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Bending and Gaussian rigidities of confined soft spheres from second-order virial series
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We use virial series to study the equilibrium properties of confined soft-spheres fluids interacting through the
inverse-power potentials. The confinement is induced by hard walls with planar, spherical, and cylindrical shapes.
We evaluate analytically the coefficients of order two in density of the wall-fluid surface tension γ and analyze
the curvature contributions to the free energy. Emphasis is in bending and Gaussian rigidities, which are found
analytically at order two in density. Their contribution to γ (R) and the accuracy of different truncation procedures
to the low curvature expansion are discussed. Finally, several universal relations that apply to low-density fluids
are analyzed.
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I. INTRODUCTION

Inhomogeneous fluid systems with interfaces have been
studied for a long time and are ubiquitous in nature. Character-
istic examples of such systems are the two-phase coexistence
with vapor-liquid interface and the confined system with fluid-
wall interface. In the second case the interface is induced by an
external potential that yields spatial regions forbidden for the
fluid. From a thermodynamic perspective the correspondence
between the free-energy of the system and the shape of its inter-
face is a relevant topic both for basic and applied investigation.

Confined fluids enable us to study in a simple manner the
dependence of the interface free energy with the interface
shape by simply changing the shape of the vessel. In particular,
smooth interfaces are appropriate to analyze the deviation from
the well-known planar limit where the theoretical framework
is established. Even for low-density confined fluids the first
principles theories based in virial series approach are still
under development. Seminal work of Bellemans dates from
the 1960s [1–3] and later developments of Rowlinson and
McQuarrie [4,5] were done in the 1980s. Recently, new exact
results based on virial series were obtained for confined hard
spheres (HS) [6–8], square well, and even Lennard-Jones
systems [9]. This work aims to contribute in this direction by
studying the physical properties of pure repulsive soft-spheres
system confined by curved walls.

The soft-sphere particles interact through a tuneable soft-
ness core (without an attractive well) produced by the inverse-
power law potential (IPL). This model has interesting scaling
properties [10–12] and constitutes an important reference
to study more complex systems [13–15]. Several studies
focused on elucidating the relation between core-softness
and thermodynamic properties [16–19]. Basic research about
bulk transport and virial coefficients was started by Rainwater
and others [20–25], and continues up to present [18,26–28].
Analytic equations of state of the soft-sphere fluid were found
using as input the known bulk virial coefficients using resum-
mation, by adapting the Carnahan Starling equation of state for
HS to soft-spheres and utilizing Padé approximants [27–29].
Aspects of recent research interest in the soft-sphere system
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are the scaling law invariance of its properties [15,30] the
enhancement of effective attraction between colloids produced
by the soft repulsion in colloid+depletants system [31], the
equilibrium and nonequilibrium dynamics of particles [32],
and the analysis of the sound velocity near the fluid-solid
phase transition [33].

We will study the dependence on curvature of equilibrium
thermodynamic properties of the fluid confined by curved
walls based on its inhomogeneous second virial coefficient.
For simplicity only constant-curvature surfaces, i.e., planar,
spherical, and cylindrical, are considered. The expansion of the
wall-fluid surface tension on the surface curvature follows the
Helfrichs expression [34]. Applied to the sphere and cylinder
symmetry the expansion of γ (R) gives

γs(R) = γ − 2γ δ

R
+ 2k + k̄

R2
+ C

R3
+ · · · , (1)

γc(R) = γ − γ δ

R
+ k

2R2
+ · · · , (2)

where dots represent higher-order terms in R−1. Here, γ

is the wall-fluid surface tension for a planar surface and δ

is the (radius-independent) Tolman length, which is related
with the total curvature. Next term beyond γ δ includes
the bending rigidity k (associated with the square of the
total curvature) and the Gaussian rigidity k̄ (associated with
Gaussian curvature). In the present work we will analyze
Eqs. (1) and (2) using virial series expansion.

In the following Sec. II it is given a brief review of the
statistical mechanics virial series approach to inhomogeneous
fluids. The second-order cluster integral is analytically evalu-
ated for the confined soft-sphere system interacting through
IPL in Sec. III. There, the functional dependence on the
hardness parameter ν, the temperature, and the radius is shown.
Surface tension is studied at low density as a function of ν and
R in Sec. IV. In Sec. V the bending and Gaussian curvature
rigidity constants are extracted and studied as a function
of ν. It is found that for ν = 6 there exists a logarithmic
term in the surface free energy that corresponds to curvature
rigidities and that is absent for ν > 6. Several recently found
universal relations that apply to any fluid are here verified
for soft spheres. Besides, our exact results and some of these
universal relations are used to test the degree of accuracy of

2470-0045/2016/94(2)/022149(9) 022149-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.94.022149


IGNACIO URRUTIA PHYSICAL REVIEW E 94, 022149 (2016)

morphometric approach at low density. Finally, a summary is
given in Sec. VI.

