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h i g h l i g h t s

• This work deals with the characterization of dynamical systems using Horizontal Visibility Graphs (HVG) and Information Theory
quantifiers.

• We propose the use of the weight distribution, which is based on the difference of the time series values of connected points.
• We study fractional Brownian motion time series and a paleoclimatic proxy record of ENSO taken from Pallcacocha Lake.
• The weight distribution allows a better characterization of the studied systems, using considerable shorter time series.
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a b s t r a c t

Complex networks theory have gained wider applicability since methods for transforma-
tion of time series to networkswere proposed and successfully tested. In the last few years,
horizontal visibility graph has become a popular method due to its simplicity and good re-
sults when applied to natural and artificially generated data. In this work, we explore dif-
ferent ways of extracting information from the network constructed from the horizontal
visibility graph and evaluated by Information Theory quantifiers. Most works use the de-
gree distribution of the network, however, we found alternative probability distributions,
more efficient than the degree distribution in characterizing dynamical systems. In par-
ticular, we find that, when using distributions based on distances and amplitude values,
significant shorter time series are required. We analyze fractional Brownian motion time
series, and a paleoclimatic proxy record of ENSO from the Pallcacocha Lake to study dy-
namical changes during the Holocene.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last few years, methods to transform time series into networks have been proposed, and with them, novel ways
to analyze and characterize time series, have been developed. Among others, these novel methodologies include the use of
disjoint cycles and their distances in the phase space to generate the links in the corresponding network [1,2]. Li and Wang
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[3,4] introduce a method based on n-tuples. Donner et al. [5,6] work with recurrence networks. There are also methods
based on the phase space reconstruction of the time series [2,7,8]. Latora et al. [9] propose a graph based on the recurrence
of time series motifs. Other methods take into account the visibility of elements in a time series, like the Visibility Graphs
or the Horizontal Visibility Graphs [10,11]. Our article focuses on the use of the latter.

Following previous works [12,13], we extract probability distribution functions (PDFs) from the constructed networks
to characterize the topological structure and to capture the dynamics of the transformed time series, using Information
Theory quantifiers. Related works have primarily focused on the network’s degree distribution. We investigate in this work,
alternative probability distributions and we compare their performance with the usual degree distribution. Specifically, we
explore the distance distribution, that despite being poorly explored, it was shown to be efficient in capturing network’s
topological changes [14]. We also propose a PDF based on the difference of the time series values (amplitudes) between the
nodes connected by the horizontal visibility algorithm. We find the distance distribution and the one based on amplitude
differences more efficient in characterizing the studied systems as they require significantly shorter time series than the
degree distribution.

We study fractional Brownian motion (fBm) time series generated with different degrees of correlations (different Hurst
exponents), and a paleoclimatic proxy record of the Laguna Pallcacocha used to study the millennial El Niño/Southern
Oscillation (ENSO) dynamic.

2. Horizontal visibility graph and associated PDFs

The horizontal visibility graph (HVG) is amethodology that transforms a time series into a graphmaintaining the inherent
characteristics of the transformed time series [11]. The HVG consists in a geometrical simplification of the firstly proposed
visibility graph (VG) [10]. It considers each point in the time series, a node in the network, connected by the following
consideration: Let {xi, i = 1, . . . ,N}, be a time series of N data. Two nodes i and j in the graph are connected if it is possible
to trace a horizontal line, in the time series, linking xi and xj not intersecting intermediate data height, fulfilling: xi, xj > xn
for all i < n < j.

In the HVG, the nodes can see at least its nearest neighbors, incorporating in a natural way the time causality. One of the
properties of the HVG is that it is not modified under rescaling of horizontal and vertical axes, as well as under horizontal
and vertical translations [11,15].

2.1. Probability distributions extracted from HVG

Once the graph is constructed, several ways of extracting information about its structure are possible. The most usual
one is to extract the degree distribution that describes the way the node’s degrees are distributed in the graph. The degree
distributionhas beenused to study several natural and artificial systems, from river flows [16], to laser intensity analysis [17].
For a given network G with N nodes, the degree distribution, Pdeg(κ), is the fraction of nodes with degree κ . This discrete
distribution is defined on the set {0, 1, . . . ,N − 1}.

Other probability distributions, such as the distance distribution have been still poorly explored, however, one recent
work has shown the distance distribution to be very effective in capturing network’s topological changes [14]. The distance
between a pair of nodes is the shortest path between them, thus, the distance distribution, Pδ(d), is the fraction of pairs of
nodes at distance d. The maximum possible distance is N − 1, and when a pair is disconnected, we consider ∞, thus, the
distance distribution is discrete and defined over the set {1, 2, . . . ,N − 1, ∞}.

