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Abstract

We present three strategies to replace the null hypothesis statistical significance testing
approach in psychological research: (1) visual representation of cognitive processes and
predictions, (2) visual representation of data distributions and choice of the appropriate
distribution for analysis, and (3) model comparison. The three strategies have been pro-
posed earlier, so we do not claim originality. Here we propose to combine the three
strategies and use them not only as analytical and reporting tools but also to guide the
design of research. The first strategy involves a visual representation of the cognitive
processes involved in solving the task at hand in the form of a theory or model together
with a representation of a pattern of predictions for each condition. The second
approach is the GAMLSS approach, which consists of providing a visual representation
of distributions to fit the data, and choosing the best distribution that fits the raw data
for further analyses. The third strategy is the model comparison approach, which com-
pares the model of the researcher with alternative models. We present a worked exam-
ple in the field of reasoning, in which we follow the three strategies.
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One of the earliest criticisms to the null hypothesis statistical significance testing

(NHST) approach in psychology was put forward by J. Cohen (1994). Not only did

Cohen criticize NHST but also the tendency of psychological researchers to utilize

this method in an uncritical manner. In this article, we do not provide a critique

over NHST (for a review of criticisms to NHST and a proposed solution for psy-

chology, see Wagenmakers, 2007); rather, inspired by Cohen’s call, we propose

three strategies (none of which involves NHST) to encourage a critical use of sta-

tistical methods. The strategies are (1) visual representation of cognitive processes

and predictions, (2) visual representation of data distributions and choice of the

appropriate distribution for analysis, and (3) model comparison. The first strategy

aims to provide explicit information about the research design and the psychologi-

cal theory that were considered in order to derive the main cognitive predictions.

The second strategy aims to apply the most appropriate, known formal distribution

to the observed data. The third strategy generates a plurality of models and selects

the most suitable. The three strategies have been used in the past, so we are not

claiming originality. Rather, the goal of this article is to propose that researchers

use these three strategies together and give an example of how this would work.

We first present the three strategies, then we provide a working example, and

finally we discuss the implications of their use.

Strategy 1: Visual Representation of Cognitive Processes and
Predictions

This strategy provides both a visual representation of the cognitive processes

involved in the psychological phenomenon under investigation and the predictions of

that investigation. The strategy may take many forms, and the representation of the

cognitive processes and the predictions may be separate. Typically, psychological

researchers use a verbal description of the cognitive processes and they present the

predictions in the form of hypotheses. However, many researchers choose to use dif-

ferent visual representations. The following is a nonexhaustive list: (1) flow charts

(e.g., Campitelli & Gerrans, 2014); (2) causal models, including SEM (or structural

equation model; Pearl, 2009); (3) probabilistic graphical models with plate notation

(e.g., Jordan, 2004; Koller, Friedman, Getoor, & Taskar, 2007; Lee, 2008; see

Campitelli & Macbeth, 2014, for a review); and (4) cognitive architectures (e.g.,

ACT-R; Anderson et al., 2004).

In our example (see Figure 2), we present an informal flow chart and a bar plot

with a qualitative pattern of predictions for each condition. As we mentioned above,

researchers tend to present their predictions in the form of hypotheses. We propose

that, when possible, the hypotheses should also be represented visually to aid the

reader in their understanding of the research design (see also Bezerra, Jalloh, &

Stevenson, 1998).
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Strategy 2: Visual Representation of Data Distributions and
Choice of the Appropriate Distribution for Analysis

A rather underused but exciting approach in data analysis is that of GAMLSS (Rigby

& Stasinopoulos, 2001; Stasinopoulos & Rigby, 2007). GAMLSS stands for

Generalized Additive Models for Location, Scale, and Shape. The goal of this

method is to relax distributions’ hypotheses’ assumptions to fit more realistic theore-

tical distributions to the response variables. This is achieved by using extra informa-

tion from the location, scale, and shape parameters (e.g., skewness and kurtosis). In

this way GAMLSS can be seen as a tool to exploratory data analysis (e.g., Tukey,

1969). This method can be extended by modelling the response variable in order to

find the type of distribution that best represents the data, thus providing the founda-

tions for further analyses.