II. STATISTICAL THERMODYNAMIC BACKGROUND

The following short summary about virial series for
confined systems attempts to give a closed form of the general
theory and contains a collection of ideas and formulas taken
from Refs. [4,6,35,36]. The virial series of the free energy here
developed will be used in Secs. III to V to study the confined
IPL system up to order two in the activity (the lowest nontrivial
order).

We consider an inhomogeneous fluid at a given temperature
T and chemical potential μ under the action of an external
potential. The grand canonical ensemble partition function
(GCE) of this system is

� = 1 +
∑
n=1

λnQn, (3)

where λ = exp(βμ) and β = 1/kBT is the inverse temperature
(kB is the Boltzmann’s constant). In Eq. (3) Qn is the canonical
ensemble partition function

Qn = �dnZn/n!, (4)

Zn =
∫

gn(x) exp(−βφ(n))dx, (5)

where � is the de Broglie thermal wavelength and d is
dimension. Zn is the configuration integral, φ(n) is the interac-
tion potential between particles, gn(x) = ∏n

i=1 g(xi), g(xi) =
exp (−βψi), and ψi is the external potential over the particle i.

In Eq. (3) the sum index may end either at a given
value representing the maximum number of particles in
the open system or at infinity. Fixing this value one may
study small systems [37]. The main link between GCE and
thermodynamics is still through the grand free energy �,

β� = − ln �. (6)

Some thermodynamic quantities could be directly derived
from � as, e.g., the mean number of particles 〈n〉 =
−βλ∂�/∂λ. Yet, other quantities could be derived from �

once volume and area measures of the system are introduced.
For fluids confined in regions of volume V bounded by
constant curvature surfaces with area A the grand free energy
can be decomposed as

� = −PV + γA, (7)

with bulk pressure P = − ∂�
∂V

|
μ,T ,A,R

and fluid-substrate sur-
face tension γ = (� + PV )/A.

In the GCE, several quantities can be expressed as power
series in the activity z = λ/�3 (virial series in z), with cluster
integrals τj as coefficients. The most frequent in the literature
are

β� = −
∞∑

j=1

zj

j !
τj , (8)

〈n〉 =
∞∑

j=1

jzj

j !
τj . (9)

For inhomogeneous fluids it is convenient to define the n-
particles cluster integral τn as

τn = n!
∫

gn(x) bn(x1, . . . ,xn)dx, (10)

where bn(x1, . . . ,xn) is the Mayer’s cluster integrand of
order n. To obtain Eq. (8) from Eqs. (3) and (6) we follow
the regular diagrammatic expansion [38]. For homogeneous
systems g(x) = 1 in Eq. (10) and therefore bn(x) does not
depend on the position of the cluster producing the usual Mayer
cluster coefficient bn. Thus, performing an extra integration

τn = n!
∫

∞
bn(r)dr = n!V bn, (11)

with V the volume of the accessible region, i.e., the infinite
space or the cell when periodic boundary conditions are
used [39]. Eqs. (7), (8), and (11) give the pressure virial series
in powers of z for the bulk system and using Eq. (9) the
standard virial series for βP in power of number density can
be obtained.

III. EVALUATION OF SECOND CLUSTER INTEGRAL

We focus on the case of an external potential ψ , which
is zero if r ∈ A and infinite otherwise. Furthermore, ∂A
(the boundary of A) is a surface with constant curvature
characterized by an inverse radius R−1 for spherical or
cylindrical surfaces and that is zero in the planar case.
Therefore Z1, the CI of a one-particle system, coincides with
V , the volume ofA and A corresponds with the boundary area.
Thus, τ1 = V , which is enough to describe the confined ideal
gas.

The first nontrivial cluster term is that of second order.
It describes the physical behavior of the inhomogeneous
low-density gases up to order two in z. We consider a
system of particles interacting through a spherically symmetric
pair potential φ(r), with r = |r2 − r1| the distance between
particles. For the second-order cluster we have b2(r) = f (r)
in terms of the Mayer’s function f (r) = exp (−βφ) − 1.
To evaluate τ2 we adapt and simplify here the approach
followed in Ref. [9]. Introducing the identity g(x1)g(x2) =
g(x1) − g(x1)[1 − g(x2)] in Eq. (10) and rearranging terms τ2

reads

τ2 = 2Z1b2 + �τ2, (12)

with b2 the second cluster integral for the bulk system and

�τ2 = −
∫ rmax

0
f (r)w(r)dr, (13)

w(r) =
∫ umax(r)

umin(r)
S(u)s(r,u)du. (14)

Here u is the distance between particle one and ∂A, S(u) is the
area of the surface parallel to ∂A that lies in A at a distance u,
and s(r,u) is the surface area of a spherical shell with radius r

(with the center in A at distance u from ∂A) that lies outside
of A. By definition function w(r) is thus purely geometric.
A representation of S(u) and s(r,u) can be seen in Fig. 1 of

022149-2



BENDING AND GAUSSIAN RIGIDITIES OF CONFINED . . . PHYSICAL REVIEW E 94, 022149 (2016)

1 2 3
T

-15

-10

-5

τ 2/V

FIG. 1. Second cluster integral divided by the volume for a fluid
confined in a spherical pore. Different values of ν corresponds to
circles (ν = 6), squares (ν = 9), and triangles (ν = 12). Continuous
lines show results for R = 2, dashed lines are for R = 20, and dot-
dashed is for the bulk system (only ν = 6 is shown).