In this article, we also explore a straightforward modification of HVG, that consists in weighting the edges based on
the difference between two connected values in the time series. The weight of an edge is a real value proportional to the
amplitude difference between two connected points. Considering x = {x1, . . . , xn} a sample of n real values, if xi and xj are
connected, the edge (i, j) has aweightwij = xi−xj. It is important noticing that, if we keep track of the first value of the time
series, we could reconstruct the series from the resulting graph. Aswij is a continuous variable, a histogram is constructed to
estimate the probability distribution. Pw(A) represents the fraction of edges with amplitude A. Fig. 1 exemplifies how these
PDFs are obtained from a time series.

3. Information theory quantifiers

3.1. Shannon entropy

When considering discrete probability distributions (P = {pj : j = 1, . . . ,M}) the Shannon entropy S[P] [18] is defined
as:

S[P] = −

M
j=1

pj · ln pj. (1)

If S[P] = 0 we are in a position to predict with certainty which of the possible outcomes j whose probabilities are given
by pj will actually take place. Our knowledge of the underlying process described by the probability distribution is, in this
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Fig. 1. Example of the transformation of a time series into a graph (HVG), and the three different probabilities distributions extracted from it. Subfigure
(a) shows the time series, (b) depicts the network after applying HVG, the weights are only considered for Pw , (c) degree distribution Pdeg (d) distance
distribution Pδ and (e) weight distribution Pw .

instance, maximal. On the contrary, our ignorance is maximal for a uniform distribution. For a given distribution P , the
‘‘normalized Shannon entropy’’ is computed as S[P]/Smax. For the cases here analyzed, Smax = ln(M), whereM = N for Pdeg
and Pδ and M is equal to the number of bins of the histogram for Pw . The Shannon entropy presents a global perspective of
the density, as it is not sensitive to permutations of its bins, however, it will detect changes in their values.

3.2. Fisher’s Information Measure

The Fisher’s InformationMeasure (F ) constitutes ameasure of the gradient content of the distribution, being quite sensitive
even to small localized perturbations [19,20]. Considering the same probability distribution P , it reads as:

F [P] = F0
M−1
i=1

[(pi+1)
1/2

− (pi)1/2]2. (2)

It has been extensively discussed that this discretization is the best behaved in a discrete environment [21]. Here, the
normalization constant F0 reads

F0 =


1 if pi∗ = 1 for i∗ = 1 or i∗ = M and pi = 0 ∀i ≠ i∗

1/2 otherwise. (3)

3.3. Shannon–Fisher information plane

The use of the Shannon–Fisher information plane S × F , was initially proposed by Vignat and Bercher [22] and later
applied in several works [23–25]. In this plane, axes are functional of the probability density considered, the normalized
Shannon Entropy (S/Smax) and the Fisher Information measure F . The S × F-plane is a suitable tool to contrast global and
local features of the probability distribution under study.

4. Computational experiments

4.1. Characterization of fBm

The first experiment evaluates the performance of the methodology over artificially created time series. We study
fractional Brownianmotion (fBm) time series, that are continuous-time Gaussian processes, self-similar, and endowedwith



96 B.A. Gonçalves et al. / Physica A 464 (2016) 93–102

Fig. 2. Average results for fBm with different Hurst exponent values and lengths. Each value is the average result of 30 independent runs.

stationary increments [26]. Motion and noise are characterized by the Hurst exponent (H), that describes the raggedness of
the motion. The Hurst’s parameter defines two distinct regions in the interval (0, 1). For H > 1/2, consecutive increments
tend to have the same sign, thus, these processes are persistent. On the contrary, for H < 1/2, consecutive increments are
more likely to have opposite signs, being anti-persistent. The case H = 1/2 corresponds to the classical Brownian motion,
where successive motion increments are as likely to have the same sign as the opposite, presenting no correlation among
them. We generate the fBm time series with Hurst exponent in the range 0.1 ≤ H ≤ 0.9 of different lengths with the
algorithm proposed by Abry and Sellan [27,28], by using its Matlab implementation.

A few works devoted to the study of the characterization of fBm uses HVG related methodologies [11,15,23,29–31].
Lacasa et al. [29] show that the degree distribution of the network constructed from fBm time series is a function of the
Hurst exponent. In Ravetti et al. [23] the Fisher–Shannon information plane is used to discriminate different degrees of
correlations in fBm by considering the HVG degrees distributions.

