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Experimental characterization of collision avoidance in pedestrian dynamics
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In the present paper, the avoidance behavior of pedestrians was characterized by controlled experiments.
Several conflict situations were studied considering different flow rates and group sizes in crossing and head-on
configurations. Pedestrians were recorded from above, and individual two-dimensional trajectories of their
displacement were recovered after image processing. Lateral swaying amplitude and step lengths were measured
for free pedestrians, obtaining similar values to the ones reported in the literature. Minimum avoidance distances
were computed in two-pedestrian experiments. In the case of one pedestrian dodging an arrested one, the
avoidance distance did not depend on the relative orientation of the still pedestrian with respect to the direction of
motion of the first. When both pedestrians were moving, the avoidance distance in a perpendicular encounter was
longer than the one obtained during a head-on approach. It was found that the mean curvature of the trajectories
was linearly anticorrelated with the mean speed. Furthermore, two common avoidance maneuvers, stopping and
steering, were defined from the analysis of the acceleration and curvature in single trajectories. Interestingly, it
was more probable to observe steering events than stopping ones, also the probability of simultaneous steering
and stopping occurrences was negligible. The results obtained in this paper can be used to validate and calibrate
pedestrian dynamics models.
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I. INTRODUCTION

The collision avoidance mechanism of biological, syn-
thetic, or virtual agents is a relevant problem in several
fields, such as pedestrian dynamics, microscopic simulation of
transport systems, moving robots, and animation of characters
for video games and motion pictures.

After a first wave of operational-level models of pedes-
trian dynamics, inspired by pioneering models, such as the
“social force model” [1,2] and the “bionics-inspired cellular
automaton model” [3], a new generation of pedestrian models,
which equip the simulated agents with more sophisticated
avoidance mechanisms, has been developed in the past years.
For instance, Moussaı̈d et al. [4] presented a model using a
“cognitive heuristics” to determine the norm and direction of
the desired velocity for each agent dynamically during the
evolution of the system. Karamouzas et al. [5] proposed a
method for collision avoidance by modifying the social force
model, basically, by replacing the social force term by a new
“evasive” force that tends to avoid future collisions. Also, in
the model proposed by Wang et al. [6], the social term is
removed, and pedestrians can actively avoid collisions using
the self-driven force that leads pedestrians to the quickest path
to destination in the vision field of the simulated pedestrian.

The development of models of this kind requires specific
experimental data in order to calibrate and validate them.
Most of the data obtained for pedestrians in laboratory condi-
tions correspond to evacuation and unidirectional flows used
to study the flow rate at doors and fundamental diagrams.
However, experiments of collision avoidance between pedes-
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trian flows at different densities are less frequent in the
literature.

We can mention the work of Bamberger et al. [7], who
studied the crossing flow of pedestrians at relatively high
density. The authors reported the formation of unstable stripes
(orthogonal to the sum of the velocity vectors of the two main
walking directions) and high flow values compatible with
not-crossing configurations. Also, Lian et al. [8] performed
experiments of four-directional intersecting pedestrian flows
in high density regimes studying the density-velocity rela-
tionship, lane formation, and the effect of an obstacle in the
flow patterns. However, the main results of these investigations
are macroscopic and do not provide enough details on the
individuals’ avoidance maneuvers.

At the other extreme (low density experiments), Paris
et al. [9] presented results for two pedestrians moving
perpendicularly. The authors characterized the pedestrians’
interaction by means of the speed and orientation of individual
trajectories in order to predict the agents’ behavior under a
potential collision. This information was used to calibrate their
proposed model with reactive navigation.

Another related characteristic of microscopic pedestrian
trajectories is the lateral swaying produced by the mechanism
of human biped walk. Besides the catastrophic consequence
when this behavior resonates with a bridge structure [10], it
is also relevant for the design of pedestrian computational
models.