Ref. [9]. Further, one finds

2Z1b2 =
∫ rmax

0
f (r)W (r)dr, (15)

W (r) = s(r)
∫ umax

0
S(u)du = s(r)V, (16)

with s(r) = 4πr2 (the surface of the sphere with radius r).
Equations (12), (13), and (15) give

τ2 =
∫ rmax

0
f (r)w̄(r)dr, (17)

w̄(r) =
∫ umax

0
S(u) s̄(r,u)du, (18)

with w̄(r) = W (r) − w(r) and s̄(r,u) = s(r) − s(r,u) the sur-
face area of a spherical shell of radius r (with the center in A
at distance u from ∂A) that lies inside of A. Equation (13) was
derived previously in Ref. [9] where it was used to evaluate
�τ2 for the confined Lennard Jones system. On the other hand,
Eq. (17) is new and will be used in present work to directly
solve τ2 without intermediate steps.

When ∂A is a planar or spherical surface, w(r) and w̄(r) are
polynomial in r , while for cylindrical surfaces both functions
can be approximated for large radii as a truncated series in
R−1, which gives a polynomial in r too [9]. Note that b2 in
Eq. (15) involves the dependence W (r) ∝ r2 showing that if
the bulk system is analytically tractable then τ2 of the confined
system [in Eq. (17)] would also be. Thus, Eq. (17) is a good
starting point to evaluate τ2 for systems of particles confined
by a single surface with spherical, cylindrical, or planar shape.

We introduce the IPL pair interaction,

φ(r) = α
( r

σ

)−ν

, (19)

with α > 0 and being ν the hardness parameter. This fixes
f (r) in Eq. (17). The case ν = 12 is used to model pure
repulsive molecules, yet higher values like ν = 18 or 36

are utilized in studies of short-range repulsive macroscopic
particles as is the case of neutral colloids and colloid-depletant
interaction [31,40]. To obtain τ2 from Eq. (17) we shall solve
integrals of the type

Cm+1,k =
∫ l

0
[exp(−β̃x−ν) − 1]xmdx, (20)

where x = r/σ , β̃ = βα is an adimensional inverse temper-
ature, and l is typically 2R/σ or ∞. Changing variables to
xν we obtain Cm+1,ν = 1

ν
Cq,1, where q = m+1

ν
(also, l in

Cm+1,ν is replaced by lν in Cq,1). Changing variables again we
found

Cq(ε) =
∫ ∞

ε

y−(1+q)[exp(−β̃y) − 1]dy. (21)

= β̃q�(−q,β̃ε) − ε−q

q
, (22)

where ε = l−ν , �(a,x) is the incomplete gamma function [41],
and Cq,1 was replaced by Cq(ε). In Appendix A we resume
the relevant properties of Cq including its behavior at 0 <

ε � 1 and ε � 1. An alternative to the potential given in
Eq. (19) is the inclusion of a short-range hard-core repulsion.
For completion, the function Cq for this pair interaction is
given in Appendix B.

In terms of Cq(ε) the result for the bulk is τ2
2 = V 2π

ν
C3/ν(0).

We obtain the following expressions of τ2 for the confined
fluid:

τ2

2
= V

2π

ν
C3/ν(0) − A

π

2ν
C4/ν(0), (23)

τ2

2
= V

2π

ν
C3/ν(ε) − A

π

2ν
C4/ν(ε) + π2

6ν
C6/ν(ε), (24)

τ2

2
= V

2π

ν
C3/ν(ε) − A

π

2ν
C4/ν(ε)

+ L

R

π2

32ν
C6/ν(ε) + L

R3

π2

1024ν
C8/ν(ε) + · · · , (25)

where Eq. (23) applies to the planar case and Eqs. (24) and (25)
correspond to the confinement in spherical and cylindrical
cavities, respectively. In Eqs. (24) and (25) and from now on
we fix ε = (2R)−ν (σ is the unit length). For the cylindrical
case, higher-order Cq(ε) functions were omitted. Truncation
of Eq. (25) produces an spurious term proportional to R5 that
should be removed [e.g., if we discard terms beyond C8/ν(ε)
one must compensate Eq. (25) with the addition of a term
− 163

96 π2LR5 ]. τ2 for systems outside of sphere or cylinder
follows directly from Eqs. (24), (25), and (12), and considering
that �τ2 remains unmodified. In the limit of large R (i.e.,
ε → 0) the behavior of Cq(ε) is as follows: if 0 < q < 1 then
Cq(ε) ≈ β̃q�(−q) + β̃ ε1−q being �(−q) < 0, if q = 1 then
Cq(ε) ≈ β̃ ln(β̃ε), and if q > 1 (and noninteger values) then
Cq(ε) ≈ β̃ ε1−q . Equations (23), (24), and (25) are formally
identical to that obtained previously for different types of pair
potentials, which produce a different expression for Cq(ε) [9].