In a recent publication, [15], an analysis is performed on HVG and network features by considering fBm processes. They
use time series length of 104 and they correlate common network features with the Hurst exponent. One curious result is
that the assortativity coefficient1 decreases until reaching a turning point around H = 0.6. We reproduced the experiment
performed in the above-mentioned article, finding similar results regarding the relation between the networks quantifiers
via HVG and the fBm, with the exception of the assortativity coefficient. The phase transition claimed by the authors at
H = 0.6 is not real, but a consequence of the time series length. The use of HVG and the computation of network features
for the analysis of fBm time series forH > 0.6 require time series larger than 104 to be accurate, as shown in Fig. 2. Additional
results are described in the Supplementary Information (SI), see Figure S1.

The use of Information Theory with the HVG shows remarkable results. The HVG is capable of capturing the increasing
persistence of the series with increasing values of H . Results are depicted in Fig. 3. In the subfigures, each graph illustrates a
sample of the HVG outcome for each Hurst exponent value. It is possible to visually notice how the persistence of the series
is captured by the HVG and reflected by network features.

Regarding the time series characterization, the three probability densities are able to discriminate all series of a length
of 105 in the S × F-plane. When considering the degree distribution, the highest point in the plane corresponds to the time
series with lower values of H , with H = 0.1 presenting the highest values of Fisher and Shannon entropies. As correlation
increases, the time series begin to present longer sequences with increasing and/or decreasing values, generating bigger
valleys and increasing the visibility of certain points. The networks begin to reflect that effect by increasing the degree of a
small group of nodes. The degree densities present a decrease of peaks, but at the same time, their tails get shorter, moving
apart from the uniform distribution, thus, the entropy values diminish, see Fig. 4(a). It is important mentioning that the
Fisher Information Measure (F ) is unable to discriminate time series with higher H values with this series length. However,
results considering time series with a length of 106 show an improved performance of F , see SI Figure S3. These results are
consistent with findings discussed in Ref. [23].

When considering the distance distribution, the locations in the plane change. Small values of H indicate shorter path
lengths (L), the visibility of two points in the time serieswill be interrupted depending on the correlation level, no correlation
will generate interruptions at an almost regular pace. This structure generates shortcuts between the nodes reducing the
path between them. As H increases, the interruption may happen right away, increasing the number of nodes between the
two points and increasing L (see SI Figure S1).

1 Also known as the Pearson correlation coefficient.
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Fig. 3. Shannon–Fisher plane for each probability density. In each case the average results over 10 independent runs for fBmwith different Hurst exponent
values are presented considering a time series length of 105 points. Subfigure (a) considers the degree distribution. Subfigure (b) uses the distance
distribution and (c) the weighted density. The graphs in the figures are subplots of HVG results.

The increase of H causes the distance densities to get closer to the uniform distribution and the Shannon entropy values
get higher, see Fig. 4(b). In the case of F , themeasurement ismuchmore sensitive to small localized perturbations. Differently
from the degree distribution, more changes happen in the different states of the distance distribution, increasing the value
of F .

In the case of the weight distribution Pw , for smaller values of H the amplitude differences are higher and the PDFs
present longer tails being closer to the uniform distribution, see Fig. 4(c). As the H value increases, the absolute value of the
amplitude’s differences is smaller, consequently, the central bins increase their frequency, tails get shorter and the Shannon
entropy value decreases. From Fig. 4(c), it is possible to see that asH increases greater perturbations happen near the central
bins, increasing in this way the value of F .
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Fig. 4. Probability distributions extracted from the graph for different values of the Hurst exponent. Subfigure (a) depicts how the degree distribution
changes as H increases Pdeg , (b) depicts the case for the distance distribution Pδ , and (c) for the weight distribution Pw .

It is noticeable how Pw is capable of smoothly capturing the dynamical changes of the time series, even needing less
amount of data. Fig. 5, shows the same characterization considering time series with lengths 103. The Figure depicts the
power of the HVG combined with the S × F-plane and Pw . For length 104 see Figure S2 in SI.

4.2. Millennial dynamics of El Niño Southern Oscillation

The second experiment is devoted to the evaluation of the three proposed probability distributions to study the variability
of the El Niño-SouthernOscillation during theHolocene (ENSO) (11,000 years BP to present), by using a proxy record of ENSO
from the Pallcacocha Lake sedimentary data [32,33]. The data used in this experiment was obtained through the analysis
of clastic laminae deposition in two 8-m sediment cores retrieved from the Pallcacocha Lake in Ecuador, in which the
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Fig. 5. Shannon-and-Fisher plane for each probability density. In each case the average results over 10 independent runs for fBm with different Hurst
exponent values are presented considering a time series length of 103 points.

light-colored inorganic clastic sediments laminae are known to be correlated with moderate to severe El Niño events
[32,34]. The time series is constructed from the red color intensity surface of the cores sections, that were digitally scanned.
Then, it was applied an age model based on radiocarbon chronology [35]. Previous works using this data found evidence of
long-range correlations extending to timescales of half a millennium [36], a cyclic behavior of approximately 2000 years,
and a shift in variance around 5000 BP [32,34]. These works use wavelet analysis [32], ordinal analysis and Information
Theory [34] and non-linear dynamic techniques [37].