The effect of swaying has been observed for unidirectional
flows at high densities [11], and it has been considered as
one of the factors determining the personal space necessary
for pedestrians in order to move forward. For example, Pauls
[12] proposed that swaying should be taken into account for
designing exit widths. Also, Chraibi et al. [13] considered
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this lateral displacement in the “generalized centrifugal force
model” for pedestrian dynamics. This model was extended
by Krausz and Bauckhage [14] in order to reproduce the
swaying patterns observed in high density crowds. Hoogen-
doorn and Daamen [15] studied unidirectional flows through
bottlenecks and found a relationship of the swaying move-
ment with the pedestrian velocity: whereas the swaying was
high for low velocities (∼0.4 m/s), it decreased for large
ones (∼2 m/s).

The experimental swaying referred to above corresponds to
pedestrians walking in the same direction, and it is not related
to avoiding maneuvers for which the angular deviations are
expected to be larger. In this paper, we characterize both kinds
of angular deviation within trajectories: the lateral swaying for
almost free pedestrians and the steering maneuvers in order to
avoid other pedestrians.

Navigation pedestrian models require more experimen-
tal data ranging from low to high density scenarios and
considering crossing and head-on potential collisions. Also,
new “macroscopic” observables describing avoidance be-
havior should be defined. These are the objectives of
the experiments and analyses performed in the present
paper.

II. PEDESTRIAN EXPERIMENTS

The experiments consisted of recording the two-
dimensional (2D) trajectories of walking pedestrians and
analyzing their avoidance behavior under different conditions.

The experiments were performed with the participation
of 20 volunteers (females and males about 22 years old) in
an empty parking lot at the Instituto Tecnológico de Buenos
Aires. Each volunteer wore a white cap in order to hide their
identity and to facilitate subsequent image processing. During
the whole experiment, each pedestrian only had to walk less
than 500 m (not continuously) inside the measurement area
at normal speed and behavior and with no physical contact.
Under these conditions, the experimental protocol did not
involve any kind of risk, protecting the integrity, privacy,
and confidentiality of the personal information of the research
subjects.

A GoPro 3 camera was placed in the zenithal position
(top-down view) at 4 m height from the floor. It captured the
dynamics of the pedestrians within an area of ∼5× ∼2.8 m2

(in the x and y directions, respectively) at z ∼ 1.7 m, z being
the height from the floor. The total image size was 1920 × 1080
pixels, and the movies were captured at 30 frames/s, so the
data obtained were sampled at �t = 1/30 s. In order to avoid
the transient part of the trajectories near the starting and ending
points, the analysis on the x axis was limited to the range of
x ∈ (−1.6,1.6 m). Due to the aspect ratio of the image, it was
not necessary to further limit the y axis lying in the range of
y ∈ (−1.4,1.4 m).

Pedestrians were tracked using the center position of the
cap to estimate their individual vertical axis, which minimizes
the lens deformation. The tracking technique used in this
paper allowed assigning a unique label to each pedestrian.
The following procedures were implemented to recover single
pedestrian trajectories from the movies:

(1) a background model [16] to detect the motion in the
frame,

(2) a white hat detector using color and shape (ellipse) in
the moving regions in order to obtain the position of the person,

(3) the mean shift [17] algorithm and two color spaces, red,
green, and blue and YCbCr to follow each detected pedestrian
from the sight until exiting the scene.

The next step consisted of reconstructing each pedestrian
trajectory from the 2D position on the image to the three-
dimensional real world coordinates. The lens distortion of the
camera [Fig. 1 (i)] was corrected using the Santana-Cedrés
procedure [18]. To this end, parallel thin ropes were placed
equidistantly at z = 1.7 m from the floor, i.e., approximately
the average height of the volunteers, and a picture was taken
with the GoPro 3 camera. Then, using a known pattern and the
Toscani-Faugueras algorithm [19], the intrinsic camera pa-
rameters {(fx,fy),(cx,cy),(k1,k2,p2,p2,k3)} were estimated,
(fx,fy) being the focal lengths in the x and y directions, (cx,cy)
being the optical center of the image plane (usually, it is the
center of the image), and (k1,k2,p2,p2,k3) being the distortion
coefficients.