For short-range potentials, those with ν > 6, we found

τ2

2
= V b2 − Aa2 + s[c2 + O(R6−k)], (26)
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where coefficients b2, a2, and c2 are

b2 = −2π

3
β̃3/ν�

(
1 − 3

ν

)
, (27)

a2 = −π

8
β̃4/ν�

(
1 − 4

ν

)
, (28)

c2 = −π2

36
β̃6/ν�

(
1 − 6

ν

)
, (29)

and we have defined s = 0 for planar, s = 1 for spherical, and
s = 3L

16R
for cylindrical surfaces. Equation (27) is consistent

with the known analytic expression for the second bulk virial
coefficient [28]. One notes that in Eq. (26) s × c2 term scales
with A/R2 while a term scaling with A/R is absent. For
spherical walls we also calculate the term of order R−1,
which is d2/R with d2 = π2β̃

24 if ν = 7 and d2 = 0 if ν > 7. At
ν → ∞ IPL potentials behave as those of HS. To analyze the
deviation from the HS behavior we obtained the asymptotic
hardness expansion [20,21], with �(1 − m+1

ν
) ≈ 1 + γE

m+1
ν

and γE ≈ 0.57721 being the Euler constant. For non-short-
range potentials Eq. (26) must be modified. For ν = 6 we
found

τ2

2
= V b2 − Aa2 + s[cl,2 ln(R) + O(R0)], (30)

with cl,2 = −β̃ π2

6 . Again, the term scaling with A/R is absent
but a new term scaling with ln (R) appears. For spherical
walls next order term is the radius independent coefficient
1

36π2β̃[γE − 6 − 6 log(2) + log(β̃)] and term of order R−1 is
null.

The adopted approach to evaluate τ2 is easily extended
to systems with dimension d �= 3, which are also frequently
studied. For example, for d = 2 the virial series equation of
state of the soft-disks system in bulk [42] has been previously
evaluated. In the case of a planar wall that cut the d-space
in two equal regions (one of which is available for particles),
one should replace in Eq. (20) m by d − 1 + m′, m′ = 0 cor-
responds to the bulk b2, and m′ = 1 corresponds to the planar
term a2. For a d-spherical wall one finds that term of order Rd−2

(m′ = 2) is zero and m′ = 3 corresponds to c2 (order Rd−3).
Expressions of S(u,r) for d �= 3 were given in Ref. [43].

As an example of the obtained results in Fig. 1, we plot
the dependence with T of the second cluster integral for the
soft-sphere IPL fluid confined in a spherical pore. Curves show
different values of the exponent and of the cavity radius. In the
plot the natural units for T were used, i.e., T is measured in
α/kB units.

IV. RESULTS: SURFACE TENSION

We consider the open system at low density confined by
planar, spherical, or cylindrical walls and truncate Eq. (8) at
second order to obtain β� = −zV − z2 1

2τ2. Therefore, the
first consequence of our calculus on τ2 is that the grand-free
energy of the system contains the expected terms linear with
volume and surface area. These terms are identical for the
three studied geometries. At planar geometry, no extra term
exist as symmetry implies for all τi . In the case of spherical
confinement, a term linear with total normal curvature of
the surface 2A/R ∝ R does not appear at order z2 but it

1 2 3
T

-0.01

0

γ 
 [α

]

-0.5

-1

0

γ/
ρ b2

6
7
9
12
18
36
HS

1 2 3
T

-0.01

0

βγ
  [

α]

-1

0

βγ
/ρ

b2

FIG. 2. Fluid-wall surface tension in the case of a planar wall;
we fix ρb = 0.1 and consider various ν values. From bottom to
top (at low temperatures) ν increases. Curves correspond to ν =
6, 7, 9, 12, 18, 36 and to HS (ν → ∞).

should exist at higher ones. A term linear with quadratic
curvature A/R2 ∝ const. exists. Extra terms that scale with
negative powers of R were also found. A logarithmic term
proportional to ln R was recognized only for ν = 6. The
cylindrical confinement is similar to the spherical case, thus
we simply trace the differences: even that Gaussian curvature
is zero in this geometry, a term linear with A/R2 ∝ L/R was
found. The existence of a logarithmic term for ν = 6 was
verified, in this case it was proportional to L ln R/R.

