities in Brazil. (a) CFBH 4940 (b) CFBH 4943 (c) CFBH 17570 (d) CFBH 19265 (e) MZUSPfield1451 (f) BB 338. Scale 2mm. See the text.

Specimens studied: *Célio Fernando Baptista Haddad collection:* CFBH 164; CFBH 3004; CFBH 3006; CFBH 3184; CFBH 3909; CFBH 4940; CFBH 4941; CFBH 4942; CFBH 4943; CFBH 4946; CFBH 4947-4948; CFBH 5544; CFBH 5545; CFBH 6718; CFBH 8428; CFBH 9898; CFBH 10157; CFBH 10981; CFBH 11043; CFBH 11183; CFBH 11213; CFBH 23694. *Museu de Zoologia da Universidade de São Paulo:* MZUSP 13861-62; MZUSP 14920-22; MZUSP 14925-14927; MZUSP 53344-47; MZUSP 59687; MZUSP 60910; MZUSP 74432; MZUSP 76446; MZUSP 76545; MZUSP 76760-61; MZUSP 88020; MZUSP 92543; MZUSP 93268-93269; MZUSP 117889-95; MZUSP 118608; MZUSP 118610-12; MZUSP 123500; MZUSP 125384; MZUSP 127596-127598; MZUSP 128357-58; MZUSP 134687-88; MZUSP 136099; MZUSP 136311-14; MZUSP 136333; MZUSP 136848-49. *Museu Nacional do Rio de Janeiro*: MNRJ 24305-06; MNRJ 280022; MNRJ 3244-3251; MNRJ 4175-76; AL 722; AL 1978-80.