We assume that the moving points, given by the centers
of the white caps, evolve on the horizontal fixed plane at
z = 1.7 m. By using the iterative algorithm POSIT adapted
to coplanar points [20] and the known references on the ropes
of Fig 1.(i), the pose of the camera is estimated, which allows
finding the rotation and translation matrices R and T . It is then
possible to associate 2D points moving on the image with the
trajectories in the real space given by (x,y,z = 1.7 m).

The particular configuration of the setup where the trajec-
tories are parallel to the image plane simplifies the analysis of
the model deviation. The error (ε) can be estimated for any
axis in a similar way: We look at the error on the x axis since
it is larger than that of the y axis because of the image format.
It can be approximated analytically by εx = dh|u − cx |/fx ,
where dh is the difference in height from the mean value,
u is the position of the point on the image, cx is the center
of the image, and fx is the focal length on this axis. This
error increases linearly from zero at the center of the image
to a maximum at the boundaries of the region of interest.
Considering that 95% of the participants are between 1.61 and
1.79 m tall, then dh = 9 cm. Having fx = 1884 pixels and
cx = 957, the maximum error on the x axis at the boundaries
of the region of interest (u = 1708 pixels) is max(εx) =
3.58 cm.

Several configurations of potential collisions between
pedestrians were studied. To this end, the participants were
divided into two groups, and each group was asked to walk in
a certain direction. The direction of movement was along the x

axis or x and y axes in order to study head-on or crossing at 90◦
encounters for different flows and group sizes, respectively.
All the configurations considered in this study are shown in
Fig. 1.

We will refer to these data as the raw coordinates of the
trajectory rr (t) = [xr (t),yr (t)]. Because the tracking algorithm
has a finite precision in the determination of the pedestrian
position, high frequency fluctuations can be present in these
raw trajectories. Examples of raw trajectories are shown as
circles in Fig. 2(a). Thus, we further smooth each trajectory by
fitting a generalized regression neural network (GRNN) from
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FIG. 1. Snapshots of avoidance experiments. The arrows indicate the pedestrians’ direction of motion. (a) One pedestrian avoiding another
arrested pedestrian, which can be considered as an elliptical obstacle. (b) One to one head-on pedestrian avoidance. (c) One to one perpendicular
crossing. (d) and (e) Two groups of two (d) and three (e) pedestrians in a perpendicularly crossing situation. (f) Two lines of pedestrians in a
perpendicular crossing. The average flow of each line is 0.9 pedestrian/s. (g) and (h) Two groups of ten pedestrians in a perpendicular crossing
(g) and in a counterflow configuration (h). (i) Parallel white ropes separated by 0.5 m, placed at 1.7 m from the floor for correcting lens
deformation and calibrating distance units.

the MATLAB NN toolbox [21] to each coordinate as a function
of time rr (t) ∼ r(t) = [x(t),y(t)], where x(t) and y(t) are the
GRNN fittings of xr (t) and yr (t), respectively. This kind of
network has a radial (Gaussian) basis function layer and has
the advantage of having only one parameter: the spread (sp).
In our case, we use sp = 3 �t = 0.1 s, producing the desired
smoothed trajectories. This allows us to calculate speeds and
curvatures by the discrete derivation of r(t) using the highest
sampling frequency given by the camera (30 fps). Examples of
the GRNN fitting can be seen as solid line curves in Fig. 2(a)

(which are placed over the raw trajectories plotted as circles).
From now on, only the smoothed trajectories r(t) will be used
in the analysis.