For bulk homogeneous system, the pressure and number
density are βP = z + z2b2 and ρb = z + z22b2 (subscript b
refers to the bulk at the same T and μ). On the other hand, the
surface tension is [7]

βγ = −�τ2

2A
z2 = −�τ2

2A
ρ2

b , (31)

which is exact up to O(z3) and O(ρ3
b ). By collecting results

from Eqs. (12), (23), (24), and (26) and replacing in Eq. (31)
one obtains the exact expression for planar and spherical walls
and an approximated expression for cylindrical walls, up to the
mentioned order in density. It yields γ = a2Tρ2

b for the planar
case. When lower order terms in R−1 are retained for curved
walls, it is found

γs =
[
a2 − c2

4πR2
− d2

4πR3
+ O(R−4)

]
Tρ2

b , (32)

γc =
[
a2 − 3c2

32πR2
+ O(R−3)

]
Tρ2

b . (33)

For the special case ν = 6 we should replace c2 with cl,2 ln R

(d2 �= 0 only if ν = 7).
In Fig. 2 it is shown the surface tension of the gas

confined by a planar wall for different values of ν. Scale
on the right shows γ /ρ2

b , which is independent of density.
All cases show γ < 0, which is consistent with a repulsive
potential and a monotonous decreasing behavior of γ with
T . In the limit ν → ∞ we obtain the asymptotic curve,
which is a straight line in coincidence with the HS result.
In the inset it is shown βγ . There, asymptotic behavior for
large T corresponds to the constant value HS result, and the
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TABLE I. Dependence of planar surface tension and bending
rigidity with temperature for some ν values. We fix α = kB = 1. The
ratio −k/γ was evaluated at T = 1.

ν −γ /ρ2
b k/ρ2

b −k/γ

6 1.052T 1/3 0.0982 0.09
7 0.812T 3/7 0.107T 1/7 0.13
8 0.696

√
T 0.0593T 1/4 0.08

9 0.629T 5/9 0.0438T 1/3 0.07
12 0.532T 2/3 0.0290

√
T 0.053

18 0.467T 7/9 0.0221T 2/3 0.047
36 0.423T 8/9 0.0185T 5/6 0.042
∞ 0.393T 0.0164T 0.042

hardening of curves with increasing ν is apparent. We note
that several curves cross the HS limiting line and also that
lines of different hardness intersect. This shows that softer
potential may produce both smaller surface tension than harder
potentials (at low temperature) but also larger surface tension
than harder potentials (at high temperature). In Table I we
present the dependence of γ with temperature for planar walls.

In the case of spherical walls the curvature dependence of
the surface tension is plotted in Fig. 3. There, results for the
ν = 6 (softer) and ν = 12 (harder) systems as a function of
temperature are shown for different values of R. Again we
found that surface tension is negative and decreases with T ,
which are characteristic signatures of repulsive interactions.
Surface tension becomes larger at smaller radius and at R � 5
is well described by the planar wall limit. A comparison of
cases ν = 6 and ν = 12 shows that the sensitiveness of γ with
the radius is larger at softer potential.

Figure 3 is also related with the excess surface adsorption
�A = (〈n〉 − 〈n〉b)/A. Series expansion of �A up to order z2

and ρ2
b are �A = z2�τ2/A = ρ2

b�τ2/A. Thus, up to the order
of Eq. (32) it is

�A = −2γ /T , (34)

1 2 3
T

-0.01

0

γ(
R

)  
 [α

]

1 2 3
T

-0.5

-1

0

γ(
R

)/ρ
b2

R=0.5
R=1
R=5
R=∞
R=0.5 cyl

sph    ν=6 sph    ν=12

FIG. 3. Surface tension of the fluid confined by spherical walls at
ρb = 0.1 (for both concave and convex shapes) and at various radii.
At the left we plot the case ν = 6, at right the case ν = 12. The planar
limit and cylindrical cases are also shown for comparison.

showing that curves of γ (R) also plot −�AT/2. Naturally,
the same apply to the planar case shown in Fig. 2 and to the
cylindrical one. It must be noted that γ (R) and �A depend on
the adopted surface of tension that we fixed at r = R where
external potential goes from zero to infinity. This fixes the
adopted reference region characterized by measures V , A, and
R. The effect of introducing a different reference region on
γ (R) was systematically studied in Refs. [7,44,45] and will be
briefly discussed in Sec. V.

V. RESULTS: BENDING AND GAUSSIAN RIGIDITIES

On the basis of our results the expansion given in Eqs. (1)
and (2) is adequate for ν > 6 but not if ν = 6. For ν > 6, we
found γ δ = O(ρ3

b ),

k = π

192
�

(
1 − 6

ν

)
T 1− 6

ν ρ2
b + O

(
ρ3

b

)
, (35)

k̄ = − π

288
�

(
1 − 6

ν

)
T 1− 6

ν ρ2
b + O

(
ρ3

b

)
. (36)

Again, if we replace using the identity βq�(1 − q) →
−qCq (0) these expressions coincide with those found recently
for the Lennard-Jones fluid, but with a different definition for
Cq(0) [9].