For example, this method has been useful in identifying mixture distributions that

describe density estimates of forests (Jaskierniak, Lane, Robinson, & Lucieer, 2011),

in describing distributions that fit data from the mini-mental state examination test

(Muñiz-Terrera, van den Hout, Rigby, & Stasinopoulos, 2016), and in modelling

handgrip strength in children (D. Cohen et al., 2010). Indeed, it has been shown that

GAMLSS offers better fits of effects on transformed and untransformed body mass

index data than traditional generalized linear models (Beyerlein, Fahrmeir,

Mansmann, & Toschke, 2008).

The first step in GAMLSS modelling is to propose a marginal parametric distribu-

tion of the response variable in order to visualize subsets of independent variables

and their relationships. This marginal distribution analysis aids understanding of the

effects of single independent variables as well as combinations of independent vari-

ables on the response variable. Based on the visual inspection of different types of

distributions fitting the data, the researcher can select the most appropriate distribu-

tion to be used in a statistical analysis of that data. Alternatively, as shown in our

worked example, the researcher may use model comparison measures (e.g., Akaike

information criterion [AIC], Bayesian information criterion [BIC]) to choose the most

appropriate type of distribution.

Moreover, in GAMLSS models with different probability distributions, trends in

the parameters and change points in mean and/or variance can be compared. These

will provide additional evidence for the presence (or absence) of abrupt and/or slowly

varying changes. These features reveal GAMLSS into an explanatory tool for finding

appropriate set of models to describe the behavior of data.

Strategy 3: Model Comparison

Rodgers (2010) stated that there has been a quiet methodological revolution based on

modelling. This is also shown in some textbooks: Data Analysis: A Model

Comparison Approach (Judd & McClelland, 1989; Judd, McClelland, & Ryan,

2011) and Designing Experiments and Analyzing Data: A Model Comparison

Approach (Maxwell & Delaney, 1990). Rodgers suggested that ‘‘[t]he
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methodological revolution . . . has involved the transition from the NHST paradigms

developed by Fisher and Neyman-Pearson to a paradigm based on building, compar-

ing, and evaluating statistical/mathematical models’’ (Rodgers, 2010, p. 3). The

modelling approach involves developing models derived from theories and compar-

ing those models on how well they fit the data using some measure (e.g., AIC, BIC,

as mentioned above) that takes into account both how well the model fits the data

and the complexity of the model (see Breiman, 2001, and McCullagh, 2002, for full-

length discussions on modelling).

In this strategy, NHST is one of many possible model comparisons. In NHST, the

model of the researcher (i.e., the alternative hypothesis) is compared to some model

of chance (i.e., the null hypothesis). In the model comparison strategy, researchers

may compare nested models (i.e., comparison between a model and a simpler version

of that model) or nonnested models. An example of comparing nested models would

be research that aims to determine whether there is a correlation between academic

performance and numbers of hours of study. The researcher’s model may include

academic performance as the outcome variable and number of hours of study as the

predictor variable, with some variability in academic performance due to chance.

The chance model is one in which academic performance is all due to chance. These

two models are nested because the chance model is a simpler version of the research-

er’s model. An alternative is to compare the researcher’s model with an alternative

model in which the number of hours of study is ignored, and academic performance

is predicted only by the age (in months) of the students. These models are not nested

because none of them is a simpler version of the other.