III. RESULTS

A. Free pedestrians

First, we characterized the almost free trajectories in
experiments where only two pedestrians are present. These
configurations are shown in Figs. 1(a)–1(c).
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FIG. 2. Recovered trajectories. (a) Two representative recovered trajectories (circles) and their NN fitting r (solid line). (b) Lateral swaying:
definition of the amplitude (A) and period (L). The solid line corresponds to the smoothed trajectory r, and the dashed one represents the
main direction of motion determined using the quadratic fitting (r′). The ellipse at (x,y) = (0,0) represents an arrested pedestrian. (c) Another
trajectory displaying less lateral swaying (lower A).
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1. Amplitude and period of swaying

As already mentioned, pedestrians display a lateral swaying
related to the mechanism of biped motion. In order to quantify
this oscillation we first determined the main direction of
motion. To this end, we computed the quadratic fitting of
each component of the smooth trajectory (r), i.e., x(t) and
y(t) as functions of time. The resulting trajectory, r′ =
[x ′(t),y ′(t)] [where x ′(t) = px2t

2 + px1t + px0 and y ′(t) =
py2t

2 + py1t + py0 are the fitted data, pxi and pyi being
the coefficient found by least squares], represents the main
direction of motion. Examples of the quadratic fitting of
smoothed trajectories can be seen in Figs. 2(b) and 2(c) as
dashed lines. Then, the amplitude (A) and period (L) of the
lateral swaying were obtained as the maximum distance from
the trajectory r to its quadratic fitting r′ and the segment
between three successive crossings of r and r′, respectively
[Fig. 2(b)].

It should be noted that the fitted trajectories r′ are only
used in the present subsection considering the free-pedestrian
scenarios given by the 20 trajectories of a single pedestrian
walking along the x or y direction in the presence of an
arrested one [see Fig. 1(a)]. Both directions of motion provide
data compatible with the same distribution of parameter
values. The obtained period was L = 1.60 ± 0.28 m (mean
± standard deviation), whereas the amplitude took a value of
A = 0.036 ± 0.024 m. We assume these values as the ones
corresponding to the free walking of a single pedestrian’s
experimental condition.

The obtained swaying amplitude is in agreement with the
one reported in Ref. [15] (∼0.04 m) for the range of pedestrian
velocities (1.4–1.7 m/s). This range corresponds to the one
measured in our experiments [see Fig. 6(a)].

2. Minimum avoidance distance

In order to characterize avoidance events between pairs of
pedestrians, we computed the distance between two subjects
considering their smoothed trajectories ri and rj in every frame
as d(t) = {[xi(t) − xj (t)]2 + [yi(t) − yj (t)]2}1/2 and defined
the minimum avoidance distance dmin when d(t) is minimum.
In the case of one moving pedestrian and an arrested one
[Fig. 1(a)], we evaluated dmin for pedestrians moving in the x

and y directions. Considering that the stalled pedestrian has an
approximately elliptical shape with its large axes orientated in
the x-axis direction, walking in the x and y directions is not
a symmetrical condition due to the different “impact section”
seen by the walking pedestrian. However, we found that dmin

did not depend on the direction of the path (Table I). On
the other hand, two converging pedestrians in perpendicularly
crossing trajectories, such as the one shown in Fig. 1(c),
displayed larger values of dmin than those found during head-on
encounters [Fig. 1(b)]. Table I displays the mean and standard
deviations of dmin obtained for these four configurations.

3. Instantaneous speed

The pedestrians’ instantaneous speed was computed from
the trajectories r as v(t) = �r

�t
, where �r = (�x2 + �y2)1/2

and �t = 1/30 s, the camera sampling time. The spatial
difference (�r) is calculated as the difference between the
current position and the position in the previous frame.

TABLE I. Minimum avoidance distance for two-pedestrian ex-
periments. The first two lines correspond to the same distribution
and thus can be considered equal. The last two differ significantly
(Kolmogorov-Smirnov test: p value < 0.0015).