In this work, the original time series [33] has been interpolated using a cubic Hermite polynomial to a one-year sample,
as in Ref. [34]. HVG is constructed from temporal windows of 1000 years, lagged by 100 years. Then, Shannon entropy and
Fisher information are computed for all windows. Fig. 6 shows the outcomes using the degree distribution (a), distance
distribution (b), and the weight distribution (c). From these figures, it can be observed that the weight distribution detects,
with amore pronounce and smooth behavior, a change in the ENSO dynamic around 5000 BP,moment inwhich the Shannon
entropy finishes a long period of an increasing trend (the opposite occurs with Fisher Information).

It is also possible to see that the weight distribution better detects a period from around 9200 to 7500 of the early
Holocene (a period that includes the first mayor Rapid Climate Change (RCC)2 [37,38]), characterized by a steady behavior
with low entropy values suggesting the presence of more correlated dynamics. This fact can also be seen in Fig. 7, as this
period can be foundwheremore correlated processes are located (see also Fig. 3(c)). This period is also identified in Ref. [34].

The weight distribution clearly points out to the existence of cycles with a period close to 2000 years during the mid-to-
late Holocene. These findings are consistent with that observed byMoy et al. [32] using wavelet analysis, and Saco et al. [34]
using ordinal patterns. This behavior is not captured by Shannon entropy and Fisher informationwhen using HVG computed
with the distance distribution. When using the degree distribution, the cyclic behavior is captured by both quantifiers,
however, it is not as clear and smooth. The weight distribution shows to be more sensitive to dynamical changes than the
other distributions. This result confirms that theweight distributionworks better than the degree and distance distributions
with shorter time series, detecting in this case, well-known ENSO features.

5. Discussion and conclusions

In this work, we analyze the performance of a methodology that combines Horizontal Visibility Graph and Information
Theory quantifiers to characterize dynamical systems. Most works rely on the use of the HVG degree distribution, however,
we show through extensive experimentation, that the weight distribution based on amplitude differences, allows a better
characterization with considerable shorter time series, relevant fact when analyzing real systems. Persistent processes
usually require very long time series to be properly characterized, and this fact has caused some confusion, specifically
in the analysis of some networks features, such as the assortativity coefficient.

We study here, fractional Brownian motion generated time series with different degrees of correlations and dynamical
changes of the El Niño-Southern Oscillation during the Holocene. In both cases, the weight distribution shows a better
performance than the degree and distance distributions, properly distinguishing different degrees of correlations in fBm
time series, and better characterizing the ENSO dynamic.

2 RCC periods were identified by Denton and Karlén [38]. These periods have been frequently used as a framework for the examination of Holocene
climate variability.
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Fig. 6. Shannon entropy (black) and Fisher Information (red) values computed from HVG through (a) degree distribution, (b) distance distribution, and
(c) weights distribution. For each depicted graph, L indicates the average path length, CC Closeness centrality, C Clustering coefficient and B Betweenness
centrality. The gray bands correspond to RCC during the Holocene [37]. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

In summary, we propose an alternative way to extract information from the HVGs based on amplitude differences, and
we demonstrate the higher efficiency in characterizing dynamical systems when compared to more commonly used
techniques.
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Fig. 7. Shannon entropy and Fisher Information values computed from HVG and located in the Shannon–Fisher plane. Colored points correspond to RCC
during the Holocene [37]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Appendix A. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.physa.2016.07.063.

References

[1] J. Zhang, M. Small, Complex network from pseudoperiodic time series: Topology versus dynamics, Phys. Rev. Lett. 96 (2006) 238701.
[2] X. Xu, J. Zhang,M. Small, Superfamily phenomena andmotifs of networks induced from time series, Proc. Natl. Acad. Sci. 105 (50) (2008) 19601–19605.
[3] P. Li, B. Wang, An approach to Hang Seng index in Hong Kong stock market based on network topological statistics, Chinese Sci. Bull. 51 (5) (2006)

624–629.
[4] P. Li, B.-H. Wang, Extracting hidden fluctuation patterns of Hang Seng stock index from network topologies, Physica A 378 (2) (2007) 519–526.
[5] R.V. Donner, Y. Zou, J.F. Donges, N. Marwan, J. Kurths, Recurrence networks—a novel paradigm for nonlinear time series analysis, New J. Phys. 12 (3)

(2010) 033025.
[6] R.V. Donner,M. Small, J.f. Donges, N.Marwan, Y. Zou, R. Xiang, J. Kurths, Recurrence-based time series analysis bymeans of complex networkmethods,

Int. J. Bifurcation Chaos 21 (04) (2011) 1019–1046.
[7] Z. Gao, N. Jin, Complex network from time series based on phase space reconstruction, Chaos 19 (3) (2009) 033137.
[8] C. Liu, W.-X. Zhou, Superfamily classification of nonstationary time series based on DFA scaling exponents, J. Phys. A 43 (49) (2010) 495005.
[9] R. Sinatra, D. Condorelli, V. Latora, Networks of motifs from sequences of symbols, Phys. Rev. Lett. 105 (2010) 178702.