In Fig. 4 the bending rigidity constant k is presented as
a function of temperature for different values of hardness
parameter ν. It is a positive increasing function of T and is
smaller for higher ν. The case ν = 6 is different because the
ln R term. Gaussian rigidity k̄ is a negative decreasing function
of T and is higher for higher ν. In Table I we present the
numerical coefficients of the bending rigidity to show order
of magnitude of k(T ). Besides, the relative weight of k in
surface tension is shown in the last column. We observe that k

is smaller than γ but may be as large as 0.13 × γ (case ν = 7
and T = 1). The order R−3 term in Eq. (1) corresponds to
C = − π

96ρ2
b for ν = 7 and is zero otherwise. It is interesting

to calculate the quotient between k and k̄, and also the quotient
of the next to R−1 term in γ spherical and cylindrical cases.

1 2 3
T

0

5×10-4

1×10-3

k

0

1×10−1

5×10-2

k/
ρ b2

6
7
9
12
18

FIG. 4. Fluid-wall bending rigidity k as a function of temperature.
We fix ρb = 0.1 and consider various ν values. Curves correspond to
ν = 6, 7, 9, 12, 18. The Gaussian rigidity k̄ was not plotted because
k̄ = −0.66k [see Eq. (37)].

022149-5



IGNACIO URRUTIA PHYSICAL REVIEW E 94, 022149 (2016)

For all ν > 6 one finds

k/k̄ = −3/2, (37)

2
2k + k̄

k
= 8/3. (38)

Remarkably, they are universal values in the sense that are
independent of both ν and the state variable T . In the last
ratio, the left-hand side of equation is independent of the
assumptions of a Helfrich-based expression for γ (R) and
therefore it still applies if Eqs. (1) and (2) were wrong.

For non-short-ranged interactions as in the case of ν = 6
the logarithmic term makes Helfrich expansion [34] of γ (R)
in power of R−1 no longer valid. Thus, for ν = 6 instead of the
Eqs. (1) and (2), one obtains for the spherical and cylindrical
walls

γs(R) = γ − 2γ δ

R
+ (2k + k̄)

ln R

R2
+ O(R−2), (39)

γc(R) = γ − γ δ

R
+ k

ln R

2R2
+ O(R−2), (40)

where bending and Gaussian rigidities were identified with the
next order terms beyond γ δ. We found

k = π

32
ρ2

b + O
(
ρ3

b

)
and k̄ = − π

48
ρ2

b + O
(
ρ3

b

)
. (41)

In this case both rigidities are temperature independent. The
advent of ln R terms in Eqs. (39) and (40) demand revising the
invariance under the change of reference. Aγs(R) produces in
� a term (2k + k̄) ln R, which is invariant and Aγc(R) produces
in � a term k ln R/R, which is also invariant. Both terms are
invariant under the change of reference. Thus, for ν = 6 both
rigidities k and k̄ are invariant under the change of reference
system.

Even for ν = 6 we find for the ratios of curvatures the
universal results given in Eqs. (37) and (38). In fact, the origin
of these fundamental values is purely geometrical and was
obtained previously for HS, square well, and Lennard-Jones
potentials [7,9]. Thus, essentially any pair interaction potential
between particles produce the same value for the ratio k/k̄ at
low density. This result is in line with that found numerically
using a second-virial approximation DFT [45]. The same
geometrical status claimed for k/k̄ corresponds to the result
γ δ = 0 + O(ρ3

b ) that is directly derivable from Eqs. (23), (24),
and (25) and applies to essentially any pair potential.

Accuracy of truncation in the low curvature expansion

Based on the exact universal relation Eq. (37) we analyze
the consequences of truncate higher order curvature terms in
γ (R) and discuss some particular aspects concerning soft-
spheres. We drop terms beyond k and k̄ and use Eq. (37)
to rewrite surface tension as a function of only one rigidity
constant, e.g., k̄,

γs(R) = γ − 2γ δ

R
− 2

k̄

R2
�, (42)

γc(R) = γ − γ δ

R
− 3k̄

4R2
�, (43)

where � = 1 or � = ln R as appropriate (e.g., for IPL if ν > 6
then � = 1 and if ν = 6 then � = ln R). Now, we look for

0 1 2 3 4
Rsph

0

1

2

R
cy

l 6
9
12
6
9
12
6
9
12

T=0.5{
{
{

T=1

T=3

FIG. 5. Relation between the radii under the isotension condition.
Temperatures T = 0.5, 1, 3 are drawn in black, green, and red
symbols, respectively, but are difficult to distinguish in the plot. The
straight line corresponds to Eq. (45).

a simple relation that linking the properties of a fluid in a
spherical and cylindrical confinement (the same fluid under
the same thermodynamic conditions T , μ) enables to measure
accurately intrinsic curvature-related properties. We focus on
that producing the same surface tension,

γs(Rs) = γc(Rc); (44)

i.e., for a spherical cavity with a given radius Rs we obtain
the radius of the cylindrical cavity producing the same surface
tension. Following Eqs. (42) and (43) and including terms of
O(ρ2

b ), this surface isotension condition gives

R2
c = 0.375 R2

s , (45)

for � = 1 (the case � = ln R does not yield a simple analytic
result).