Configuration 〈dmin〉 (m) σ (dmin) (m)

Figure 1(a), y direction 0.77 0.12
Figure 1(a), x direction 0.73 0.12
Figure 1(b) (head-on) 0.71 0.13
Figure 1(c) (perpendicular) 1.00 0.18

Figure 3 shows the distribution of instantaneous speeds
obtained in the two-pedestrian experiments [Figs. 1(a)–1(c)].
In total, 74 trajectories were analyzed. The speeds displayed a
normal distribution behavior with a mean value equal to 1.66
and σ = 0.24 m/s. Furthermore, no differences were found
between the mean speeds before and after the avoidance event.

B. Collective avoidance behavior

We investigate here the steering and navigation maneuvers
performed by pedestrians to avoid collisions between them. To
this end, we will consider the following three quantities derived
from the trajectories: (a) the instantaneous speed v as defined
above; (b) the magnitude of the instantaneous acceleration
computed as a = �v

�t
; and (c) the instantaneous angular change

in the velocity direction defined as ω = θ
�t

, where θ is the
positive minimum angle between two consecutive vectors
dr = [r(t) − r(t − �t)]. The determination of θ involves three
consecutive points in the trajectory as shown in Fig. 4.

The change in direction ω(t) is a measure of the curvature
of the trajectory. Because of the lateral swaying, an oscillatory
behavior of ω(t) is expected. Also, the magnitudes of the
acceleration a(t) and the speed v(t) display this kind of
behavior (Fig. 5).

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

100

200

300

400

500

600

700

800

Speed (m/s)

F
re

qu
en

cy

FIG. 3. Instantaneous speeds of two-pedestrian experiments.
Histogram obtained from 74 trajectories corresponding to the config-
urations shown in Figs. 1(a)– 1(c). The mean value is 〈v〉 = 1.66 m/s,
and the standard deviation is σ = 0.24 m/s.
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FIG. 4. Definition of angle θ (t) to characterize the curvature of
trajectories.

In order to build an overall picture of pedestrians’ avoidance
maneuvers, we studied the behavior of these three magnitudes
in the configurations shown in Fig. 1. We estimated the mean
values and standard deviations of ω, v, and a averaging over
time and trajectories and analyzed their mutual dependence.

In Fig. 6(a) we plot the average angular change rate (〈ω〉)
against the average instantaneous speed (〈v〉). A clear trend
can be observed, indicating that, as the mean speed decreases
(corresponding to an increase in the number of pedestrians), the
mean curvature 〈ω〉 increases. This behavior can be understood
if we consider that pedestrians act as obstacles or barriers
between them that need to be avoided and, therefore, when
the density is large, the pedestrian trajectories display greater
changes in direction.

In order to quantify the variations within each trajectory
in terms of directionality and speed changes we computed
the maximum angular change and the speed dispersion in
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FIG. 5. Key variables derived from one representative trajectory
of a free pedestrian. The upper left panel depicts the trajectory, and
the arrow indicates the forward direction; the upper right panel shows
the speed evolution, and the lower panels display the acceleration
and curvature, respectively. The solid and dashed lines represent the
mean and threshold values that are explained below (see Fig. 7).

every single trajectory. The latter was defined as [max(v) −
min(v)]/〈v〉. In Fig. 6(b) we show these two quantities
averaged over all trajectories from each data set. The linear
correlation found indicates that, when the number of pedes-
trians and hence the complexity of the avoidance increases,
both the speed dispersion and the directionality spread also
increase.

However, since the data shown in Fig. 6 are average values,
it is not possible to distinguish whether both effects, i.e., large
changes in speed and directionality, occur within the same tra-
jectory and/or simultaneously. In order to assess this question,
we focused on two main avoidance maneuvers: abrupt change
in direction (steering) and abrupt speed reduction (stopping).