[10] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J.C. Nuño, From time series to complex networks: The visibility graph, Proc. Natl. Acad. Sci. 105 (13) (2008)
4972–4975.

[11] B. Luque, L. Lacasa, F. Ballesteros, J. Luque, Horizontal visibility graphs: Exact results for random time series, Phys. Rev. E 80 (4) (2009) 046103.
[12] L.C. Carpi, O.A. Rosso, P.M. Saco, M.G. Ravetti, Analyzing complex networks evolution through information theory quantifiers, Phys. Lett. A 375 (4)

(2011) 801–804.
[13] L.C. Carpi, P.M. Saco, O. Rosso, M.G. Ravetti, Structural evolution of the tropical pacific climate network, Eur. Phys. J. B 85 (11) (2012) 1–7.
[14] T.A. Schieber, L. Carpi, A.C. Frery, O.A. Rosso, P.M. Pardalos, M.G. Ravetti, Information theory perspective on network robustness, Phys. Lett. A 380 (3)

(2016) 359–364.
[15] W.-J. Xie, W.-X. Zhou, Horizontal visibility graphs transformed from fractional brownian motions: Topological properties versus the Hurst index,

Physica A 390 (20) (2011) 3592–3601.
[16] A.C. Braga, L.G.A. Alves, L.S. Costa, A.A. Ribeiro, M.M.A. de Jesus, A.A. Tateishi, H.V. Ribeiro, Characterization of river flow fluctuations via horizontal

visibility graphs, Physica A 444 (2016) 1003–1011.
[17] A. Aragoneses, L. Carpi, N. Tarasov, D.V. Churkin, M.C. Torrent, C. Masoller, S.K. Turitsyn, Unveiling temporal correlations characteristic of a phase

transition in the output intensity of a fiber laser, Phys. Rev. Lett. 116 (2016) 033902.
[18] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (3) (1948) 379–423.
[19] R. Fisher, On the mathematical foundations of theoretical statistics, Philos. Trans. R. Soc. Lond. Ser. A 222 (1922) 309–368.
[20] B. Frieden, Science from Fisher Information: A Unification, Cambridge University Press, 2004.
[21] P. Sánchez-Moreno, R. Yáñez, J. Dehesa, Discrete densities and Fisher information, in: Proceedings of the 14th International Conference on Difference

Equations and Applications, Bahçeşehir University Press, 2009, pp. 291–298.
[22] C. Vignat, J. Bercher, Analysis of signals in the Fisher–Shannon information plane, Phys. Lett. A 312 (2003) 27–33.
[23] M.G. Ravetti, L.C. Carpi, B.A. Gonçalves, A.C. Frery, O.A. Rosso, Distinguishing noise from chaos: Objective versus subjective criteria using horizontal

visibility graph, PLoS One 9 (9) (2014) e108004.
[24] O.A. Rosso, F. Olivares, L. Zunino, L. DeMicco, A. Aquino, A. Plastino, H. Larrondo, Characterization of chaoticmaps using the permutation Bandt-Pompe

probability distribution, Eur. Phys. J. B 86 (2013) 116–129.
[25] F. Olivares, A. Plastino, O.A. Rosso, Contrasting chaos with noise via local versus global information quantifiers, Phys. Lett. A 376 (2012) 1577–1583.
[26] L. Zunino, D.G. Pérez, M.T. Martín, A. Plastino, M. Garavaglia, O.A. Rosso, Characterization of Gaussian self-similar stochastic processes using wavelet-

based informational tools, Phys. Rev. E 75 (2) (2007) 021115.
[27] P. Abry, F. Sellan, The wavelet-based synthesis for fractional brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast implementation,

Appl. Comput. Harmon. Anal. 3 (4) (1996) 377–383.
[28] J. Bardet, G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M. Taqqu, P. Doukhan, M. Taqqu, Generators of Long-Range Dependence Processes: A Survey,

Birkhauser, New York, 2003, pp. 579–623.
[29] L. Lacasa, B. Luque, J. Luque, J. Nuno, The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion, Europhys.