There are numerous approaches that utilize model comparison, including the fol-

lowing: generalized linear models (GLM; Nelder & Wedderburn, 1972), SEM

(Kline, 2011; Loehlin, 2011), multilevel analysis (MLV; Browne & Rasbash, 2004),

Bayesian analysis such as Bayes factor comparison (BF; Berger & Pericchi, 1996;

De Santis & Spezzaferri, 1997; Gelman, Carlin, Stern, & Rubin, 2003), Bayesian

hierarchical models (Craigmile, 2009; Rossi, Allenby, & McCulloch, 2005), general-

ized estimating equations (GEE; Hardin & Hilbe, 2003), recursive partitioning meth-

ods (Strobl, Malley, & Tutz, 2009; Zeileis, Hothorn, & Hornik, 2008), linear quantile

mixed models (LQMM; Geraci & Bottai, 2014), and LASSO regression (Tibshirani,

1996, 1997). We now illustrate the three strategies with a worked example.

Worked Example

We used a data set of 34 participants who completed reasoning tasks under four con-

ditions. Measures of accuracy, reaction time, and eye fixation times were obtained;

but here we only use the fixation time data.1 For more details about the research

design and methods, see Macbeth et al. (2014). Participants solved reasoning prob-

lems in two contexts (with cues and abstract). Within each context, there were two

types of reasoning problems regarding the type of law they used (conjunction and
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disjunction). The predictions of this study are presented in the next section. They are

derived from the theory of mental models (Johnson-Laird, 1983).

Figure 1 shows boxplots representing the fixation times in each condition overlaid

on the data of each participant in each condition.

Strategy 1: Visual Representation of Cognitive Processes and Predictions

Figure 2 shows the visual representation of the hypothesized cognitive processes

involved in solving the reasoning problems for each condition, and a predicted quali-

tative pattern of values for the outcome variable fixation time. In the first column

there are two context conditions (with cues and abstract). The figure indicates that in

the context with cues participants are capable of generating mental models while

they try to solve the reasoning problems. On the other hand, in the abstract context

condition it is assumed that the participants are not able to generate mental models

while they try to solve the reasoning problems. Within each context the participants

were requested to solve problems with a conjunction rule and with a disjunction rule.

In the context with cues, it is assumed that the participants generate only one mental

model when solving problems with a conjunction rule and three mental models when

they solve problems with a disjunction rule.

Figure 1. Distribution of reaction times in the four conditions, represented with boxplots
for each condition and with the data of each individual in each condition (notches around the
median represent approximate 95% confidence intervals).
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In the last column the figure presents barplots, which represent the predictions of

the researcher regarding fixation time. The dark grey bars represent the predicted pat-

tern for problems in the context with cues, suggesting that, due to the need to generate

three mental models of the problem, the participants’ fixation times would be longer

than those in the conjunction condition. The light gray bars represent the predicted

pattern for problems in the abstract context. Given that the participants are not gener-

ating mental models, the fixation time would be shorter than in the context with cues

and would not show any difference between the conjunction and disjunction conditions.

In our worked example, we represent two categorical variables and one numerical vari-

able, but the same approach could be used in other situations. For example, in the case

of one categorical and two numerical variables, the graph would have an X axis and a Y

axis, and the hypothesis would be represented with a trend line (linear or nonlinear) for

each category. Three numerical variables could also be presented in a graph with an X

axis and a Y axis, and the hypothesis could be represented as magnitudes of the third

variable with squares of different sizes on several values of the other two variables (for

an example, see Shiffrin, Lee, Kim, & Wagenmakers, 2008, Figure 3).

Strategy 2: Visual Representation of Data Distributions and Choice of the
Appropriate Distribution for Analysis

For the sake of brevity, we focus on the case of the effects of the independent vari-

ables ‘‘context’’ and ‘‘law’’ on the response variable; the case of ‘‘item’’ and ‘‘law’’

is shown to further illustrate the way data distribute (see Figure 3). These plots reveal

interesting behavior in the data. For example, Figure 3A and B not only show that

Figure 2. Visual representation of the cognitive processes involved in each condition and
predictions for the outcome variable in each condition.
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data have a positive skew but also that there seems to be some multimodality. Figure

3C displays how RTs (reaction times) distribute for each experimental item in each

condition. The parametric Gamma distribution fitted the data best (see Table 1), and

its density significantly overlapped that of the (nonparametric) Kernel density esti-

mation. These graphical results evidence that the distributional assumption (i.e., the

Gamma distribution) is appropriate.