To recognize these particular events (e), we used a threshold
criterion. A steering event occurs when ω(t) exceeds a thresh-
old value given by ωthr = 2.8 × σ (ω), where σ is the standard
deviation of ω(t) in each trajectory. Similarly, a stopping event
is defined only for negative accelerations when a(t) decreases
below athr with athr = −2.8 × σ (a−), considering the standard
deviation of a−, i.e., computed for the set of values of a

fulfilling the condition a < 0. Examples of only steering,
only stopping, and steering and stopping events are shown
in Figs. 7(a)–7(c), respectively. Each pair of panels in Fig. 7
displays a(t) and ω(t), corresponding to the same trajectory.
Typically, avoidance maneuvers occur independently of one
another [Figs. 7(a) and 7(b)]. However, both events can occur
simultaneously [Fig. 7(c)]. In this case, we assumed that both
maneuvers are correlated when the separation in time between
the events is less than 3 �t (= 3/30 s = 0.1 s).

Furthermore, we also defined the start time (t0) of an abrupt
avoidance maneuver as the data point just before crossing
the mean value. Thus, the anticipation time (te) of a given
maneuver is the time elapsed since t0 up to the first data point
of the avoidance event. In Fig. 7, these data points are signaled
with arrows.

Looking only at the abrupt avoidance maneuvers defined
above (events e), the anticipation time is independent of
the density and velocity, showing a uniform value of te =
0.15 ± 0.04 s for steering events and, very close to it, te =
0.13 ± 0.02 s for stopping ones. And the mean values of
angular velocity and deceleration are 〈ωe〉 = 2.3 s−1 and
〈ae〉 = −2.5 ms−2, respectively. These quantities are listed in
Table II.

We then studied the frequency of occurrence of the different
avoidance maneuvers. The probability of occurrence of an
event (e) being steering, stopping, or both simultaneously
was estimated as Pe = Ne

N
, where Ne is the number of

trajectories having positive events and N is the total number
of trajectories in the set. We selected 290 trajectories having
at least 50 data points (∼1.67 s) after skipping the first and
the last 20% in order to avoid border artifacts as explained
in Sec. II. For each trajectory set corresponding to the
configurations shown in Fig. 1, we computed the probability
of occurrence of the different events. The results are shown in
Fig. 8.

Many interesting features can be derived from Fig. 8. For
the low density configurations, corresponding to head-on and
crossing trajectories of few (up to four) simultaneous pedestri-
ans [Figs. 1(a)–1(d)], stopping events are not observed. Under
space availability conditions, the only avoidance maneuver
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FIG. 6. Relationship between curvature and speed for pedestrian trajectories. Each symbol represents the average and standard deviation
for all trajectories corresponding to each experimental configuration shown in Fig. 1. (a) Angular change rate versus speed. (b) Maximum
angular change rate for each trajectory versus the difference between extreme values of the velocity normalized by its mean value.

observed is steering without abrupt deceleration. When the
number of pedestrians increases, the stopping and steering
frequencies also increase. It must be noted that experiment
II–V [configurations illustrated in Figs. 1(d)–1(g)] correspond
to perpendicularly crossing trajectories.

On the other hand, experiment VI [Fig. 1(h)] is a potential
head-on collision experiment, and for this case, the probability
of steering slightly decreases with respect to the one obtained
in experiment V for the same group size but in a crossing
configuration [Fig. 1(g)]. On the contrary, the stopping
probability in experiment VI is larger than that corresponding
to the perpendicularly crossing case, i.e., experiment V. This
suggests that head-on encounters may need less pronounced
steering events, which is consistent with the lower minimum
distance needed in the same case for almost free pedestrians,
as seen in Sec. III A 2.

To summarize, the global probabilities of avoidance
events considering all 290 trajectories were Psteering =
0.31, Pstopping = 0.10, and Psteering-and-stopping = 0.02. The co-
existence of both avoidance events (steering and stopping
simultaneously) was very low in every experiment, suggesting

that pedestrians choose between one maneuver (e.g., steering)
at the expense of the other (e.g., stopping).