Lett. 86 (3) (2009) 30001.
[30] L. Lacasa, R. Toral, Description of stochastic and chaotic series using visibility graphs, Phys. Rev. E 82 (3) (2010) 036120.

http://dx.doi.org/10.1016/j.physa.2016.07.063
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref1
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref2
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref3
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref4
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref5
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref6
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref7
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref8
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref9
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref10
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref11
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref12
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref13
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref14
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref15
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref16
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref17
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref18
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref19
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref20
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref21
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref22
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref23
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref24
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref25
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref26
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref27
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref28
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref29
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref30


102 B.A. Gonçalves et al. / Physica A 464 (2016) 93–102

[31] Y.H. , M. Stephen, C. Gu, Visibility graph based time series analysis, PLoS One 10 (11) (2015) e0143015.
[32] C.M. Moy, G.O. Seltzer, D.T. Rodbell, D.M. Anderson, Variability of El Nino/Southern Oscillation activity at millennial timescales during the holocene

epoch, Nature 420 (6912) (2002) 162–165.
[33] C.M. Moy, G.O. Seltzer, D.T. Rodbell, D.M. Anderson, Laguna pallcacocha sediment color intensity data IGBP pages/world data center for

paleoclimatology, data contribution series #2002-76 NOAA/NCDC Paleoclimatology Program Boulder CO, USA.
[34] P.M. Saco, L.C. Carpi, A. Figliola, E. Serrano, O.A. Rosso, Entropy analysis of the dynamics of El Niño/Southern Oscillation during the holocene, Physica

A 389 (21) (2010) 5022–5027.
[35] D.T. Rodbell, G.O. Seltzer, D.M. Anderson,M.B. Abbott, D.B. Enfield, J.H. Newman, An∼15,000-year record of El Niño-driven alluviation in southwestern

ecuador, Science 283 (5401) (1999) 516–520.
[36] G. Wang, A.A. Tsonis, On the variability of ENSO at millennial timescales, Geophys. Res. Lett. 35 (17) (2008) L17702.
[37] A. Tsonis, Dynamical changes in the ENSO system in the last 11,000 years, Clim. Dynam. 33 (7–8) (2009) 1069–1074.
[38] G.H. Denton, W. Karlén, Holocene climatic variations—their pattern and possible cause, Quat. Res. 3 (2) (1973) 155–205.

http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref31
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref32
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref34
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref35
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref36
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref37
http://refhub.elsevier.com/S0378-4371(16)30494-0/sbref38


Time Series Characterization via Horizontal Visibility
Graph and Information Theory
Supplementary Material

Bruna Amina, Laura Carpib, Osvaldo A. Rossoc,d,e, Mart́ın G. Ravettia

aDepartmento de Engenharia de Produção, Universidade Federal de Minas Gerais,
31270-901, Belo Horizonte, MG, Brazil

bDepartament de F́ısica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, 08222
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S1. Network feature results

Supplementary Material, Figure S1: (a) Average path length L with different Hurst exponent

values H of fBm, are presented considering a time series lengths of N = 104, N = 2 104, N =

5 104 and N = 105. (b)Average path length L in semi-logarithmic scales. It is observed that

L increases exponentially in regard to H : L ∝ ebH ,, where b increases with N . (c)Closeness

centrality CC with different Hurst exponent values H of fBm, are presented considering a

time series lengths N = 104, N = 2 104, N = 5 104 and N = 105.(d)Closeness centrality

CC in semi-logarithmic scales. It is observed that L decreases exponentially in regard to

H : CC ∝ e−bH , For each H, average results over 10 independent runs are shown.
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S2. Characterization of fBm

Supplementary Material, Figure S2: Shannon-and-Fisher plane for each probability density.

In each case the average results for fBm with different Hurst exponent values are presented

considering a time series length of 104 points.
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Supplementary Material, Figure S3: Shannon-Fisher plane for degree distribution. In each

case the average results for fBm with different Hurst exponent values are presented considering

a time series length of 106 points.
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S3. Millennial dynamics of El Niño Southern Oscillation

Time ( cal. yr BP)
Pdeg Pδ Pw

L
S/Smax F [P ] S/Smax F [P ] S/Smax F [P ]