The graphics suggest that linear (mixed-effects) modelling is not appropriate, since

the conditional distribution of the responses is not normal. Alternatives include nor-

malizing the data via transformations (e.g., Vélez, Correa, & Marmolejo-Ramos,

2015) and carrying on with the linear modelling; modelling the data using generalized

linear (mixed-effects) models and using a family of positively skewed distributions.

By applying normality tests to the conditional distributions, it could be evidenced that

the data do not distribute normally. However, it is more interesting to know what non-

normal distribution better represents the data. Table 1 shows the results of fitting five

candidate distributions. The normal distribution is included to substantiate that the

data are not normal.

The results not only indicate that a normal distribution does not fit the data well

but that a Gamma distribution should be used to model the data. Thus, a complemen-

tary analysis to that presented earlier could consist of modelling the response variable

via Gamma distributions. Although location (e.g., mean) shifts are routinely consid-

ered ‘‘the’’ measure of effect, it is also possible that a causal factor manifests primar-

ily through heteroscedasticity (i.e., variation) in data. That is, most researchers aim at

comparing averages, which usually sit in the peak (or thereabouts) of a distribution,

via location tests (e.g., t test). However, such tests ignore other distributional aspects

such as scale (i.e., variability; skewness and kurtosis), and heavy tails.2 These para-

meters are also theoretically and substantively important in their own right and should

be used for more comprehensive distributional analyses.3 Thus, an additional analysis

could focus on scale and shape parameters of the response variable in terms of the

distribution that best fits the data (in the current example, the Gamma distribution).4

Strategy 3: Model Comparison

The model comparison strategy used in this worked example is multilevel analysis.

A detailed description of this strategy is beyond the scope of this article (for detailed

explanations of multilevel analysis, see Browne & Rasbash, 2004; Hox, 2010).

Multilevel analysis was originally developed to deal with survey or archival data that

contained two or more levels. For example, studies investigating academic perfor-

mance of students at different schools in different cities have three levels: students,

schools, and cities. The academic performance outcome variable may be partially

explained by variations at different levels: students’ hours of study, academic rank-

ing of schools, and/or political affiliation of the mayor of each city. Unlike one-level

models in which the variability of the outcome variable is explained by the predic-

tor(s) variable(s) and some random variability, in multilevel analysis there is random

8 Educational and Psychological Measurement
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variability at each level. In this case, students, school, and cities are considered ran-

dom factors.

Hoffman (2007) proposed that multilevel analysis could be used in psychology

experiments. One of the advantages of this approach is that psychological experi-

ments frequently utilize within-subjects designs, which creates problems in terms of

independence of observations. An obvious application of the multilevel analysis is to

use subjects as a random factor, in order to take into account the variability between

individuals. Moreover, if several measures are obtained for items, items could also

be considered a random factor. Note, however, that in our worked example we only

use subjects as a random factor.

Our worked example was built on the information obtained in the GAMLSS

approach, which indicated that the Gamma distribution is the most appropriate to fit

the data. Therefore, in our multilevel analysis we used a generalized linear model

(GLM) instead of a more typical linear model.5 For inference purposes in the linear

regression model, the data are assumed to be random and normally distributed,

whereas in GLM, we use a distribution of the exponential family—the Gamma distri-

bution (see more details in McCullagh & Nelder, 1989; Nelder & Wedderburn,

1972). Table 2 shows the multilevel analysis using the normal distribution, and

Table 3 shows the multilevel analysis using the Gamma distribution. (The analysis

was conducted with the package lme4 [Bates, 2010] in the statistical software R [R

Core Team, 2015].) In all the models, the AIC was lower in the Gamma distribution

analysis than in the normal distribution analysis, thus dismissing the idea of the data

distributing normally.