This is a remarkable simple relation. To test the accuracy
of the Rc ↔ Rs relation beyond the truncation of higher-order
terms in Eqs. (42) and (43) we solved numerically Eq. (44)
with the exact γs(Rs) and a high-order truncation for γc(Rc)
(we include contribution up to C10/ν). In Fig. 5 are shown
the obtained results for the isotension relation between the
radii of cylindrical and spherical confinements for different
hardness parameter ν and temperatures. The plot shows that
linear behavior predicted by Eq. (45) is very robust applying
for all ν � 6 and for a broad range of temperatures and radii. It
also checks the robustness of approximate Eqs. (42) and (43)
that would be good approximations for any fluid at low density.

Using Eq. (34) we infer that the relation between Rc and
Rs also apply to the surface isoadsorption �c(Rc) = �s(Rs)
condition. The isotension-adsorption relation Eq. (45) is the
consequence of purely geometrical aspects and thus applies
to a large variety of fluids independently of the details of
the interaction potentials. At finite and small value of ρb

and large enough radius the term γ δ ∝ ρ3
b should drive the

relation between Rc and Rs. In such case the slope change
according to R2

c = 0.25 R2
s . This behavior is apparent in

Ref. [45] [see Fig. 4(a) therein]. Through the measure of
adsorption isotherms (using for example molecular dynamics
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or Montecarlo simulations) we propose that relation �c(Rc) =
�s(Rs) and Eq. (45) are valuable tools to evaluate the accuracy
of different approximations and the importance of O(R−2)
terms in the curvature dependence of the adsorption and
surface tension for low-density fluids.

It is interesting to compare the relation k = −3k̄/2 with
that used in the context of the morphometric approach, where
the bending rigidity identified with a quadratic term in the free
energy is dropped [45]. To this end we use the same interface
convention adopted above and focus on low density behavior.
The morphometric approach fix k = 0 in Eqs. (1) and (2) for
any density, giving

γs(R) ≈ γ − 2γ δ

R
+ k̄

R2
�, (46)

γc(R) ≈ γ − γ δ

R
, (47)

which must be compared with Eqs. (42) and (43), which are
exact up to order �R−2. Under the morphometric approxima-
tion the correction to γs produced by the term R−2 is opposite
in sign to the real one and the inaccuracy introduced in the
approximation of γs has the same order of that introduced
in γc. Then, it is preferable to fix k ≈ 0 and k̄ ≈ 0 to
obtain both simpler expressions and more accurate results for
γs,c than those based on morphometric Eqs. (46) and (47).
Besides, at order ρ2

b morphometric approximation yields that
γc(Rc) = γs(Rs) never happens which confirm its sensibility
to high order curvature terms.

As was mentioned the obtained results pertain to a reference
surface that coincides with the position of zero-to-infinite wall
interaction. The adopted reference surface has several advan-
tages. For example, for the ideal gas it gives the beautifully
simple relation � = −PV and γ = γ δ = k = k̄ = 0, while
for shifted surfaces the free energy � becomes unnecessarily
complicated. Further, several universal relations only apply
under the adopted convention as the low-density behavior
γ = O(ρ2

b ), k = O(ρ2
b ), k̄ = O(ρ2

b ), γ δ = O(ρ3
b ), the surface

tension and adsorption relation Eq. (34), the rigidity constants
ratios given in Eqs. (37) and (38), and isotension Eq. (45).
Even more, it has been shown that the adopted reference
provides the more sensible condition to measure higher-order
curvature terms in free energy [45]. Beyond these qualities,
once the properties are obtained on a given convention, one
can transform to different shifted surfaces by simple rules that
linearly combines P , γ , γ δ, etc. [7].

VI. SUMMARY AND CONCLUSIONS

The use of virial series for confined fluids is an unusual
approach that allows us to find new exact analytic results. This
is a valuable feature that contributes to develop the theoretical
framework of inhomogeneous fluids, a field where exact results
are difficult to obtain and thus scarce.

In this work we utilized virial series at the lowest nontrivial
order (up to order two in density and activity) to study
the soft-sphere system confined by hard walls of planar,
spherical and cylindrical shape. In the first and second cases
we evaluate on exact grounds the second cluster integral with
its full dependence on R, T , and ν, while for cylindrical

walls we found a quickly convergent expansion. With these
analytic expressions we systematically analyze the effect of
wall-curvature obtaining for the first time the expansion for
planar and curved wall-fluid surface tension and its curvature
components: Tolman length, bending and Gaussian rigidities.
Even more, we evaluated the next-to constant rigidity term
for spherical confinement, which is invariant under reference
region transformation.

Our results for low-density soft spheres show that planar
surface tension is a negative and monotonously decreasing
function in T , as it is also the case for spherical and cylindrical
walls. Furthermore, the effect of softening-hardening of the
IPL pair potential is nonmonotonous: for each ν there is a
temperature where surface tension (and surface adsorption)
coincides with that of HS system, for smaller temperatures
γ < γHS while for larger temperatures γ > γHS. This inversion
appears to be in the same direction of that found for
colloid-polymer mixtures where soft repulsion enhances the
depletion mechanism [31]. For the dependence on curvature
it is observed that surface tension decreases with decreasing
R and that γ < γc < γs at least for radii as smaller as
R ≈ 0.5.