500 0.2664 0.1214 0.4236 0.00637 0.7046 0.045 11.5144

600 0.2657 0.1217 0.399 0.00812 0.719 0.0361 10.6906

700 0.2667 0.1216 0.3976 0.00819 0.7081 0.0422 10.5606

800 0.2688 0.1198 0.4001 0.00823 0.7022 0.045 10.3398

900 0.2655 0.141 0.4007 0.00847 0.6006 0.077 10.2456

1000 0.2671 0.1284 0.395 0.00876 0.6408 0.0679 10.1131

1100 0.2685 0.1307 0.3631 0.01362 0.6293 0.0687 9.1998

1200 0.2691 0.1466 0.3411 0.0183 0.6565 0.059 8.3263

1300 0.2699 0.1252 0.3572 0.0146 0.6527 0.0596 8.7648

1400 0.266 0.1221 0.3834 0.01085 0.6066 0.07 9.4718

1500 0.2669 0.115 0.4358 0.00694 0.5937 0.0773 11.5239

1600 0.2676 0.1138 0.4156 0.00684 0.6016 0.0759 10.8801

1700 0.2653 0.1177 0.4115 0.00719 0.5988 0.0777 10.7039

1800 0.2651 0.1171 0.4024 0.00796 0.5813 0.0829 10.4837

1900 0.2629 0.112 0.4139 0.00651 0.5304 0.0976 11.3572

2000 0.2617 0.1099 0.4144 0.00643 0.5314 0.0934 11.5213

2100 0.2592 0.1225 0.4175 0.00634 0.5333 0.086 11.4308

2200 0.2595 0.1106 0.4145 0.00645 0.5361 0.0821 11.5828

2300 0.2608 0.1261 0.4173 0.00616 0.5535 0.0799 11.7535

2400 0.2625 0.1165 0.426 0.0055 0.5702 0.0739 12.066

2500 0.2632 0.1326 0.4083 0.00699 0.6059 0.0624 11.2355

2600 0.2649 0.1327 0.4022 0.00777 0.6225 0.0554 10.7836

2700 0.2676 0.1221 0.4026 0.00786 0.6458 0.0464 10.6554

2800 0.2674 0.127 0.4182 0.00711 0.6679 0.0417 11.1384

2900 0.266 0.1426 0.418 0.00713 0.6787 0.0396 10.9759

3000 0.2681 0.1175 0.3995 0.00823 0.6889 0.0357 10.5218

3100 0.2656 0.1237 0.4447 0.00583 0.6706 0.0471 12.1715
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3200 0.2629 0.1328 0.4598 0.00489 0.6206 0.0656 13.5438

3300 0.2609 0.1147 0.46 0.00424 0.6078 0.064 14.1182

3400 0.2573 0.1264 0.4567 0.00437 0.5925 0.0688 14.337

3500 0.259 0.1056 0.422 0.00586 0.5724 0.0702 12.5107

3600 0.2532 0.124 0.4216 0.00581 0.5319 0.0875 12.7108

3700 0.2529 0.1083 0.4108 0.00685 0.4941 0.1054 12.385

3800 0.2494 0.1209 0.4273 0.00533 0.4397 0.1274 12.9808

3900 0.2523 0.1085 0.431 0.00519 0.4278 0.1327 12.7609

4000 0.2515 0.1217 0.4455 0.00419 0.4362 0.1287 13.6885

4100 0.2554 0.1135 0.4522 0.00378 0.4377 0.1315 14.0459

4200 0.2586 0.1086 0.4231 0.00586 0.4779 0.1189 12.2578

4300 0.2595 0.1151 0.4212 0.00608 0.5127 0.1054 12.2266

4400 0.2617 0.1171 0.4197 0.00626 0.5549 0.0932 11.7498

4500 0.2635 0.1322 0.4336 0.00506 0.5906 0.0861 12.4412

4600 0.264 0.1194 0.4452 0.00438 0.6037 0.0756 12.8717

4700 0.2644 0.1194 0.455 0.00456 0.6145 0.0679 13.037

4800 0.2652 0.1211 0.4278 0.00587 0.6312 0.0534 11.7968

4900 0.2671 0.1131 0.398 0.00813 0.6321 0.0527 10.6825

5000 0.2642 0.1322 0.3987 0.00813 0.618 0.0605 10.5857

5100 0.2616 0.1305 0.3798 0.01048 0.6365 0.0459 10.0123

5200 0.262 0.1081 0.4008 0.00848 0.6164 0.0533 10.5102

5300 0.2611 0.1056 0.383 0.01041 0.5882 0.0683 10.032

5400 0.2594 0.1066 0.3887 0.0094 0.5332 0.0891 10.3737

5500 0.2586 0.1062 0.3837 0.01006 0.498 0.0966 10.2801

5600 0.2564 0.1164 0.4121 0.00735 0.4797 0.1079 11.2507

5700 0.2555 0.1257 0.4025 0.00769 0.4701 0.1124 11.1751

5800 0.2554 0.1157 0.415 0.00645 0.4642 0.1145 11.6628

5900 0.2565 0.1161 0.4199 0.00606 0.4643 0.1141 11.7064

6000 0.2555 0.1268 0.4173 0.00621 0.4602 0.1096 11.7947

6100 0.2581 0.1065 0.4194 0.00606 0.4403 0.1248 11.7465
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6200 0.2549 0.1232 0.4249 0.00565 0.4396 0.1231 11.998