We then wondered whether simultaneous events of this
kind can be considered a third avoidance behavior or they
are just a coincidence in time of the other two maneuvers.
In order to explore the frequency of the occurrence of
steering-and-stopping events, each trajectory was divided into
M segments of duration 3 �t , i.e., corresponding to the
time window chosen to resolve separate events. Then, the
overall probability of steering per segment was computed as
psteering = ns

NM
, where ns is the number of positive steering

events and N is the total number of trajectories. In the
same way, we determined the probabilities of stopping, and
steering-and-stopping per segment. We obtained psteering =
0.019, pstopping = 0.006, and psteering-and-stopping = 0.0015. In-
terestingly, the conditional probability of steering and stopping
simultaneously, considered as independent random variables,
is as follows: psteering × pstopping = 0.0001. This value is more
than an order of magnitude lower than the one determined
in the experiments, suggesting that the combined maneuver,
although rare, can be considered a third kind of maneuver.
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FIG. 7. Time evolution of acceleration and angular velocity for three trajectories. In all cases, the solid line represents the mean value, and
the dashed line is the threshold value of 2.8 × σ as explained in the text. (a) One steering event and no stopping one. (b) Stopping event but not
a steering one. (c) Stopping and steering events occurring simultaneously. Vertical arrows indicate events, i.e., values beyond thresholds. The
dashed and tilted arrows indicate the start of the maneuver.
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TABLE II. Values of angular velocity, deceleration, and anticipa-
tion time for both kinds of avoidance events.

Avoidance event (e) Mean Variance

ωe 2.3 s−1 1.6 s−1

ae − 2.5 ms−2 0.9 ms−2

te(ωe) 0.15 s 0.04 s
te(ae) 0.13 s 0.02 s

IV. CONCLUSIONS

In this paper, we experimentally investigated some features
of pedestrians’ avoidance mechanisms in crossing and head-on
encounters for different flow rates and group sizes. To this
end, we recorded, with high time resolution, the motion of
pedestrians walking in predefined ways. The 2D trajectories
were recovered from the movies and analyzed.

In the case of very low pedestrian densities, the swaying
amplitude (A) and length of one walking cycle, i.e., two
consecutive steps L were measured, obtaining A = 0.036 ±
0.024 and L = 1.60 ± 0.28 m. Also, the minimum distances
of encounter between two subjects were determined. We
found that, when one pedestrian is arrested and not moving,
the minimum distance (dmin ∼ 0.75 m) is independent of the
direction of the walking pedestrian with respect to the torso
orientation of the arrested one. On the other hand, when both
pedestrians are moving, the minimum avoidance distance is
greater (dmin ∼ 1 m) in the case of a potential perpendicular
collision than in the case of a head-on conflict situation
(dmin ∼ 0.68 m).

We also studied the maneuver mechanisms for different
pedestrian densities. We proposed a criterion for defining
abrupt avoidance events (stopping and steering) from the anal-
ysis of acceleration and curvature of single trajectories. Our
results showed that the frequency of both evasive maneuvers
increases with the number of pedestrians. Also, it is about
three times more probable to avoid another pedestrian by
changing the direction of motion (steering) than by an abrupt
deceleration (stopping). In other words, if there is enough
available space, pedestrians prefer to change their direction of
movement rather than decrease their speed.
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FIG. 8. Approximate probabilities of having avoidance events
for the different configurations studied. (I) Experiments described
in Figs. 1(a)–1(c), (II) Fig. 1(d), (III) Fig. 1(e), (IV) Fig. 1(f), (V)
Fig. 1(g), and (VI) Fig. 1(h). The configurations are ordered by
increasing the number of total events (rhombus).

Finally, we found that the probability of steering-and-
stopping per trajectory is very low (Psteering-and-stopping = 0.02).
However, a detailed analysis of the probabilities of occurrence
of these simultaneous events showed that they can be consid-
ered as a new type of maneuver different from steering and
stopping.

We expect that the data obtained from these pedestrian
avoidance experiments and their subsequent analysis will be
useful to validate and calibrate models in the area of pedestrian
dynamics simulation.
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