In the case of curved walls we analyzed the small curvature
expansion of surface tension and verify the existence of
a logarithmic term when ν = 6. We calculated the exact
expressions of bending and Gaussian rigidities as well as the
simple relation between them. Bending rigidity is a positive
increasing function of T , which decreases with rigidity ν > 7
but is constant if ν = 6.

We verified the validity of a set of relations that apply to
any low-density fluid confined by smooth walls. They involve
surface tension, surface adsorption, Tolman length, bending
and Gaussian rigidities, and radii of curvature. These universal
relations were found by adopting a particular choice of the
reference region but concern to any interface convention once
the reference transformation is done. Specially interesting
was the surface isotension relation between Rs and Rc that
provides an accurate mechanism to identify and measure
high-order curvature dependence of surface tension. We expect
that future development of approximate theoretical tools for
confined fluids, including mixtures with macroscopic particles
as colloids, may be benefited from these results.

Based on the Hadwiger theorem has been proposed that
bending rigidity constant could be nearly zero [46] and thus
would be unnecessary to include it in the expansion of γ (R).
Using the universal relations we show that the inaccuracy
introduced by truncation of the bending rigidity term in
γ (R) is the same order of Gaussian rigidity term (at least
for low density and hard walls), and therefore is not well
justified from the numerical standpoint. Given that at least
under the adopted interface convention the morphometric
approximation does not comply with universal relations it
could be better to ignore both rigidity constants than merely
fix k ≈ 0. In particular, for the soft-sphere system with ν = 7
the inaccuracy in γ (R = 1) introduced by the morphometric
approximation is as large as 7% (at T = 1). Our results
complement other recent works, showing that k �= 0 for dif-
ferent fluids under different circumstances and suggesting that
morphometric thermodynamics has to be used with caution
[7,9,45,47–49].
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We think that arguments inducing to establish the absence of
nonlinear terms in the free energy of fluids in thermodynamics
and statistical mechanics should be revised at least when one
recognizes that almost any real (finite-size) fluid system is in
some sense confined.
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APPENDIX A: SOME PROPERTIES OF Cq

We analyze Cq at fixed β̃. When ε → +0 for 0 < q < 1
the function Cq converges but it diverges for q � 1. In the
convergent case we have

qCq(0) = β̃qq�(−q) = −β̃q�(1 − q) = −β̃Cq−1(0),

an identity used to obtain Eqs. (27), (28), and (29), while for the
nonconvergent case one can transform through q�(−q,ε) =
−�(1 − q,ε) + e−εε−q to obtain [41]

qCq(ε) = −β̃q�(1 − q,β̃ε) + (β̃ε)−q(e−β̃ε − 1),

= −β̃Cq−1(ε) + (β̃ε)−q

(
e−β̃ε − 1 + β̃ε

q − 1

)
.

(A1)

The functional behavior of Cq is simpler to analyze by
introducing the function Fq ≡ Cq(ε)β̃−q that depends on z =
β̃ε, but not on β̃ and ε separately. The series expansion for
small and positive z is

Fq = �(−q) + z−q

∞∑
k=1

(−z)k

(q − k)k!
, (A2)

which applies to noninteger values q > 0. On the other hand,
in the case of integer positive values of q,

Fq = (−1)q

q!
[Hq − γE + ln z−1] + z−q

∞∑
k=1
k �=q

(−z)k

(q − k)k!
, (A3)

where γE is the Euler number and Hq is the harmonic number
of order q (for the lowest q we have H1 = 1, H2 = 1.5). Thus,
Fq ≈ z1−q for q > 1 (and q noninteger), but Fq ≈ ln z−1 if
q = 1. Moreover, a term proportional to ln z−1 appears for
every integer value q � 1. On the opposite, for large values of
z > 0 we have the following expansion:

Fq = e−zz−q

(
1

z
− q + 1

z2
+ (q + 1)(q + 2)

z3

− (q + 1)(q + 2)(q + 3)

z4
+ · · ·

)
. (A4)

The asymptotic behavior for small (and positive) values of q

and fixed z is

qFq = −1 + O(q),

which reproduces the HS result.

APPENDIX B: HARD CORE Cq

When the pair interaction between particles is defined as
φ(r � σ ) = +∞ and by the IPL given in Eq. (19) for r > σ

we obtain Cm+1,ν = − 1
m+1 + 1

ν
Cq , where the first term on the

right is the hard-core contribution and

Cq(ε) =
∫ 1

ε

y−(1+q)[exp(−β̃y) − 1]dy,

= 1 − ε−q

q
+ β̃q[�(−q,β̃ε) − �(−q,β̃)]. (B1)

This relation applies to both repulsive (β̃ > 0) and attractive
(β̃ < 0) IPL potentials. In the last case it is convenient to
replace β̃q by (−1)q |β̃|q .
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