6300 0.2538 0.1269 0.4568 0.00594 0.4438 0.118 12.8527

6400 0.2575 0.1065 0.4068 0.00748 0.4533 0.1066 11.047

6500 0.2555 0.12 0.3981 0.00832 0.4324 0.1136 10.9364

6600 0.2552 0.1064 0.4194 0.00648 0.425 0.1234 11.7953

6700 0.2542 0.113 0.418 0.0062 0.4047 0.1479 11.9812

6800 0.2518 0.1157 0.4391 0.00554 0.381 0.1751 12.8768

6900 0.2489 0.1151 0.4487 0.00453 0.3549 0.2066 13.2804

7000 0.2447 0.1235 0.4967 0.00315 0.3258 0.2449 16.0753

7100 0.2444 0.1239 0.4974 0.00274 0.3048 0.2605 16.3475

7200 0.2422 0.1233 0.542 0.00203 0.2748 0.3011 20.0476

7300 0.2379 0.1223 0.5196 0.00163 0.2426 0.3357 19.5757

7400 0.2329 0.1263 0.52 0.00146 0.2162 0.379 20.471

7500 0.2301 0.1338 0.5437 0.00107 0.1984 0.4015 23.0431

7600 0.2255 0.1372 0.6251 0.00048 0.1731 0.4385 35.1152

7700 0.2238 0.1475 0.6365 0.00043 0.1704 0.4447 37.5925

7800 0.2262 0.1351 0.6284 0.00048 0.1696 0.4475 36.6095

7900 0.2252 0.131 0.6287 0.0005 0.1542 0.4721 39.0547

8000 0.224 0.1345 0.5882 0.00058 0.1664 0.4537 30.1729

8100 0.226 0.1451 0.5947 0.00058 0.1655 0.459 30.6989

8200 0.2274 0.1333 0.5792 0.0007 0.1662 0.4562 28.6701

8300 0.2271 0.1339 0.5835 0.00064 0.1456 0.4979 28.4706

8400 0.2278 0.1309 0.5647 0.00079 0.1486 0.4904 25.6507

8500 0.2256 0.1349 0.5677 0.00075 0.1345 0.5157 26.6038

8600 0.2256 0.1506 0.5763 0.00069 0.1412 0.4995 27.6848

8700 0.2296 0.1363 0.5777 0.00077 0.1452 0.4902 27.3252

8800 0.2264 0.1325 0.5539 0.0009 0.1424 0.4961 25.7429

8900 0.2265 0.1365 0.5694 0.00074 0.1364 0.5139 26.898

9000 0.2243 0.1393 0.6199 0.00042 0.1228 0.5408 35.2199

9100 0.2216 0.1388 0.5628 0.00079 0.1272 0.5424 27.1605
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9200 0.2224 0.1387 0.5698 0.00073 0.1213 0.5581 27.9867

9300 0.2309 0.1298 0.5686 0.00087 0.1547 0.4716 26.0892

9400 0.2354 0.1244 0.5469 0.00123 0.1654 0.4476 23.8264

9500 0.2375 0.1333 0.543 0.00127 0.2023 0.4025 22.1613

9600 0.2434 0.1228 0.5569 0.00122 0.235 0.3517 23.5379

9700 0.2452 0.1172 0.5477 0.00127 0.2601 0.3066 21.6879

9800 0.2501 0.1121 0.5338 0.00165 0.2833 0.2667 19.6731

9900 0.2536 0.1153 0.5335 0.00197 0.3027 0.2336 19.512

10000 0.2587 0.1191 0.4827 0.00269 0.3157 0.2114 15.7687

10100 0.261 0.1145 0.4772 0.00323 0.3284 0.1848 15.1484

10200 0.2633 0.1156 0.4368 0.00482 0.3557 0.1517 13.4165

10300 0.2626 0.1201 0.4352 0.00495 0.3684 0.142 12.9306

10400 0.2629 0.1156 0.4202 0.00591 0.3791 0.1323 12.47

Supplementary Material, Table S1: Obtained quantifier values for

dynamics of ENSO during the Holocene: normalized Shannon en-

tropy value using S[P ]/Smax and Fisher information value F [P ];

Using degree distribution, distance distribution and weights dis-

tribution,respectively. In the last column the value average path

length L, is given.

;
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