Following are the models we compared in both distributions. A null model (not

shown in Tables 2 and 3), which is a one-level linear model that did not estimate the

variability of the intercept between participants, with AIC = 3007.9. Model 1 incor-

porated an intercept and the effect of context on fixation times. Moreover, it esti-

mated the variability of the intercept between participants. Given that Model 1,

which includes variability between participants in the intercept, has a lower AIC than

the null model in all the other models, the variability of the intercept between partici-

pants was estimated. Model 2 estimated the effect of law (but not context) on fixa-

tion times. The AIC is much higher than that in Model 1, indicating that context was

the stronger predictor of fixation times. But, given that its AIC is lower than that of

the null model, we kept law in the subsequent models. Model 3 incorporated both

context and law. The AIC is lower than that of Model 1, confirming that both vari-

ables are important to predict fixation times.

Model 4 added the interaction between context and law. The AIC was lower than

that of Model 3, indicating that the interaction context 3 law is important. Finally,

Model 5 estimated the variability of the effect of context between participants. The

AIC is significantly lower than that of Model 4. We tried other combinations of para-

meters, but Model 5 is the one that led to a lower AIC. Thus, the evidence is in favor

of a model that takes into account the variables context and law, their interaction as

10 Educational and Psychological Measurement

 by guest on October 6, 2016epm.sagepub.comDownloaded from 

http://epm.sagepub.com/


fixed effects, the variability of the intercept and the context effect, and the residuals,

as random effects.

Discussion

We presented three strategies that could be used to replace the NHST approach: (1)

visual representation of cognitive processes and predictions, (2) visual representation

Table 2. Multilevel Analysis: Normal Distribution.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5

Fixed effects
Intercept 6.151 [0.4] 8.019 [0.4] 5.889 [0.4] 6.243[0.5] 6.243 [0.5]
Context 4.261 [0.3] 4.261 [0.3] 3.553 [0.4] 3.553 [0.5]
Law 0.525 [0.3] 0.525 [0.3] 20.183 [0.4] 20.183 [0.4]
Context 3 Law 1.416 [0.5] 1.416 [0.5]

Variance components
Participant variance
Intercept 4.843 (2.2) 4.545 (2.1) 4.847 (2.2) 4.856 (2.2) 3.482 (1.9)
Context 5.065 (2.3)
Residual variance 9.748 (3.1) 14.515 (3.8) 9.674 (3.1) 9.540 (3.1) 8.189 (2.9)

Fit statistics
AIC 2865 3068.1 2863.1 2858 2819.3

Note. AIC = Akaike information criterion. The standard error of the estimates of the fixed effects are

within brackets. As indicated by Bates (2010) we can only report the standard deviation, in parentheses,

for the random effects. The shade indicates the lowest AIC.

Table 3. Multilevel Analysis: Gamma Distribution.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5

Fixed effects
Intercept 6.471 [0.5] 8.099 [0.5] 6.277 [0.5] 6.397 [0.5] 6.390 [0.5]
Context 4.114 [0.3] 4.092 [0.3] 3.552 [0.4] 3.782 [0.6]
Law 0.658 [0.3] 0.423 [0.2] 0.166 [0.2] 0.282 [0.2]
Context 3 Law 1.12 [0.5] 1.051 [0.5]

Variance components
Participant variance
Intercept 1.755 (1.3) 2.296 (1.5) 1.768 (1.3) 1.75 (1.3) 1.815 (1.3)
Context 3.501 (1.9)
Residual variance 0.154 (0.4) 0.213 (0.4) 0.153 (0.4) 0.151 (0.4) 0.138 (0.4)

Fit statistics
AIC 2739 2950.5 2737.2 2734.6 2682.1

Note. AIC = Akaike information criterion. The standard error of the estimates of the fixed effects are

within brackets. As indicated by Bates (2010) we can only report the standard deviation, in parentheses,

for the random effects. The shade indicates the lowest AIC.
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of data distributions and choice of the appropriate distribution for analysis, and (3)

model comparison. The first strategy provides the reader with a visual representation

of the theories underlying the study and the predictions derived from the theories. We

conclude that making a visual representation of the theories and the predictions not

only facilitates the reader’s understanding of the study but may also improve research

design. Producing a visual representation of a theory and its predictions in the process

of designing a study may help the researcher choose more appropriate variables, oper-

ationalize variables, and control confounding variables.

Likewise, the second strategy is useful for the reader’s comprehension of the char-

acteristics of the data and for choosing appropriate analytical tools. As shown in the

worked example, the GAMLSS analysis identified the appropriate distribution to use

in the multilevel analysis. Finally, the third strategy—model comparison—is useful

as an analytical tool to replace NHST. Moreover, it may assist the researcher in the

selection of a model for designing theoretically based studies. Although it could be

beneficial to apply the three strategies after a study has been conducted, we encour-

age researchers to implement these strategies at the design stage.

The purpose of this article was to go beyond the stage of criticisms to NHST and

provide strategies to replace this approach. We hope this article provides useful tools

to encourage psychologists to look beyond NHST when designing research, analyz-

ing data, and presenting their results.
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Notes

1. The data set and the R code for the analysis presented in Strategies 2 and 3 can be accessed

freely at https://dx.doi.org/10.6084/m9.figshare.2413291.v2

2. Note that a simple alternative of analysis that combines measures of location and scale

can be done via the coefficient of variation (for the case of normally distributed data:

Cv = s=m) or the coefficient of quartile variation (for the case of nonnormally distributed

data: Cqv = (Q2 � Q1)=(Q2 + Q1)) and confidence intervals around them (Bonett, 2006;

incidentally, the formula for Cqv is mistyped in Bonett’s article. Intuitively, another robust

measure could be obtained by using the median and its associated measure of variability:

12 Educational and Psychological Measurement

 by guest on October 6, 2016epm.sagepub.comDownloaded from 

http://epm.sagepub.com/


Cmv =MAD/Mdn. This is a measure of relative dispersion that can be used to compare

dependent and independent data sets. It is rarely seen in psychological research.

3. Earlier work focusing on comparing distributions can be seen in the probability plots (Wilk

& Gnanadesikan, 1968) and the Ordinal Dominance curve (Darlington, 1973).

4. If the model contains one or more continuous covariates, then their graphical representa-

tion would look like a usual correlation plot (in the case of a bivariate plot); for example,

‘‘participants’ age’’ (PA) in the Y axis and RTs in the X axis. A graphical enhancement

would be done by adding marginal density plots by the X and Y axes (for a recent example,

see Open Science Collaboration, 2015, Figure 3). Another approach would be to discretize

a continuous variable to create categories and then to establish density plots for each cate-

gory. In the example above, PA can be discretized via a median split in order to generate

two categories, that is, Age Group 1 \ median(PA) and Age Group 2 . median(PA).

Subsequently, the X axis could represent the RTs for each of the two age groups while the

Y axis would be the distribution’s density. Note that although discretizing continuous vari-

ables is not recommended (e.g., Altman & Royston, 2006), it could be considered as an

option only if strictly required.

5. Empirical evidence shows that GLMs have more power than traditional linear models

(e.g., ANOVA) even though they might lead to the same conclusions (see Moscatelli,

Mezzetti, & Lacquaniti, 2012). A recent method known as automated mixed ANOVA

modelling implements backward elimination of nonsignificant random and fixed effects

and gives the results in ANOVA terms (Kuznetsova, Christensen, Bavay, & Brockhoff,

2015). This method is thus a balanced blend between GLM and ANOVA procedures.
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